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LECTURE 1

Smooth manifolds

Let us begin with a short history lesson on how you learned to identify (continu-
ously) di↵erentiable functions.

(i) (High school) A function f : R! R is continuous if its graph doesn’t have
any jumps. The derivative f 0(x) at a point x is the slope of the graph of
f(x) = y at the point x.

(ii) (First class in Analysis) The (", �) definition of continuity. A function
f : R! R is di↵erentiable at the point x if the limit

lim
u!0

f(x+ u)� f(x)

u

exists. This limit is denoted by f 0(x). The function f is continuously di↵er-
entiable if x 7! f 0(x) is itself a continuous function.

(iii) (Second class in Analysis) Now you learned how to handle functions with
more than one variable. Suppose f : Rn ! Rk is a continuous function. Then
f is di↵erentiable at x 2 Rn if there exists a linear map T : Rn ! Rk (that
is, a k ⇥ n matrix) such that

lim
|u|!0

|f(x+ u)� f(x)� Tu|
|u| = 0. (1.1)

We denote T by Df(x). It is the matrix of partial derivatives of f =
(f 1, . . . , fk) at the point x = (x1, . . . , xn):

Df(x) =

0

B

@

@f1

@x1 (x) · · · @f1

@xn

(x)
...

. . .
...

@fk

@x1 (x) · · · @fk

@xn

(x)

1

C

A

Of course, this reduces to the same definition as before if n = k = 1, since
a 1 ⇥ 1 matrix is just a number, and in this case Df(x) is simply multi-
plication by the number f 0(x). As before, the function f is continuously
di↵erentiable if x 7! Df(x) is a continuous function (this is now a function
Rn ! {k ⇥ n matrices} ⇠= Rkn).

(iv) (First class in topology) Suppose now X and Y are topological spaces
and f : X ! Y is a function. You learned that f is continuous if f�1(U) is
an open set in X for every open set U in Y . If X and Y are metric spaces
then this reduces to the old (", �) definition of continuity. But how does one
define di↵erentiability in this setting? Equation (1.1) does not make sense
any more, since in an arbitrary topological space one cannot simply “add”
points, and there is no such thing as a “linear” map!
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Here endeth the history lesson. The tl;dr version is:

• It’s easy to di↵erentiate functions on Euclidean spaces (or more generally, on
vector spaces1).

• Most topological spaces are not vector spaces.

• Bummer.

Indeed, this is a real shame. Measuring the rate at which things change—that is,
di↵erentiating them—is absolutely crucial to all applications of mathematics (and
is arguably the single most important concept in theoretical physics). However
most “real life” systems are not defined on open sets in vector spaces (the whole
point of your topology course was to introduce classes of spaces appropriate for
such models).

This is where di↵erential geometry comes in. Our first aim is to define a special
type of topological space, called a smooth manifold, on which it is possible to
make sense of di↵erentiating a continuous function. The definition of a smooth
manifold will:

• Include open sets in vector spaces as a special case.

• Be su�ciently general so that the topological spaces that occur in “real life”
systems (in theoretical physics, economics, computer science, robotics, genet-
ics, cooking etc) are smooth manifolds.

So let’s get started.

In fact, we will define smooth manifolds in two stages. We will first define a
topological manifold, which is a topological space that locally resembles Eu-
clidean space. We will then endow a topological manifold with an additional piece
of data called a smooth structure. The smooth structure is what will allow us to
actually go ahead and di↵erentiate things. A topological manifold equipped with a
smooth structure is then called a smooth manifold.

Let us first recall a few elementary concepts from point-set topology2.

Definition 1.1. Let X be a topological space. We say that X is Hausdor↵ if for
every pair x 6= y of points in X, there are open subsets U, V ⇢ X such that x 2 U ,
y 2 V and U \ V = ;.

Any metric space is Hausdor↵. A topological space X is said to be connected
if it is not the disjoint union of nonempty open sets. A topological space X is said
to be path connected if for any two points x, y 2 X there exists a continuous
map � : [0, 1] ! X such that �(0) = x and �(1) = y. A path connected space is
connected, but the converse need not hold. In general any topological space can be
decomposed into its connected components (resp. path components), where

1In this course, all vector spaces are implicitly assumed to be finite-dimensional real vector
spaces, unless otherwise specified.

2This is hopefully revision for most of you. However it is not the end of the world if you are
not that familiar (or have forgotten) most of this material, as we will make very little use of it
throughout the course.
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the connected component (resp. path component) containing a given point x is the
union of all the connected (resp. path connected) sets containing x.

Recall that an open cover of a topological space X is a collection {Ua | a 2 A}
of open subsets of X, where A is some index set, such that X =

S

a2A Ua. If the
index set A is a finite set, we say that the open cover is a finite cover. A subcover
of an open cover {Ua | a 2 A} consists of a subset A0 ⇢ A such that the collection
{Ua | a 2 A0} is still an open cover.

Definition 1.2. Let X be a topological space. We say that X is compact if every
open cover has a finite subcover.

As you hopefully remember from your point-set topology course, compact spaces
are typically the most “useful” class of topological spaces, in the sense that many
powerful theorems only hold for compact spaces. Unfortunately, since we want
manifolds to include Euclidean spaces as a special case, we cannot require manifolds
to be compact (indeed, a subset K ⇢ Rn is compact if and only if it is closed and
bounded—this is the Heine-Borel theorem.)

We will therefore impose a weaker condition, which requires two more prelim-
inary definitions about covers. Suppose {Ua | a 2 A} is an open cover. A refine-
ment is another open cover {Vb | b 2 B} with the property that for every b 2 B
there exists a 2 A such that Vb ⇢ Ua. Next, an open cover {Ua | a 2 A} of X is said
to be locally finite if for every x 2 X there exists a neighbourhood3 W of x such
that the set {a 2 A | Ua \W 6= ;} is a finite set.

Definition 1.3. A topological space X is said to be paracompact if every open
cover has a locally finite refinement.

Thus compact spaces are obviously paracompact, but the latter is more general.
For instance, Rn is paracompact, but as we have just observed, not compact. In
fact, the following result holds.

Theorem 1.4. Every metric space is paracompact.

Although Theorem 1.4 is not too hard to prove, we will not do so, as it involves
ideas from outside the course. Now let us introduce the final (and most important)
concept needed to define topological manifolds.

Definition 1.5. A topological space X is said to be locally Euclidean of di-
mension n if for every point x 2 X, there exists a neighbourhood U of x, an open
set O ⇢ Rn, and a homeomorphism � : U ! O.

Let
Bn := {x 2 Rn | |x| < 1}

denote the open unit ball in Rn. If O ⇢ Rn is open then there exists a subset O0 ⇢ O
such that O0 is homeomorphic to Bn. Moreover since Bn is homeomorphic to Rn

itself, we can equivalently define a locally Euclidean space of dimension n to be a
topological space X with the property that every x 2 X admits a neighbourhood
U which is homeomorphic to Rn.

3I use the convention that a neighbourhood of a point in a topological space is an open set
containing that point.
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Before stating the next remark, let me introduce a convention that will hold
throughout the entire course: anything marked with a (|) is non-examinable.
There are various reasons for marking something with a (|):

• it is only tangentially related to the course,

• it is rather technical or di�cult,

• it is just a sketch,

• it requires more background knowledge (eg. algebraic topology, func-
tional analysis, etc) than the rest of the course assumes.

In any case, you are welcome to ignore anything marked with a (|). This
holds for both the Lecture Notes and the Problem Sheets.

(|) Remark 1.6. Suppose n 6= k are two non-negative integers. Is it possible for
a topological space to be locally Euclidean of dimension n and locally Euclidean
of dimension k? Equivalently, is Rn homeomorphic to Rk for n 6= k? The answer
to this is “no”, but this is surprisingly di�cult to prove. This result is called the
Invariance of Domain Theorem, and was first proved by Brouwer in 1912. The
easiest proof uses tools from algebraic topology. I proved it last year in my course
here.

Let us now finally give the first key definition of the course.

Definition 1.7. A topological space M is called a topological manifold of
dimension n if:

(i) M is locally Euclidean of dimension n,

(ii) M is Hausdor↵ and has at most countably many connected components,

(iii) M is paracompact.

We refer to n as the dimension of M .

As we have already alluded to, the most important part of the definition is the
locally Euclidean part. The Hausdor↵ condition is included to rule out pathologies.
The requirement that M only has countably many components is almost never
needed—in fact, in this course only one important theorem will use this hypothesis
(namely, Sard’s Theorem 5.17). Note that this tells us that a countable collec-
tion of points is a zero-dimensional manifold (with the discrete topology), but an
uncountable collection is not.

The third condition guarantees the existence of partitions of unity, which are an
important technical tool we will discuss in Lecture 3 (cf. Theorem 3.13). The di-
mension of M is well-defined due to Remark 1.6. In general the phrase “topological
manifold” means a topological manifold of some unspecified dimension n.

Remark 1.8. If X is a topological space then a basis for the topology on X is
a set B of open sets of X with the property that every open set in X is a union
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of sets in B. A topological space is said to be second countable if it admits
a countable basis. Many authors define topological manifolds as locally Euclidean
second countable Hausdor↵ topological spaces. In fact this is the same as Definition
1.7, due to the following result: a Hausdor↵ locally Euclidean topological space
is second countable if and only if it is paracompact and has at most countably
many connected components. I prefer mentioning paracompactness explicitly in
the definition (over second countability) since paracompactness is what we will
actually use when constructing partitions of unity in Lecture 3.

Remark 1.9. Topological manifolds enjoy many nice point-set topological proper-
ties. Let us go through some of them. Do not worry too much about the technical
terms—we will never really use them in the course, except in passing.

(i) A topological space X is said to be locally compact if for every point x 2 X
there exists a compact set K and a neighbourhood U of x such that U ⇢ K. If
the topological space is Hausdor↵, this is equivalent to asking that every point
has a neighbourhood with compact closure. Any locally Euclidean Hausdor↵
space (and hence any topological manifold) obviously has this property.

(ii) A topological space is said to be Lindelöf if every open cover has a countable
subcover. Any locally compact paracompact space with at most countably
many components is Lindelöf, and hence the same is true of any topological
manifold.

(iii) A topological space X is locally path connected if for every point x 2 X
and every neighbourhood U of x, there exists a path connected neighbourhood
V of x with V ⇢ U . A locally Euclidean space is obviously locally path-
connected. For a locally path connected space, the path components and the
connected components coincide. Thus in particular, a topological manifold
M is connected if and only if it is path connected.

(iv) Every paracompact Hausdor↵ space is a normal topological space. This
means that given any two closed disjoint subsets K1, K2 of M there are open
sets U1, U2 of M such that Ki ⇢ Ui for i = 1, 2 and U1 \ U2 = ;. Thus
certainly any topological manifold is normal.

(v) Every topological manifold M is metrisable. That is, there exists some met-
ric on M that induces the given topology on M . Thus one can always view
a manifold as a metric space—we will carry out this construction explicitly
in Lecture 52. In Lecture 6 we will give a proof of this fact for smooth man-
ifolds (cf. Definition 1.18 below)—a similar argument works for topological
manifolds too, but it is a bit more involved.

Example 1.10. Rn is trivially a topological manifold of dimension n. More gen-
erally, any n-dimensional vector space is a topological manifold of dimension n.
Similarly any non-empty open subset of a topological manifold of dimension n is
also a topological manifold of dimension n.

We will see more interesting examples later in this lecture, but let us briefly
note a non-example.
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Example 1.11. The closed unit ball

Dn := {x 2 Rn | |x|  1}

is not a topological manifold of dimension n. It is an illustrative exercise to try and
work out why. In fact, Dn is an example of a more general concept of a manifold
with boundary that we will come back to later in Lecture 21.

Let us now get back to the point of view discussed at the beginning of the
lecture: we are trying to develop a class of topological spaces for which it is possible
to di↵erentiate functions on. One might naively believe that the locally Euclidean
condition built into the definition of a topological manifold is enough. Indeed, to
check whether a function f : Rn ! Rk is di↵erentiable at a point x 2 Rn, we need
only examine f in a small neighbourhood of x—this is clear from (1.1). Thus if
we are given a continuous map between two topological manifolds, we can locally
view it as a continuous map between two Euclidean spaces, and thus we could
conceivably say our original map is di↵erentiable if this local map is. But herein
lies a problem: a topological manifold is only homeomorphic to Euclidean space,
and a di↵erent choice of homeomorphism might a↵ect whether the local map is
di↵erentiable or not.

The solution to this is to introduce more structure. Before doing so, let us recall
the chain rule for continuously di↵erentiable functions between Euclidean spaces.
We will give two di↵erent versions: one for the total di↵erential Df(x) (the matrix)

and one for the partial derivatives @f i

@xj

.

Proposition 1.12 (The Chain Rule). Let O ⇢ Rn, ⌦ ⇢ Rk be open sets. Let
f : O ! Rk and g : ⌦ ! Rl be continuously di↵erentiable functions satisfying
f(O) ⇢ ⌦.
(i) The function g � f is also continuously di↵erentiable, and its derivative at the

point x is given by

D(g � f)(x) = Dg(f(x)) �Df(x).

(ii) Write x = (x1, . . . , xn) for the coordinates on Rn and y = (y1, , . . . , yk) for
the coordinates on Rk, and write f = (f 1, . . . , fk) and g = (g1, . . . , gl). Then
the partial derivatives of g � f are given by

@(gi � f)
@xj

(x) =
k
X

r=1

@gi

@yr
(f(x))

@f r

@xj
(x), for all 1  i  l, 1  j  n.

We now define higher order derivatives.

Definition 1.13. Let O ⇢ Rn and ⌦ ⇢ Rk be open sets and suppose f : O ! ⌦ is
a di↵erentiable map. We say that f is of class Cr if each partial derivative @f i

@xj

is a
(r � 1)-times continuously di↵erentiable function. We say that f is smooth or of
class C1 if f is of class Cr for every r � 1. If f is both smooth and bijective and
the inverse function is also smooth then we say that f is a di↵eomorphism.
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It follows from part (ii) of Proposition 1.12 that the composition of smooth
functions defined on open sets in Euclidean spaces is again a smooth function.

Remark 1.14. If f is a di↵eomorphism then necessarily n = k. This follows imme-
diately from part (i) of Proposition 1.12, which tells us that if f is a di↵eomorphism
then Df(x) is an invertible matrix. (Its inverse is given by D(f�1)(f(x)).) A k⇥n
matrix can only be invertible if n = k. Thus in particular Rn cannot be di↵eomor-
phic to Rk for n 6= k (compare to Remark 1.6).

We these preliminaries in hand, let us get started on the definition of a smooth
manifold.

Definition 1.15. Let M be a topological manifold of dimension n. A smooth
atlas on M is a collection

⌃ = {�a : Ua ! Oa | a 2 A}
where {Ua | a 2 A} is an open cover of M , each Oa is an open set in Rn, and each
�a : Ua ! Oa is a homeomorphism such that the following compatibility condition
is satisfied: Suppose a, b 2 A are such that Ua \ Ub 6= ;. Then the composition
(often called the transition map)

�b � ��1
a : �a(Ua \ Ub)! �b(Ua \ Ub)

should be a di↵eomorphism. This makes sense, since both �a(Ua \Ub) and �b(Ua \
Ub) are open subsets of Rn. We call the maps �a the charts of the atlas ⌃.

We say that two smooth atlases ⌃1 and ⌃2 are equivalent if their union is also
a smooth atlas, that is, if given any chart � of ⌃1 and any chart ⌧ of ⌃2 such that
the domains of � and ⌧ intersect, the composition ⌧ ���1 is also a di↵eomorphism.
It is immediate that this notion defines an equivalence relation on the set of smooth
atlases on a given topological manifold.

Definition 1.16. A smooth structure on a topological manifold is an equivalence
class of smooth atlases.

Remark 1.17. Given an equivalence class of smooth atlases, there is a unique
maximal smooth atlas in that class (simply take the union of all the atlases in
the given equivalence class). Thus there is a 1-1 correspondence between smooth
structures and maximal smooth atlases. Since dealing with equivalence relations
can be tedious, it is usually more convenient to regard a smooth structure as a
maximal smooth atlas, and we will do so without further comment.

We now finally arrive at the main definition of this first lecture.

Definition 1.18. A smooth manifold of dimension n is a pair (M,⌃) where
M is a topological manifold of dimension n and ⌃ is a smooth structure on M .

Since a smooth atlas is contained in a unique maximal smooth atlas, it is su�-
cient when defining a smooth manifold to specify a smooth atlas on the underlying
topological manifold. Whenever possible we will omit the ⌃ from the notation and
just write M . For smooth manifolds the fact that the dimension is well-defined is
much easier than for topological manifolds (we only need Remark 1.14, which does
not require any algebraic topology).
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Example 1.19. The standard smooth structure on Rn is the one containing the
smooth atlas consisting of exactly one chart: the identity map id : Rn ! Rn. The
reason for the word “standard” will become clear by the end of the lecture. More
generally, if V is any n-dimensional real vector space, then the standard smooth
structure on V is the one induced by the smooth atlas consisting of a single chart
T : V ! Rn, where T is some linear isomorphism. (Exercise: Why is this indepen-
dent of the choice of T?)

Just as with topological manifolds, an open subset of a smooth manifold is also
a smooth manifold:

Lemma 1.20. Let M be a smooth manifold of dimension n and let W ⇢ M be a
non-empty open set. Then W naturally inherits the structure of a smooth manifold
of dimension n.

Proof. We have already remarked in Example 1.10 that W is a topological manifold
of dimension n. Let ⌃ = {�a : Ua ! Oa | a 2 A} be a smooth atlas on M . Then

{�a|W\Ua
: W \ Ua ! �a(W \ Ua) ⇢ Oa | a 2 A}

is a smooth atlas for W .

Thus any open subset of a vector space is a smooth manifold. Let us now
consider a slightly less trivial example. Recall we denote by Sn denote the unit
sphere:

Sn :=
�

x 2 Rn+1 | |x| = 1
 

.

Proposition 1.21. The sphere Sn is a compact smooth manifold of dimension n.

Proof. We give Sn the subspace topology from Rn+1. Then Sn is a metric space (be-
ing a subset of a metric space), and hence is Hausdor↵ and paracompact (Theorem
1.4). Moreover Sn is connected. We will directly exhibit a smooth atlas on Sn (thus
proving at the same time that Sn is a topological manifold). Let xN = (0, . . . , 0, 1)
denote the “north pole” and let xS := (0, . . . , , 0,�1) denote the “south pole”. Let
UN = Sn \ {xN} and US := Sn \ {xS}. Then {UN , US} is an open cover of Sn.
Define charts

�N : UN ! Rn, �N(x
1, . . . , xn+1) :=

1

1� xn+1
(x1, . . . , xn)

and

�S : US ! Rn, �S(x
1, . . . , xn+1) :=

1

1 + xn+1
(x1, . . . , xn).

The maps �N and �S are stereographic projection from the north and south pole
respectively. Both the transition maps

�N � ��1
S : Rn \ {0}! Rn \ {0} and �S � ��1

N : Rn \ {0}! Rn \ {0}
are given by

(y1, . . . , yn) 7! 1
Pn

i=1(y
i)2

(y1, . . . , yn)

which is obviously a di↵eomorphism. Thus we have defined a smooth atlas on Sn.
We refer to this smooth structure as the standard smooth structure on Sn.
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All we really needed to do in the previous proof was check di↵erentiability of
the transition function �N � ��1

S . This is because (as a subset of Rn+1), Sn already
carried a nice topology. Sometimes however we will want to build a smooth manifold
“from scratch”. For this, the next result is very useful.

Proposition 1.22 (Constructing smooth manifolds). Let M be a set. Suppose
we are given a collection {Ua | a 2 A} of subsets of M together with bijections
�a : Ua ! Oa ⇢ Rn, where Oa is an open subset of Rn. Assume in addition that:

• For any a, b 2 A, �a(Ua \ Ub) is open in Rn.

• If Ua\Ub 6= ;, the map �b���1
a : �a(Ua\Ub)! �b(Ua\Ub) is a di↵eomorphism.

• Countably many of the Ua cover M .

• If x 6= y are points in M then either there exists a such that x and y belong
to Ua, or there exists a, b with Ua \ Ub = ; such that x 2 Ua and y 2 Ub.

Then M has a unique smooth manifold structure for which {�a : Ua ! Oa | a 2 A}
is a smooth atlas.

The proof is essentially trivial: we simply took the definition of a smooth man-
ifold and inserted it into the hypotheses.

Proof. Define a topology on M by declaring all the �a to be homeomorphisms.
That this is well-defined topology follows from the fact that the �a are bijections,
together with the first two bullet points. The locally Euclidean property is then
immediate. The last two bullet points guarantee this topology is Hausdor↵, has
countably many components, and is paracompact, thus turningM into a topological
manifold. Finally the fact that {�a : Ua ! Oa | a 2 A} is a smooth atlas on M is
clear from the second bullet point.

Remark 1.23. Historically, a manifoldM (smooth or topological) was called open if
M was non-compact and closed ifM was compact. This however is bad terminology
for two reasons:

(i) Thought of as an abstract topological space, every manifold is both open and
closed! (This is true of any topological space.)

(ii) If however our given manifoldM is a subspace of a larger spaceN , then it does
make sense to ask whether M is open or closed in the subspace topology of N .
For example, the unit ball Bn is open in Rn and the unit sphere Sn is closed
in Rn+1. Historically, all manifolds were thought of as subspaces—actually
submanifolds4—of some Euclidean space Rk, and in fact any manifold can
be embedded inside Euclidean space5. However even then the terminology
“open” and “closed” does not make sense! For instance, if we identify R2

with the set of points in R3 whose last coordinate is zero then R2 is closed as
a subspace of R3, but R2 is not compact as a manifold.

4We will define submanifolds precisely in Lecture 5.
5In the smooth case, this is known as the Whitney Embedding Theorem, which we will prove

in Lecture 6.
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Thus throughout this course, we will only use the words “open” and “closed” in
their topological context (i.e. to speak of open sets and closed sets). If we wish to
indicate a given manifold is compact, we will use the rather more logical terminology
“compact manifold”.

The only caveat to this is that when we define (both smooth and topologi-
cal) manifolds with boundary later on (Lecture 21), we will need to di↵erentiate
between the terms “compact manifold with boundary” and “compact manifold
without boundary”. Indeed, as we have already mentioned, the closed unit ball Dn

is an example of a compact smooth manifold with boundary.

On Problem Sheet A there are many more examples (and non-examples) of
smooth manifolds for you to play with. Going back to the general theory, we have
now achieved the goal we set out at the beginning of the lecture: to come up with
an appropriate class of topological spaces for which it makes sense to say whether
a map is di↵erentiable or not.

Definition 1.24. Let ' : M ! N be a continuous map between two smooth
manifolds. We say that ' is of class Cr if for every point x 2 M , if � : U ! O is
any chart on M with x 2 U and ⌧ : V ! ⌦ is any chart on N with '(x) 2 V , the
composition

⌧ � ' � ��1 : �(U \ '�1(V ))! ⌧('(U) \ V )

is of class Cr. If ' is of class Cr for all r then we say ' is smooth (or of class C1).
If ' is smooth and bijective and the inverse function N ! M is also smooth then
' is said to be a di↵eomorphism.

It follows from the definition of smooth atlases that it does not matter which
charts we use to check di↵erentiability (i.e. we could replace “any chart” with
“every chart” above).

Example 1.25. If (M,⌃) is a smooth manifold and � : U ! O belongs to ⌃, then
if we think of U and O as smooth manifolds in their own right (using Lemma 1.20
and Example 1.19) then � is a di↵eomorphism.

Similarly if W ⇢ M is any open set (endowed with the smooth structure from
Lemma 1.20) then the inclusion map ı : W ,!M is a smooth map.

The next result also follows immediately from the chain rule in Euclidean spaces
(Proposition 1.12).

Proposition 1.26. LetM,N and L be smooth manifolds, and suppose ' : M ! N
and  : N ! L are smooth maps. Then  � ' : M ! L is smooth.

Proof. Let x 2 M . Let � be a chart on M containing x, let ⌧ be a chart on N
containing '(x), and let ⇢ be a chart on L containing  ('(x)). We want to show
that the composition ⇢ � ( � ') � ��1 is smooth where defined. But

⇢ � ( � ') � ��1 =
�

⇢ �  � ⌧�1
� � �⌧ � ' � ��1

�

,

and by assumption each of the two bracketed terms on the right-hand side is a
smooth map. Since the composition of smooth maps (defined on open sets in
Euclidean space) is smooth, the left-hand side is also smooth.
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Remark 1.27. Consider the following curiosity. We have defined what it means for
a continuous map between two smooth manifolds to be di↵erentiable (Definition
1.24), but we have not defined what the derivative D'(x) is yet! This is somehow
backwards—in normal calculus one first defines the derivative Df(x) and then says
the map is di↵erentiable if the derivativeDf(x) always exists. In fact, the definition
of the derivative of a map between two smooth manifolds is a little tricky, and this
is what we will do in the next three lectures.

A smooth structure is defined as an equivalence class of smooth atlases. We can
take this one step further and look at equivalence classes of smooth structures.

Definition 1.28. We say that two smooth structures ⌃1 and ⌃2 on a given topo-
logical manifold M belong to the same di↵eomorphism class if there exists a
di↵eomorphism (M,⌃1) ! (M,⌃2). This is clearly another equivalence relation.
We write S(M) for the set of di↵eomorphic classes of smooth structures on M .

Example 1.29. As an example to show that smooth structures and di↵eomorphism
classes really are di↵erent concepts, takeM = R. Let ⌃ denote the maximal smooth
atlas containing the chart x 7! x3. On Problem Sheet A you will check that this
is not the same smooth structure as the standard one described in Example 1.19.
However, there is an obvious di↵eomorphism between the two smooth structures
(namely, x 7! x3). Thus they belong to the same di↵eomorphism class.

(|) Remark 1.30. Does every topological manifold admit a smooth structure
(i.e. can every topological manifold be turned into a smooth manifold)? Can a
topological manifold admit more than one di↵eomorphism class? These questions
are typically very hard to solve (and there are many open problems). Here are
some interesting facts, all of which are way too hard to prove in this course.

• If M is a topological manifold of dimension 0,1,2 or 3 then S(M) contains a
unique element.

• In higher dimensions, there may be more than one di↵eomorphism class. For
example, S(S7) has exactly 28 elements, and there are more than sixteen
million di↵erent elements in S(S31)!

• For any n 6= 4, Rn admits a unique di↵eomorphism class. However S(R4)
has infinitely many elements. In general the most “wild” phenomena occur
in dimension 4.

• There exist topological manifolds that do not admit any smooth structures
at all: S(M) = ;.

We conclude this lecture with another esoteric (and non-examinable!) remark.

(|) Remark 1.31. Manifolds can be infinite-dimensional too! Let me briefly
outline the relevant definitions. This is for interest only—we will not use infinite-
dimensional manifolds in this course.

Fix a Banach space E. We say that a topological space X is locally modelled
on E if every point in X has a neighbourhood which is homeomorphic to an open
set in E. A topological Banach manifold is a Hausdor↵ paracompact topological
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space with at most countably many connected components that is locally modelled
on some Banach space E. A smooth Banach manifold is defined similarly—here we
use the fact that di↵erentiating functions on Banach spaces works in exactly the
same way as di↵erentiating functions on Euclidean spaces.

You should compare this to how you initially learned linear algebra. To be-
gin with all vector spaces were finite-dimensional and linear operators were just
matrices. Then two years later they told you that actually things could be infinite-
dimensional. All the theorems you knew and loved from linear algebra continued
to hold (provided a few more assumptions were made), only the proofs were much
harder and it was no longer called “linear algebra,” it was called “functional anal-
ysis”. The same is true in di↵erential geometry—infinite-dimensional di↵erential
geometry is sometimes referred to as “global analysis”.

As a concrete example of an infinite-dimensional manifold, let M and N be two
finite-dimensional manifolds, and let 1  r < 1. Then the space Cr(M,N) of
maps from M to N of class Cr is an infinite-dimensional Banach manifold.

12



LECTURE 2

Tangent spaces

The goal of the next few lectures is to associate to an n-dimensional smooth man-
ifold an n-dimensional vector space, denoted by TxM , to each point x 2 M . We
call TxM the tangent space to M at x. Although it won’t be immediate from the
definition why, the tangent space is what you would naturally “guess” it would be.
See Figure 2.1 for the case of S2 (which should be thought of as sitting inside R3).
We will use this construction to define the derivative of a smooth map ' : M ! N :

Figure 2.1: The tangent space to S2

this will be a linear map D'(x) : TxM ! T'(x)N for each x 2 M . In Lecture
4 we will “glue” the vectors spaces together to form one larger space called the
tangent bundle of M . This will be smooth manifold of twice the dimension of
M . A smooth map ' : M ! N will then induce a smooth map D' : TM ! TN .
In Lecture 5 we will look at submanifolds—it will not be until then that we can
rigorously prove that the tangent space we define in this lecture really is the actual
“tangent space” as in Figure 2.1 (cf. Example 5.16).

Definition 2.1. A smooth function on a manifold is a smooth map1 f : M ! R
in the sense of Definition 1.24, where R is given the standard smooth structure
from Example 1.19. Thus f is a smooth function if for any chart � : U ! O on M ,
the composition f � ��1 : O ! R is a smooth function (in the normal sense).

We denote by C1(M) the space of smooth functions. If W ⇢M is an open set,
we define C1(W ) to be the space of smooth functions that are only defined on W
(where W is thought of a smooth manifold in the sense of Lemma 1.20). The space
C1(M) is an algebra2 (and thus in particular a ring and a vector space), under

Will J. Merry, Di↵. Geometry I, Autumn 2018, ETH Zürich. Last modified: June 28, 2019.
1As a general convention, I will use ', etc for smooth maps from one manifold to another,

and f, g for smooth maps from a manifold to a Euclidean space.
2Don’t worry too much if you’re not familiar with the term “algebra”—in this case it just

means a vector space where you can also multiply two elements together.
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the operations3

(f+g)(x) := f(x)+g(x), (fg)(x) := f(x)g(x), (cf)(x) := cf(x), c 2 R.

(|) Remark 2.2. Let M be a manifold of dimension n > 0, and let W ⇢M be a
non-empty open set. Then as a vector space, C1(W ) is always infinite-dimensional.
There are many ways to see this, but here is an easy one. Let f 2 C1(W ) be any
smooth function4 which is not constant on some connected component of W . Then
f(W ) is an infinite subset of R (since it contains an interval). Consider now the
vector space R[t] of all polynomials. This is an infinite-dimensional vector space—
a basis is the set of monomials {tn | n � 0}. Any polynomial p(t) is completely
determined by its values on an infinite set, and thus in particular if p 2 R[t] then
p is completely determined by its values on f(W ). Therefore {p � f | p 2 R[t]} is
an infinite-dimensional subspace of C1(W ), and hence the latter must be infinite-
dimensional itself.

Before going any further, let us go back to Rn and introduce some more notation.
To begin with, this will feel somewhat redundant, but we will see next lecture that
it makes the various formulae easier to understand. Denote by ui : Rn ! R the
function

ui(x1, . . . , xn) = xi. (2.1)

Let ei denote the ith standard basis vector in Rn, so that

ui(ej) = �ij, (2.2)

where �ji is the Kronecker delta defined by

�ji =

(

1, i = j,

0, i 6= j.

Now suppose f : O ⇢ Rn ! Rk is a smooth map defined on an open subset of Rn.
If x 2 O and v 2 Rn then the vector5 Df(x)[v] can be thought of as the partial
derivative of f in the direction v:

Df(x)[v] = lim
t!0

f(x+ tv)� f(x)

t
.

Definition 2.3. We abbreviate Df(x)[ej] by Djf(x):

Djf(x) = Df(x)[ej] = lim
t!0

f(x+ tej)� f(x)

t
.

Let us summarise the various di↵erent ways we can write the derivative:

3We will always write � to denote composition, meanwhile juxtaposition indicates the point-
wise product.

4If you are worried why such a function exists, you could for instance use Lemma 3.2 from
the next lecture.

5I will typically use square brackets to indicate a matrix eating a vector.
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Let f : O ⇢ Rn ! Rk be a smooth map, and let x 2 O. Then:

• Df(x) is a k ⇥ n matrix.

• Djf(x) is an element of Rk. It is the jth column of the matrix Df(x).

• D(ui � f)(x) is a linear map from Rn to R. One can think of it as the
ith row of the matrix Df(x).

• Dj(ui � f)(x) is a number. It is the (i, j)th entry of the matrix Df(x).

In more familiar notation

Dj(u
i � f)(x) = @f i

@xj
(x). (2.3)

In general I will prefer the slightly more cumbersome expression on the left-hand
side of (2.3). This is because next lecture the symbol @

@xi

will take on a special
meaning (cf. Example 3.6), and I do not want to confuse you all. (See also Definition
7.4.)

Remark 2.4. In our new notation, part (ii) of the chain rule in Euclidean spaces
(Proposition 1.12) reads:

Dj(u
i�g�f)(x) =

k
X

r=1

Dr(u
i�g)(f(x))Dj(u

r�f)(x), for all 1  i  l, 1  j  n.

This should already give you a clue as to why the new notation is “better”: we did
not need to explicitly name our coordinate systems on Rn and Rk.

Going back to manifolds, we can use the ui to give an example of a smooth
function.

Example 2.5. If � : U ! O is a chart on M , for each i = 1, . . . , n the function
ui � � is a smooth function on U .

This type of smooth function is especially important, so it gets its own special
name.

Definition 2.6. If x 2 M and � is a chart defined on a neighbourhood of x then
we will often denote the function ui � � simply by xi. We call the functions xi the
coordinates of the chart �, and we say that the xi are local coordinates about
x.

Remark 2.7. The advantage of this phrasing is that it allows us to omit explicit
reference to the chart �. Thus the sentence

Let x 2M and choose local coordinates (x1, . . . , xn) about x. . .

is shorthand for

Let x 2M . Choose a chart � defined on a neighbourhood of x, and let xi = ui � �
denote the coordinates of �. . .
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In fact, sometimes we will go one step further and abuse the language even more
by writing things like (!):

Let x = (x1, . . . , xn) be a point in M . . .

The way to think about this is as follows: Di↵erential Geometry is essentially a
way of formalising calculus so that it makes sense on manifolds. The formalism is
designed to make things “look” as similar as possible to calculus on Euclidean space.
In fact, if you are ever stuck when trying to compute something (for instance, a
derivative), you can just “pretend” that everything is actually defined on Euclidean
space, and then simply follow the normal rules of multivariable calculus. The
formalism is designed so that this will always usually give you the correct answer6.

Definition 2.8. Let M be a smooth manifold and let x 2 M . Let U and V be
two neighbourhoods of x, and suppose f 2 C1(U) and g 2 C1(V ). We say that f
and g have the same germ at x if there exists a smaller neighbourhood W ⇢ U \V
of x such that

f |W ⌘ g|W .

One can think of this as follows: define an equivalence relation on the set of smooth
functions defined on a neighbourhood of x by saying that (U, f) ⇠ (V, g) if there
exists a neighbourhood W ⇢ U \V such that f |W ⌘ g|W (it is immediate that this
does indeed define an equivalence relation). A germ is then an equivalence class
under this relation. We denote the germ by f and we let FxM denote the set of
germs at x.

In fact, FxM is another algebra. We can add germs together: if f and g are
two germs with representatives (U, f) and (V, g) respectively, then f+g is the germ
represented by (U \V, f + g). Similarly f g is the germ represented by (U \V, fg),
and for a real number c, cf is the germ represented by (U, cf). We denote by c
the germ of any function which is constant and equal to c in a neighbourhood of x.
The map R! FxM given by c 7! c is then an inclusion of algebras.

A germ at x has a well-defined value at x (although nowhere else), and this
gives us map

evalx : FxM ! R, evalx(f) := f(x),

where (U, f) is any representative of f .

(|) Remark 2.9. This remark requires you to know a little bit more ring theory
to understand7. Since evalx is clearly a ring homomorphism, the kernel of evalx
is an ideal in the ring FxM . Since the map evalx is surjective (as evalx(c) = c),
this is actually a maximal ideal. In fact, it is the unique maximal ideal, since if
eval(f) 6= 0 then f is invertible in FxM . Indeed, if (U, f) is a representative of f
then there exists V ⇢ U such that f is never zero on V . Thus there is a well-defined
function g := 1/f : V ! R, and g is then an inverse to f . This shows that FxM is
a local ring.

6Of course, this is not the correct way to go about learning the subject! To learn the subject
well, you should have a deep and profound understanding of every single concept. . .

7If you are not familiar with this material, just ignore this remark—note the (|).

4



We now motivate the definition of a tangent vector by looking again at Euclidean
spaces.

Example 2.10. Let f : O ⇢ Rn ! R be smooth, where O ⇢ Rn is open. Let x 2 O
and v 2 Rn. The usual interpretation of the derivative is that the matrix Df(x)
eats the vector v to produce a real number Df(x)[v]. However we could also let f
vary and consider the action of di↵erentiation as a map

O ⇥ Rn ⇥ C1(O)! R, (x, v, f) 7! Df(x)[v].

Instead, let us consider (x, v) as fixed, and just let f vary:

(x, v) : C1(O)! R, (x, v)(f) := Df(x)[v].

It follows from equation (1.1) that di↵erentiability is a local property8, in the sense
that the value of Df(x)[v] depends only on the germ of f at x. Thus we can think
of the vector v as defining a linear map

v : FxO ! R, v(f) := Df(x)[v]

(here we are thinking of O as a smooth manifold). In fact, the map v : FxO ! R
is not just any linear map, it is also a derivation in the sense that

v(f g) = evalx(f)v(g) + evalx(g)v(f).

Indeed, this is just a fancy way of expressing the Leibniz rule:

D(fg)(x)[v] = f(x)Dg(x)[v] + g(x)Df(x)[v].

Motivated by Example 2.10, we will define a tangent vector as a derivation on
the space of germs.

Definition 2.11. Let M be a smooth manifold of dimension n and let x 2M . A
tangent vector at x is a linear map

v : FxM ! R

which satisfies the derivation property :

v(fg) = evalx(f)v(g) + evalx(g)v(f).

Since a tangent vector is a linear map from the vector space FxM to R, the set of
tangent vectors is itself a vector space, and we denote it by TxM .

Here is an easy lemma about derviations.

Lemma 2.12. Suppose v : FxM ! R is a tangent vector at x and c 2 FxM is a
constant germ. Then v(c) = 0.

Proof. Since c = c 1 we have v(c) = cv(1) by linearity. But by the derivation
property:

v(1) = v(1 1) = 2 evalx(1)v(1) = 2v(1)

and thus v(1) = 0. Thus also v(c) = 0.

8If you yearn for a precise definition of the term “local property”, see Definition 16.17.
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In the special case where O ⇢ Rn is an open set, Example 2.10 showed that
every vector v 2 Rn defines an element of TxO (in the sense of Definition 2.11). In
fact, these are all the elements of TxO, although this requires a bit of work to see.
More generally, one has:

Theorem 2.13. Let M be a smooth manifold of dimension n and let x 2M . Then
the vector space TxM has dimension n.

Theorem 2.13 is not immediate. Indeed, from Definition 2.11 it is not remotely
clear why TxM should even be finite-dimensional! We will prove Theorem 2.13 in
the next lecture by explicitly finding a basis of TxM .

6



LECTURE 3

Partitions of unity

We begin this lecture by reformulating the definition of a tangent vector in a slightly
more convenient way. Since germs are defined via equivalence classes, they are often
tedious to work with, and we would like to dispense with them.

Definition 3.1. Let M be a smooth manifold, let x 2 M , and let W be any
neighbourhood of x (for instance W could be all of M). A derivation of C1(W )
at x is a linear map w : C1(W )! R which satisfies the derivation property

w(fg) = f(x)w(g) + g(x)w(f).

If v 2 TxM then v naturally defines a derivation w of C1(W ) for any open W
containing x by setting

w(f) := v(f). (3.1)

In fact, the converse is also true, as we will prove in Proposition 3.3 below. First we
need a preliminary lemma. To state it, recall that for a smooth function ⌘ : M ! R,
we denote by supp(⌘) the support of ⌘, defined by:

supp(⌘) := {x 2M | ⌘(x) 6= 0}.

Lemma 3.2 (Cuto↵ functions). Let M be a smooth manifold and let K ⇢ U be
subsets, where K is closed and U is open. Then there exists a smooth function
⌘ : M ! R such that:

1. 0  ⌘(x)  1 for all x 2M ,

2. supp(⌘) ⇢ U ,

3. ⌘(x) = 1 for all x 2 K.

The proof of Lemma 3.2 will be carried out at the end of this lecture, when
we discuss partitions of unity. It is not obvious—as we will see this is the main
reason we require manifolds to be paracompact.

Proposition 3.3. Let M be a smooth manifold, let x 2 M , and let W be any
neighbourhood of x. Then there is a linear isomorphism between TxM and the
space of derivations of C1(W ) at x.

Proof. Let W be a neighbourhood of x. We prove the result in three steps.
1. Let w : C1(W )! R be a derivation at x. Suppose f 2 C1(W ) is identically

zero on a neighbourhood V ⇢ W of x. We claim that w(f) = 0. For this, choose
a smooth function ⌘ : M ! R such that ⌘(x) = 1 and supp(⌘) ⇢ V (i.e. apply
Lemma 3.2 with K = {x} and “U” equal to V ). Let g = ⌘f , thought of as a

Will J. Merry, Di↵. Geometry I, Autumn 2018, ETH Zürich. Last modified: June 28, 2019.
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function W ! R. Then g is identically zero, and hence w(g) = 0 by linearity. But
by the derivation property

w(g) = w(⌘f) = ⌘(x)w(f) + f(x)w(⌘) = w(f)

since ⌘(x) = 1 and f(x) = 0. Thus w(f) = 0.
2. Suppose now f 2 FxM . We claim that we can always find a representative

for f with domain W , i.e. a smooth function g : W ! R such that g = f . For this,
let (V, f) be any representative of f . By shrinking1 V if necessary, we may assume

that V ⇢ W . Now choose2 a smaller neighbourhood U of x with U ⇢ V ⇢ W . Our
goal now is to extend f to a smooth function g defined on W such that g|U = f .
For this, we apply Lemma 3.2 again, this time with K = U and “U” equal to V .
Now consider the smooth function

g : W ! R, g(x) :=

(

⌘(x)f(x), x 2 V,

0, x 2 W \ V.

Since g|U = f , we certainly have g = f .
3. We now complete the proof. Let w : C1(W ) ! R be a derivation at x. We

define a a linear map v : FxM ! R by setting

v(f) := w(f), where (W, f) is any representative of f.

That such a representative (W, f) exists was the content of Step 2, and the fact that
v is well-defined follows from Step 1. Indeed, if (W,h) was another representative
of f then by assumption there exists a smaller neighbourhood V of x such that
f |V ⌘ h|V . Then by linearity w(f)�w(h) = w(f �h) and w(f �h) = 0 by Step 1.
Finally, it is clear that v is a derivation. This association w 7! v obviously inverts
(3.1), and thus this completes the proof.

Thanks to Proposition 3.3, we will from now always regard a tangent vector v
as a derivation of C1(W ) at x for any open W containing x. Typically we take W
either to be the domain of a chart, or the whole manifold M . We emphasise that
Proposition 3.3 implies that it doesn’t matter which W we choose. We also obtain
immediately:

Corollary 3.4. Let M be a smooth manifold and let W ⇢ M be a non-empty
open set. Regard W as a smooth manifold in its own right, as in Lemma 1.20.
Then for any x 2 W there is a canonical identification TxM = TxW .

Let us also note the following corollary of Lemma 2.12.

1The definition of the equivalence relation for a germ always allows us to replace a given
representative with a representative defined on a smaller set. The aim of this step is replace a
given representative with one defined on a larger set.

2Why does such a neighbourhood U exist? This comes down to point-set topology. If X is
any locally compact Hausdor↵ space, x is any point of X, and W is any neighbourhood of x, then
there exists a neighbourhood U of x such that U is compact and contained in W . Any manifold is
locally compact by part (i) of Remark 1.9. Alternatively one could use the fact that any manifold
M is normal, cf. part (iv) of Remark 1.9.
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Corollary 3.5. Let M be a smooth manifold, let x 2M , and let f 2 C1(W ) for
some open W containing x. If f is constant in a neighbourhood of x then v(f) = 0
for all v 2 TxM .

Let us give now give a concrete example of a tangent vector.

Example 3.6. Let M be a smooth manifold of dimension n, and let � : U ! O be
a chart on M and write xi = ui � � for the local coordinates of �. Let x be any
point in U . Define a derivation of C1(U) at x by:

@

@xi

�

�

�

x
: C1(U)! R,

@

@xi

�

�

�

x
(f) := Di(f � ��1)(�(x)),

where the right-hand side uses the convention from Definition 2.3. We will shortly
prove that the collection @

@xi

�

�

x
for i = 1, . . . , n form a basis of TxM , thus establishing

Theorem 2.13.

(|) Remark 3.7. Given Proposition 3.3, you may wonder why we didn’t imme-
diately define TxM as the vector space of derivations of C1(M) at x. There are
several reasons. Firstly, using germs better encapsulates the fact that di↵erentia-
tion is a local property. Secondly, the advantage of our approach is that Corollary
3.4 is tautological; if we had defined TxM directly as derivations of C1(M) then
this would have required proof (and in fact the proof would essentially be the same
argument used in Proposition 3.3).

Thirdly, in certain other contexts, the analogue of Lemma 3.2 is false. For
instance, there is an analogous theory of analytic manifolds, which are defined
in exactly the same way as smooth manifolds, except the word “smooth” should
be replaced with “real-analytic” everywhere (thus an analytic manifold has a real-
analytic atlas, and maps between real-analytic manifolds are required to be real-
analytic, etc). We will not study analytic manifolds in this course, although they
are very important in certain fields. In the real-analytic category, Lemma 3.2 is
false: there do not exist real-analytic cuto↵ functions. (Exercise: Why?) Thus for
analytic manifolds, Proposition 3.3 is false, and one is forced to work with germs
to define the tangent space.

Finally, later in the course (Lecture 17) we will discuss sheaves, and germs are
a motivating example for the construction of the stalk of a sheaf.

Let us now get started on the proof of Theorem 2.13. We will need the following
easy lemma from multivariable calculus. Recall an open set O ⇢ Rn such that 0 2 O
is said to be star-shaped if given any x 2 O, the line segment from 0 to x is also
contained in O.

Lemma 3.8. Let O ⇢ Rn with 0 2 O be a star-shaped open set. Suppose h : O !
R is a smooth function. Then there exist n smooth functions gi : O ! R for
i = 1, . . . , n such that gi(0) = Dih(0) and such that

h = h(0) +
n
X

i=1

ui gi,

where ui is as in (2.1).
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Proof. Fix x = (x1, . . . , xn) 2 O and consider the line segment �(t) = tx. Set
� = h � � : [0, 1]! R. Then by the chain rule

�0(t) =
n
X

i=1

xi Dih(tx).

Thus

h(x)� h(0) = �(1)� �(0) =
Z 1

0

�0(t) dt =
n
X

i=1

xi

Z 1

0

Dih(tx) dt.

Since xi = ui(x) by definition, the claim follows with gi(x) :=
R 1

0
Dih(tx) dt.

Theorem 2.13 from the last lecture follows immediately from the next statement.

Proposition 3.9. Let M be a smooth manifold of dimension n. Let � : U ! O
be a chart on M and let x 2 U . Then any tangent vector v 2 TxM can be uniquely
written as a linear combination

v =
n
X

i=1

ai
@

@xi

�

�

�

x
.

In fact, ai = v(xi). Thus
�

@
@xi

�

�

x
| i = 1, . . . , , n

 

is a basis of TxM .

Proof. We may assume without loss of generality that �(x) = 0 and that O is
star-shaped (here we are using Corollary 3.4). Let f 2 C1(U) and apply Lemma
3.8 with h = f � ��1. We obtain f = f(x) +

Pn
i=1 x

i (gi � �), where

gi(0) = Di(f � ��1)(0) =
@

@xi

�

�

�

x
(f).

Thus for any derivation v, one has

v(f) = v(f(x))
| {z }

=0

+
n
X

i=1

0

@v(xi)gi(0) + xi(x)
| {z }

=0

v(gi � �)
1

A =
n
X

i=1

v(xi)
@

@xi

�

�

�

x
(f),

where we used Corollary 3.5 and the assumption that �(x) = 0.
This shows that

�

@
@xi

�

�

x
| i = 1, . . . , , n

 

spans TxM . It remains to prove linear
independence. For this we note that:

@

@xi

�

�

�

x
(xj) =

@

@xi

�

�

�

x
(uj � �) = Di(u

j � � � ��1)(�(x)) = Diu
j(�(x)) = �ji , (3.2)

where we used the fact that Duj = uj as uj is a linear function, together with (2.2).
Thus if v =

Pn
i=1 a

i @
@xi

�

�

x
= 0 then feeding xj to v gives aj = 0. This shows linear

independence, and thus completes the proof.

Remark 3.10. Suppose � and ⌧ are two charts about x, with corresponding coor-
dinate systems xi := ui � � and yi := ui � ⌧ . Taking v = @

@yj

�

�

x
in Proposition 3.9

tells us that
@

@yj

�

�

�

x
=

n
X

i=1

@

@yj

�

�

�

x
(xi)

@

@xi

�

�

�

x
.
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But unravelling the definitions,

@

@yj

�

�

�

x
(xi) = Dj(x

i � ⌧�1)(⌧(x)) = Dj(u
i � � � ⌧�1)(⌧(x)), (3.3)

which is just the (i, j)th entry of the matrix D(� � ⌧�1)(⌧(x)). This means that the

transition matrix from the basis
n

@
@yi

�

�

x
| i = 1, . . . , n

o

to the basis
�

@
@xi

�

�

x
| i = 1, . . . , n

 

is given by the matrix D(� � ⌧�1)(⌧(x)).

We conclude this lecture by proving Lemma 3.2. In fact, we will first establish
a special case of Lemma 3.2 where the smaller set K is compact (instead of merely
closed).

Lemma 3.11 (Cuto↵ functions, the compact case). Let M be a manifold and let
K ⇢ U be subsets, where K is compact and U is open. Then there exists a smooth
function ⌘ : M ! R such that:

1. 0  ⌘(x)  1 for all x 2M ,

2. supp(⌘) ⇢ U ,

3. ⌘(x) = 1 for all x 2 K.

The proof of Lemma 3.11 is non-examinable.

(|) Proof. We prove the result in four steps.
1. We first prove that for any pair of real numbers r < R there exists a smooth

function f : R ! [0, 1] such that f(t) = 1 for t  r, f(t) = 0 for all t � R, and
0 < f(t) < 1 for all t 2 (r, R). For this, consider the function

h : R! R, h(t) :=

(

e�1/t, t > 0,

0, t  0.

A somewhat tedious computation3 shows that h is smooth. Our desired function f
is then given by

f(t) :=
h(R� t)

h(R� t) + h(t� r)
.

One can easily check this function f has the desired properties.
2. Now let us extend this to Rn. Let Br ⇢ Rn denote the open ball of radius r

about the origin (so that B1 = Bn). Then for any 0 < r < R there exists a smooth
function g : Rn ! R such that g(x) = 1 for all x 2 Br, g(x) = 0 on Rn \ BR, and
0 < g(x) < 1 for all x 2 BR \Br. Indeed, the function g(x) := f(|x|), where f is as
in the previous step works.

3. Now let M be a smooth manifold, let x 2 M , and let U be an arbitrary
neighbourhood of x. Then we can choose a smaller neighbourhood V ⇢ U of
x with V ⇢ U that has the following property: there exists a smooth function
⌘ : M ! R such that ⌘(x) = 1 for all x 2 V , 0  ⌘(x)  1 for all x 2 M , and
⌘(x) = 0 for all x 2M \U . Indeed, this follows from the previous step, by choosing
an appropriate chart about x.

3This would have made a good Analysis I question.
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4. We now complete the proof. For each point x 2 K, choose4 neighbourhoods
Vx ⇢ Ux such that V x ⇢ K and Ux ⇢ U . Since K is compact, there are finitely
many points x1, . . . , xN such that K ⇢ SN

i=1 Vx
i

. For each i, choose functions
⌘i : M ! R such that ⌘i(x) = 1 for all x 2 V i, 0  ⌘i(x)  1 for all x 2 M , and
⌘i(x) = 0 for all x 2M \ Ui. Now set

⌘ := 1�
N
Y

i=1

(1� ⌘i(x)) .

One easily checks this ⌘ does the trick.

The proof of the general version of Lemma 3.2 is considerably harder. We will
make use of the following tool, which will be of use throughout the course.

Definition 3.12. Let M be a smooth manifold. A partition of unity is a col-
lection {�a | a 2 A} of smooth functions �a : M ! R such that:

1. 0  �a(x)  1 for all x 2M and a 2 A.

2. The collection {supp(�a) | a 2 A} is locally finite, i.e. for any x 2 M there
are most finitely many a 2 A such that x 2 supp(�a).

3. For all x 2M one has
X

a2A
�a(x) = 1

(note by (2) this sum only has finitely many non-zero terms for every x).

We say that a partition of unity {�a | a 2 A} is subordinate to an open cover
{Ua | a 2 A} if supp(�a) ⇢ Ua for each a 2 A. The next result is the reason we
require our manifolds to be (Hausdor↵ and) paracompact.

Theorem 3.13. Let M be a smooth manifold. Let {Ua | a 2 A} be an open cover
of M . There exists a locally finite refinement {Vb | b 2 B} and a partition of unity
{�b | b 2 B} subordinate to {Vb | b 2 B} with the additional property that supp(�b)
is a compact subset of M for every b 2 B.

Of course, the main content of the theorem is the existence of the partition of
unity {�b | b 2 B}—the existence of the locally finite refinement {Vb | b 2 B} is just
the very definition of paracompactness. This proof is non-examinable.

(|) Proof. Paracompactness guarantees us the existence of a locally finite refine-
ment {Vb | b 2 B}. In fact, we can do a little better than this: we can find a locally
finite refinement {Vb | b 2 B} together with another open cover {Wb | b 2 B} (with
the same index set B) such that W b is compact for each b 2 B and such that
W b ⇢ Vb. This argument uses the fact that M is also locally compact (cf. part (i)
of Remark 1.9). We won’t dwell on the details as they not important to the main
theme of the course.

4We are using the fact that M is normal again here, cf. part (iv) of Remark 1.9.

6



We now apply Lemma 3.11 to each pair W b ⇢ Vb to obtain a smooth function
⌘b : M ! R such that 0  ⌘b(x)  1 for all x 2 M , ⌘b|W b

⌘ 1, and supp(⌘b) ⇢ Vb

is compact. The desired partition of unity is then given by

�b :=
⌘b

P

b2B ⌘b
.

This completes the proof.

In fact, the following corollary is typically more useful.

Corollary 3.14 (Partitions of unity). Let M be a smooth manifold. For any
open cover of M , there exists a partition of unity subordinate to that cover.

That is, if we don’t need our partition of unity to have compact supports, then
we don’t even need to refine our original cover.

Proof. Let {Ua | a 2 A} be an arbitrary open cover. Let {Vb | b 2 B} be a lo-
cally finite refinement and let {�b | b 2 B} be a partition of unity subordinate to
{Vb | b 2 B}, whose existence are guaranteed by Theorem 3.13. Choose a function
� : B! A such that Vb ⇢ U�(b) for each b 2 B. Now define

�a :=
X

b2��1(a)

�b.

If ��1(a) = ; this should be interpreted as the zero function. Then

supp(�a) =
[

b2��1(a)

{x 2M | �b(x) 6= 0} =
[

b2��1(a)

supp(�b) ⇢ Ua,

where the second equality used the fact that the collection {supp(�b) | b 2 B}
is locally finite. (Exercise: Justify this!) It is immediate that the collection
{supp(�a) | a 2 A} is locally finite, and thus we conclude that {�a | a 2 A} is an-
other partition of unity which is subordinate to our original cover {Ua | a 2 A}.
Note however that �a need not have compact support.

Finally, our original Lemma 3.2 is an easy consequence of Corollary 3.14:

Proof of Lemma 3.2. Consider the open cover {U,M \K} of M . By Corollary
3.14 there exists a partition of unity

�

�U ,�M\K
 

. The function ⌘ := �U has the
properties we desire.
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LECTURE 4

The derivative and the tangent bundle

Let us now finally define the derivative of a smooth map.

Definition 4.1. Let M and N be smooth manifolds, and let ' : M ! N be a
smooth map. Fix x 2M and v 2 TxM . We define a tangent vector w 2 T'(x)N by
setting

w(f) := v(f � '), 8 f 2 C1(N).

It is clear w is a linear derivation of C1(N) at '(x), and hence an element of
T'(x)N . Moreover if we denote w by D'(x)[v] then it is immediate that the map
v 7! D'(x)[v] is a linear map. We call D'(x) the derivative of ' at x.

The chain rule becomes essentially tautologous.

Proposition 4.2 (The chain rule on manifolds). Let M,N and L be smooth
manifolds, and suppose ' : M ! N and  : N ! L are smooth maps. Then

D( � ')(x) = D ('(x)) �D'(x).

Proof. Take v 2 TxM and f 2 C1(L). Then

D( � ')(x)[v](f) = v(f �  � ') = D'(x)[v](f �  ) = D ('(x)) �D'(x)[v](f).

The claim follows.

Remark 4.3. You may wonder why the chain rule is so (suspiciously) easy to prove.
After all, the Euclidean version (Proposition 1.12) is quite tricky. Does Proposition
4.2 give a shortcut to proving the Euclidean version? The answer is sadly no:
indeed, we already used the Euclidean version at least twice (in Proposition 1.26
and Lemma 3.8), and hence any attempt to “prove” the Euclidean version via
Proposition 4.2 would yield a circular argument.

Let us compute the map D'(x) in coordinates.

Lemma 4.4. Let ' : M ! N be a smooth map between two smooth manifolds,
where M has dimension n and N has dimension k. Let x 2M , and let � : U ! O
be a chart on M about x, and let ⌧ : V ! ⌦ be a chart on N about '(x). Denote
the local coordinates of � by (xi) and denote the local coordinates of ⌧ by (yi).
Then the matrix of D'(x) with respect to the bases

�

@
@xj

�

�

x
| j = 1, . . . , n

 

of TxM

and
n

@
@yi

�

�

'(x)
| i = 1, . . . , , k

o

of T'(x)N is given by the matrix D(⌧ �'���1)(�(x)).
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Proof. We compute

D'(x)



@

@xj

�

�

�

x

�

=
k
X

i=1

D'(x)



@

@xj

�

�

�

x

�

(yi)
@

@yi

�

�

�

'(x)

=
k
X

i=1

@

@xj

�

�

�

x
(yi � ') @

@yi

�

�

�

'(x)

=
k
X

i=1

Dj(u
i � ⌧ � ' � ��1)(�(x))

@

@yi

�

�

�

'(x)

The number Dj(ui � ⌧ � ' � ��1)(�(x)) is the (i, j)th entry of the matrix D(⌧ � ' �
��1)(�(x)), and thus the proof is complete.

We shall see shortly that this implies we are not overreaching ourselves—this
new definition coincides with the old one when M = Rn and N = Rk. Indeed, in
this case take � to be the identity chart on Rn and take ⌧ to be the identity chart
on Rk. Then the coordinates (x1, . . . , xn) of � are just the usual coordinates on
Rn, and the coordinates (y1, . . . , yk) are just the usual coordinates of Rk. Define a
linear isomorphism

Tx : Rn ! TxRn, Txei =
@

@xi

�

�

�

x
. (4.1)

Similarly if we let e0j denote the standard basis of Rk, we have a linear isomorphism:

Ty : Rk ! TyRk, Tye
0
j =

@

@yj

�

�

�

y
.

Now suppose f : O ⇢ Rn ! Rk is smooth. We now have two (!) definitions of the
map Df(x). We temporarily write the two maps as Df(x)calc and Df(x)man. Thus
Df(x)calc is a linear map Rn ! Rk; it is the matrix of partial derivatives, as at
the beginning of Lecture 1. Meanwhile Df(x)man is a linear map TxRn ! Tf(x)Rk.
Lemma 4.4 tells us that these are the same map, or equivalently, that the following
diagram commutes1:

Rn Rk

TxRn Tf(x)Rk

Df(x)calc

T
x

T
f(x)

Df(x)man

(4.2)

From now on we will drop the “calc” and “man” superscripts, and just call both
maps Df(x). It should be clear from the context which is meant.

Remark 4.5. Actually this is still not completely satisfactory, since the isomor-
phism Tx required us to fix bases ei and

@
@xi

�

�

x
of Rn and TxRn respectively. On

Problem Sheet B you will give an alternative proof of (4.1) and (4.2) that does not
require fixing a basis first.

1This means that going clockwise is the same as going anticlockwise.
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More generally, the same computation shows us that if ' : M ! N is an arbi-
trary smooth map between smooth manifolds of dimension n and k respectively, and
� is a chart about x 2M with coordinates (xi), and ⌧ is a chart about y 2 N with
coordinates (yj), then with Tx and T'(x) defined as above, we have a commutative
diagram:

Rn Rk

TxM T'(x)N

D(⌧�'���1)(�(x))

T
x

T
'(x)

D'(x)

(4.3)

We now give an entirely di↵erent way of defining tangent vectors. This approach
is not quite as aesthetically pleasing as using derivations, but it has the advantage
that it is easier to compute.

Suppose � : (a, b)! Rn is a smooth map. We will usually write the coordinate
on R = R1 as t instead of x1, and we will usually denote the derivative of � at a
point t by �0(t). Writing � = (�1, . . . , , �n), the vector �0(t) is just the row vector
((�1)0(t), . . . , (�n)0(t)). Our aim now is to extend this to manifolds.

Definition 4.6. A curve in a smooth manifoldM is a smooth map � : (a, b)!M ,
where we think of (a, b) as a 1-dimensional smooth manifold. Fix t 2 (a, b). There
are, a priori, two di↵erent ways we could define an element �0(t) of T�(t)M , which
we will call the velocity vector of � at time t.

1. Firstly, we can define a derivation on C1(M) at �(t) by setting

�0(t)(f) := (f � �)0(t), f 2 C1(M). (4.4)

(Exercise: Why is this a derivation?)

2. Secondly, if we think of � as a smooth map between manifolds then we can
define a tangent vector �0(t) at �(t) via the derivative D�(t):

�0(t) := D�(t)



@

@t

�

�

�

t

�

2 T�(t)M. (4.5)

To see that these two definitions agree, let � : U ! O be a chart defined on a
neighbourhood of �(t). Let (xi) denote the coordinates of �. Let �i := xi � � so
that �i is a curve in R. Applying Proposition 3.9 to (4.4), we see that

�0(t) =
n
X

i=1

(�i)0(t)
@

@xi

�

�

�

�(t)
, (4.6)

since �0(t)(xi) = (xi � �)0(t) = (�i)0(t). But similarly by applying Lemma 4.4 to
(4.5) we see that this definition also gives the same formula (4.6) for �0(t).

Lemma 4.7. Let M be a smooth manifold and let �, � : (�", ")!M be two smooth
curves such that �(0) = �(0). Then �0(0) = �0(0) as elements of T�(0)M if and only
if for some (and hence any) chart � : U ! O defined on a neighbourhood of �(0),
we have

(� � �)0(0) = (� � �)0(0). (4.7)
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Note both sides of (4.7) are the derivatives of smooth maps (�", ") ! O, and
hence these derivatives are the usual derivatives in the sense of multivariate calculus.

Proof. Let (xi) denotes the coordinates of �. The stated condition is equivalent to
requiring that (�i)0(0) = (�i)0(0) for each i, where �i = xi � � and �i = xi � �. The
claim follows from (4.6), since

n

@
@xi

�

�

�(0)

o

is a basis of T�(0)M .

What is less clear is that every tangent vector can be written as the velocity
vector of a curve.

Proposition 4.8. Let M be a smooth manifold of dimension n, let x 2M and let
v 2 TxM . There exists a smooth curve � : (�", ")!M such that �0(0) = v.

Proof. Choose a chart � : U ! O ⇢ Rn, where O is an open set containing 0 such
that �(x) = 0. Let the coordinates be denoted by (xi) as usual, and suppose that
v =

Pn
i=1 a

i @
@xi

�

�

x
, where the ai are real numbers. For su�ciently small " > 0, the

vector (ta1, . . . , tan) belongs to O for all |t| < ". Then if we define

� : (�", ")!M, �(t) := ��1(ta1, ta2, . . . , tan),

then � is well-defined, smooth, and satisfies �(0) = x, and finally (4.6) shows us
that �0(0) = v.

Remark 4.9. This tells us that we can make the following alternative definition
of TxM : a tangent vector at x 2 M is an equivalence class of smooth curves
� : (�", ") ! M such that �(0) = x, where � ⇠ � if and only if for some chart �
centred about x, (4.7) holds.

We note however that this only works because we already established that TxM
was a vector space with basis

�

@
@xi

�

�

x

 

. If one wanted to start with this definition
of TxM , one would need to use Problem B.1 to endow TxM with a vector space
structure.

Let us examine how velocity vectors behave with respect to smooth maps.

Proposition 4.10. Let ' : M ! N be a smooth map between two smooth mani-
folds, and let � : (a, b)!M be a smooth curve in M . Then

D'(�(t))[�0(t)] = (' � �)0(t).
Proof. We will give two proofs, one for each of the two (equivalent) definitions (4.4)
and (4.5) of �0(t). Of course these are really the same proof.

• Proof using (4.4) as the definition of �0(t): Take f 2 C1(N). Then by the
definition of D'(x) and (4.4)

D'(�(t))[�0(t)](f) = �0(t)(f � ') = (f � ' � �)0(t) = (' � �)0(t)(f).
• Proof using (4.5) as the definition of �0(t): For this we simply use the chain
rule (Proposition 4.2):

D'(�(t))[�0(t)] = D'(�(t)) �D�(t)


@

@t

�

�

�

t

�

= D(' � �)(t)


@

@t

�

�

�

t

�

= (' � �)0(t).
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This completes the proof (twice).

Let us now look at the dual space to TxM .

Definition 4.11. Let M be a smooth manifold of dimension n and let x 2M . We
denote the dual vector space L(TxM,R) by T ⇤

xM and call it the cotangent space
of M at x.

Thus T ⇤
xM is another vector space of dimension n. Since elements of TxM are

linear derivations eating functions, the standard duality construction tells us that
we can interpret elements of T ⇤

xM as functions eating linear derivations.

Example 4.12. Let M be a smooth manifold of dimension n and let x 2 M .
Let U be a neighbourhood of x and let f 2 C1(U). Then f defines an element
df |x 2 T ⇤

xM by
df |x(v) := v(f), v 2 TxM.

One calls df |x the di↵erential of f at x.

Remark 4.13. Thus df |x is a linear function TxM ! R. In contrast, the derivative2

Df(x) is a linear function TxM ! Tf(x)R. Under the identification Tf(x)R ⇠= R
given by (4.1) these become the same map:

Df(x)[v] = df |x(v) @
@t

�

�

�

f(x)
.

Proposition 4.14. Let M be a smooth manifold of dimension n and let x 2 M .
Let � : U ! O be a chart about x with local coordinates xi = ui � � 2 C1(U).
Then {dxi|x} is a basis of T ⇤

xM .

Proof. We need only note that {dxi|x} is the dual basis to
�

@
@xi

�

�

x

 

since

dxj|x
✓

@

@xi

�

�

�

x

◆

=
@

@xi

�

�

�

x
(xj) = �ji ,

by (3.2) from the last lecture.

We now aim to “glue” the vector spaces TxM together into one big manifold
TM .

Definition 4.15. Let M be a smooth manifold. The tangent bundle of M is
the disjoint union of the tangent spaces:

TM =
G

x2M
TxM.

We denote an element of TM as a pair (x, v) to indicate that v 2 TxM . There is a
map ⇡ : TM !M given by ⇡(x, v) = x. We call ⇡ the footpoint map.

As it stands TM is only a set. Let us now prove it is actually a manifold.

2Note: “derivative” and “di↵erential” are two di↵erent words!

5



Theorem 4.16. LetM be a smooth manifold of dimension n. The smooth structure
on M naturally induces a smooth structure on TM , making TM into a smooth
manifold of dimension 2n. Moreover the map ⇡ : TM !M is smooth.

Proof. Let ⌃ = {�a : Ua ! Oa | a 2 A} be our smooth atlas onM . Write xi
a = ui��a

for the local coordinates of �a. We build a chart �̃a : ⇡�1(Ua)! Oa⇥Rn by setting

�̃a(x, v) =

 

�a(x),
n
X

i=1

dxi
a|x(v) ei

!

, x 2 Ua, v 2 TxM.

We will prove that if Ua \Ub 6= ; then for all z 2 �a(Ua \Ub) and w 2 Rn, one has:

�̃b � �̃�1
a (z, w) =

�

�b � ��1
a (z), D(�b � ��1

a )(z)[w]
�

, (4.8)

From this it follows from Proposition 1.22 that TM is a smooth manifold. To prove
(4.8), write w =

Pn
j=1 c

j ej and set x := ��1
a (z) 2 Ua \ Ub. Then

�̃�1
a (z, w) =

 

x,
n
X

j=1

cj
@

@xj
a

�

�

�

x

!

.

Fix 1  i  n. We compute

dxi
b|x
 

n
X

j=1

cj
@

@xj
a

�

�

�

x

!

=
n
X

j=1

cj dxi
b|x
✓

@

@xj
a

�

�

�

x

◆

=
n
X

j=1

cj
@

@xj
a

�

�

�

x
(xi

b)

By (3.3) in Remark 3.10, the number @
@xj

a

�

�

�

x
(xi

b) is the (i, j)th entry of the matrix

D(�b � ��1
a )(z). Thus

n
X

i=1

dxi
b|x
 

n
X

j=1

cj
@

@xj
a

�

�

�

x

!

ei = D(�b � ��1
a )(z)[w],

and (4.8) is proved.
The right-hand side of (4.8) is a di↵eomorphism by assumption. Thus

⌃̃ =
�

�̃a : ⇡
�1(Ua)! Oa ⇥ Rn | a 2 A

 

is a smooth atlas on TM . This proves that TM is a smooth manifold of dimension
2n. To check that ⇡ is smooth, we simply observe that if z 2 Oa and w 2 Rn then

�a � ⇡ � �̃�1
a (z, w) = z,

which is obviously smooth.

Remark 4.17. The tangent bundle is the prototypical example of a more general
construction called a vector bundle over a smooth manifold. We will take up
their study in Lecture 13.

We can use the tangent bundle to unify the derivatives D'(x) from Definition
4.1 into a single map.
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Definition 4.18. Let ' : M ! N be a smooth map between two smooth manifolds.
Define the derivative of ' to be the map

D' : TM ! TN, D'(x, v) := ('(x), D'(x)[v]) .

On Problem Sheet C you will prove this map is smooth. We conclude this
lecture by defining the dual version of the tangent bundle:

Definition 4.19. Let M be a smooth manifold. The cotangent bundle of M is
the disjoint union of the cotangent spaces:

T ⇤M =
G

x2M
T ⇤
xM.

We denote an element of T ⇤M as a pair (x, p) to indicate that p 2 T ⇤
xM . We denote

again by ⇡ : T ⇤M !M the footpoint map ⇡(x, p) = x.

On Problem Sheet C you will show that T ⇤M is also naturally a smooth manifold
of twice the dimension of M .
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LECTURE 5

Submanifolds and the Implicit Function
Theorem

In this lecture we define submanifolds, which are smaller manifolds sitting inside
larger ones. Let us first recall the Inverse Function Theorem for maps defined on
Euclidean space. We say that a smooth map f : O ⇢ Rn ! Rk has rank r at x 2 O
if the k ⇥ n matrix Df(x) has rank r. We say that f has maximal rank at x if
the rank of f at x is as large as it can be (which is thus equal to the minimum of
n and k). If n = k then f has maximal rank at x if and only if Df(x) is invertible.

Theorem 5.1 (The Inverse Function Theorem). Let f : O ⇢ Rn ! Rn be a smooth
map, where O is open. Let x 2 O and assume the matrix Df(x) has maximal rank
( = n). Then there exists a neighbourhood ⌦ ⇢ O of x such that the restriction
f : ⌦! f(⌦) is a di↵eomorphism.

The theorem immediately carries over to manifolds. We say that a smooth
map ' : M ! N has rank r at a point x if the linear subspace D'(x)[TxM ] has
dimension r inside of T'(x)N .

Theorem 5.2 (The Inverse Function Theorem for manifolds). Let M and N be
smooth manifolds of the same dimension n and suppose ' : M ! N is a smooth
map. Let x 2 M and assume that ' has maximal rank ( = n) at x. Then
there exists a neighbourhood W of x such that the restriction ' : W ! '(W ) is a
di↵eomorphism.

Proof. The assertion is purely local. Choose a chart � : U ! O on M at x and a
chart ⌧ : V ! ⌦ on N at '(x). Since � and ⌧ are di↵eomorphisms (cf. Example
1.25), the derivative of the map

⌧ � ' � ��1 : �(U \ '�1(V ))! ⌧('(U) \ V )

has rank n at �(x). Thus by Theorem 5.1 there exists O0 ⇢ �(U \ '�1(V )) such
that ⌧ � ' � ��1|O0 is a di↵eomorphism. Then using once more that � and ⌧ are
di↵eomorphisms, if W := ��1(O0) then '|W : W ! '(W ) is also a di↵eomorphism.

We now move onto the Implicit Function Theorem. We shall give a quick proof
using the Inverse Function Theorem.

Theorem 5.3 (The Implicit Function Theorem). Let O be a neighbourhood of 0
in Rn and suppose f : O ! Rk is a smooth map such that f(0) = 0.

Will J. Merry, Di↵. Geometry I, Autumn 2018, ETH Zürich. Last modified: June 28, 2019.
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(i) Assume n  k and that the matrix Df(0) has maximal rank ( = n) at 0. Let
ı : Rn ! Rk denote the inclusion

ı(x1, . . . , xn) := (x1, . . . , xn, 0, . . . , 0).

Then there exists a chart g about 0 on Rk such that g � f = ı on a neighbour-
hood of 0 in Rn.

(ii) Assume n � k and that the matrix Df(0) has maximal rank ( = k) at 0. Let
⇡ : Rn ! Rk denote the projection

⇡(x1, . . . , xn) := (x1, . . . , xk).

Then there exists a chart h about 0 in Rn such that f � h = ⇡ on a neigh-
bourhood of 0 in Rn.

Proof. We start with (i). The matrix Df(0) has rank n. By rearranging the
coordinate functions f i = ui � f if necessary (this corresponds to composing f with
a linear isomorphism Rk ! Rk, which is a di↵eomorphism), we may assume that the

n⇥n submatrix
⇣

@f i

@xj

(0)
⌘

1i,jn
is invertible. Now define a map f̃ : O⇥Rk�n ! Rk

by
f̃(x1, . . . , xk) = f(x1, . . . , xn) + (0, . . . , 0, xn+1, . . . , xk).

Then f̃ � ı = f and the derivative Df̃(0) takes the following form:

Df̃(0) =

 

⇣

@f i

@xj

(0)
⌘

1i,jn
0

⇤ idRk�n

!

where ⇤ denotes the other entries of Df(0). Thus detDf̃(0) 6= 0, and consequently
Df̃(0) has rank k. Thus by Theorem 5.1, there exists a neighbourhood O0 ⇢
O ⇥ Rk�n of the origin 0 2 Rk such that f̃ : O0 ! f̃(O0) is a di↵eomorphism. If g
denotes the inverse to f̃ |O0 then g � f = g � f̃ � ı = ı. This proves (1).

The proof of (ii) is very similar. This time we may assume that the submatrix
⇣

@f i

@xj

(0)
⌘

1i,jk
is invertible, and we define f̃ : O ! Rn by

f̃(x1, . . . , xn) := (f(x1, . . . , xn), xk+1, . . . , xn).

Then f = ⇡ � f̃ and the derivative Df̃(0) takes the following form:

Df̃(0) =

 

⇣

@f i

@xj

(0)
⌘

1i,jk
⇤

0 idRn�k

!

This is invertible, whence f̃ has a local inverse h, and f � h = ⇡ � f̃ � h = ⇡.

We will shortly prove a version of the Implicit Function Theorem for manifolds.
First, some definitions. In order to make the statements more succinct, we will
start adopting the convention that writing M = Mn means that M has dimension
n.
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Definition 5.4. Let ' : Mn ! Nk be a smooth map.

• We say that ' is an immersion if the linear map D'(x) : TxM ! T'(x)N is
injective for every x 2M . (Note this implies n  k).

• If in addition ' itself is injective then we say that ' is an injective immer-
sion.

• If in addition ' maps M homeomorphically onto '(M) (where '(M) is en-
dowed with the subspace topology in N) we say that ' is an embedding.

Remark 5.5. If M is compact, then an injective immersion ' : M ! N is auto-
matically an embedding, as you will prove on Problem Sheet C. However in the
non-compact case, this need not be the case (see again Problem Sheet C). However
an (injective or not) immersion is always locally an embedding, as we will now
prove.

The next result is a manifold version of part (i) of the Implicit Function Theorem
5.1.

Proposition 5.6. Suppose ' : Mn ! Nk is an immersion. Then for any x 2 M ,
there exists a neighbourhood U of x and a chart ⌧ : V ! ⌦ on N , where V is some
neighbourhood of '(x) such that:

(i) If yi = ui � ⌧ denotes the local coordinates of ⌧ then

'(U) \ V =
�

y 2 V | yn+1(y) = · · · = yk(y) = 0
 

, (5.1)

that is,
⌧('(U) \ V ) = (Rn ⇥ {0}) \ ⌦.

(ii) '|U is an embedding.

Proof. The assertion is again local. Let ı : Rn ! Rk denote the inclusion, as in
part (i) of the Implicit Function Theorem 5.3. Let � denote a chart on M with
�(x) = 0 and let ⌧̃ denote a chart on N with ⌧̃('(x)) = 0. Then ⌧̃ � ' � ��1 has
maximal rank at 0, and hence by part (i) of the Implicit Function Theorem there
exists a chart g on Rk about 0 and a neighbourhood O of 0 in Rn such that

g � ⌧̃ � ' � ��1|O = ı|O.

Set U := ��1(O) and set ⌧ := g � ⌧̃ . Then after restricting the domain if necessary,
(5.1) holds. To prove the second statement, simply note that '|U = ⌧�1 � ı � �|U is
the composition of embeddings, and thus is an embedding.

Remark 5.7. If ' is an embedding then the set '(U) from Proposition 5.6 can be
written as '(U) = '(M)\W for some open set W ⇢ N . (This is just the definition
of the subspace topology). Replacing V with W \ V , (5.1) becomes

'(M) \ V =
�

y 2 V | yn+1(y) = · · · = yk(y) = 0
 

. (5.2)
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Definition 5.8. Let M and N be manifolds with M ⇢ N (as sets). We say that
M is a embedded submanifold of N if the inclusion M ,! N is an embedding.
If the inclusion is merely an immersion (note the inclusion is always injective!), we
say that M is an immersed submanifold.

If M is an embedded submanifold of N then Remark 5.7 tells us we can always
choose charts on N that satisfy (5.2). We give such a chart a special name:

Definition 5.9. Let Mn be an embedded submanifold on Nk. A slice chart for
M in N is a chart ⌧ : V ! ⌦ on N such that, writing yi = ui � ⌧ for the local
coordinates of ⌧ , one has

M \ V =
�

y 2 V | yn+1(y) = · · · = yk(y) = 0
 

.

In fact, the existence of slice charts is and “if and only if” condition, in the
sense that we can use slice charts to endow a subset with a smooth structure. The
next result makes this more precise.

Proposition 5.10. Let Nk be a smooth manifold and suppose M ⇢ N is a subset
is with the property that around every point x 2 M there exists a slice chart for
M in N , that is, a chart ⌧ : V ! ⌦ on N with x 2 V such that, writing yi = ui � ⌧
for the local coordinates of ⌧ , one has

M \ V =
�

y 2 V | yn+1(y) = · · · = yk(y) = 0
 

.

Then if we endow M with the subspace topology on N , M is a topological manifold
of dimension n, and moreover it has a smooth structure that makes it into an
embedded submanifold of N .

Proof. Let ⇡ : Rk ! Rn denote projection as above. Fix x 2 M and let ⌧ : V ! ⌦
be such a slice chart for M in N with x 2 V . Let U := M \ V and let O := ⇡(⌦).
Let � := ⇡ � ⌧ |U . If M is given the subspace topology then � is a homeomorphism.
If we do this at every point x 2M , we end up with a collection of maps for which
the hypotheses of Proposition 1.22 are satisfied. Thus M is a smooth manifold of
dimension n. Moreover the topology on M that Proposition 1.22 provides coincides
with the subspace topology, since the maps � were already homeomorphisms in the
subspace topology. Finally if ı : M ,! N denotes the inclusion that with ⌧ , � as
above, one has ⌧ � ı � ��1 equal to the map (x1, . . . , xn) 7! (x1, . . . , xn, 0, . . . , 0)
which is smooth.

If ' : M ! N is an injective immersion (resp. an embedding) then M is
di↵eomorphic to an immersed submanifold (resp. an embedded submanifold) of
N : namely '(M), where '(M) is endowed with the smooth structure such that
' : M ! '(M) is a di↵eomorphism.

(|) Remark 5.11. Suppose '1 : M1 ! N and '2 : M2 ! N are two injective
immersions. We say that '1 is equivalent to '2 if there exists a di↵eomorphism
 : M1 ! M2 such that '2 �  = '1. It is clear that this defines an equivalence
relation on the set of injective immersions into N . Each equivalence class contains
a unique immersed submanifold.
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We now move onto the case where the first manifold M is the “larger” one.

Definition 5.12. Let ' : Mn ! Nk be smooth. A point x 2 M is said to be a
regular point of ' if ' has rank k at x (note this implies n � k). A point x 2M
is called a critical point if it is not a regular point. Similarly a point y 2 N is
called a regular value if every point in '�1(y) is a regular point. A point y 2 N
is called a critical value if it is not a regular value. Thus if y /2 '(M) then y is
vacuously a regular value.

Here is the main result of today’s lecture. One can think of it as a manifold ver-
sion of part (ii) of the Implicit Function Theorem 5.1, although unlike Proposition
5.6 this is a much deeper result, as the assertion is not local.

Theorem 5.13 (The Implicit Function Theorem for manifolds). Let ' : Mn ! Nk

be a smooth map with n � k. Suppose y 2 N is a regular value of ' and L := '�1(y)
is not empty. Then L is a topological manifold of dimension n� k. Moreover there
exists a smooth structure on L which makes L into a smooth embedded submanifold
of M .

This proof is non-examinable, since it rather fiddly.

(|) Proof. We prove the result in four steps.
1. Let us first fix some notation. Write Rn = Rk ⇥Rn�k. Let ⇡1 and ⇡2 denote

the two projections Rn ! Rk and Rn�k respectively:

⇡1(x
1, . . . , xn) = (x1, . . . , xk), ⇡2(x

1, . . . , xn) = (xk+1, . . . , xn),

and let | : Rn�k ! Rn denote the inclusion onto the last n� k coordinates:

|(x1, . . . , xn�k) = (0, . . . , 0, x1, . . . , xn�k).

Now let ⌧ : V ! ⌧(V ) ⇢ Rk denote a chart on N such that ⌧(y) = 0. Fix a point
x 2 L and let � : U ! �(U) ⇢ Rn denote a chart on M such that �(x) = 0. Then
⌧ � ' � ��1 has maximal rank k at 0 2 Rn, and hence by part (ii) of the Implicit
Function Theorem 5.3 there exists a chart h on Rn, defined on an open ball O
containing the origin such that

⌧ � ' � ��1 � h|O = ⇡1|O.

Shrinking O if necessary, we may assume O = ⇡1(O) ⇥ ⇡2(O) ⇢ Rk ⇥ Rn�k. Set
⌦ := ⇡2(O). Then

⌧ � ' � ��1 � h � ||⌦ = ⇡1 � ||⌦ ⌘ 0.

Thus if ⇣ := ��1 � h � ||⌦ then ⇣(⌦) ⇢ L.
2. We now prove that

⇣(⌦) = L \ (��1 � h)(O). (5.3)

Indeed,

⇣(⌦) = (��1 � h � |)(⌦) = (��1 � h) �O \ �0⇥ Rn�k
�� ⇢ L \ (��1 � h)(O).
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To see the other direction, if z 2 L\(��1�h)(O) then z = (��1�h)(w) for a unique
w 2 O, and since

⇡1(w) =
�

⌧ � ' � ��1 � h� (w) = ⌧ � '(z) = 0,

we can write w = (0, u) for a unique u 2 ⌦. Then z = ⇣(u). This proves the other
inclusion, and hence establishes (5.3).

3. We now show that L is a smooth manifold. The equation (5.3) tells us
that ⇣ maps ⌦ homeomorphically onto a neighbourhood of x in L in the subspace
topology. Thus the inclusion L ,! M is a topological embedding. Set W := ⇣(⌦)
and set ⇢ := ⇣�1. Then ⇢ : W ! ⌦ is a chart on L. We claim that the collection of
all such charts, as x ranges over L, determines a smooth structure on L. Indeed,
suppose x1 was another point in L with corresponding chart �1 : U1 ! �1(U1) ⇢ Rn.
Assume that U \ U1 6= ;. Let h1 denote the corresponding di↵eomorphism of Rn,
and define ⇣1 and ⇢1 similarly. Then by assumption �1 � ��1 is a di↵eomorphism
where defined, and hence so is l := h�1

1 � �1 � ��1 � h. Moreover from (5.3) we can
write l(0, u) = (0, l1(u)) for l1 a di↵eomorphism defined on a neighbourhood of 0 in
Rn�k. Thus

⇢1 � ⇢�1 = |�1 � l � | = l1

is a di↵eomorphism where defined. Thus we have built a smooth structure on L.
4. To complete the proof, we show that the inclusion ı : L ,!M is smooth. For

this we note that with �, ⇢ and h as above,

� � ı � ⇢�1 = � � ı � ⇣ = h � |,

which is smooth. This completes the proof.

Definition 5.14. A smooth map ' : Mn ! Nk is called a submersion if every
point of M is a regular point of ', i.e. if D'(x) is surjective for every x 2M . Thus
if ' is a submersion then by the Implicit Function Theorem 5.2, every point x 2M
belongs to the (n� k)-dimensional embedded submanifold '�1('(x)). A surjective
submersion is necessarily a quotient map (see Lemma 24.7 for a proof of this fact).

Proposition 5.15. Let ' : Mn ! Nk be a smooth map and let y 2 N be a regular
value of ' such that L := '�1(y) 6= ;. Let ı : L ,! M denote the inclusion. Then
for all x 2 L, one has

Dı(x)[TxL] = kerD'(x).

Proof. By assumption both sides are linear subspaces of TxM of dimension n� k,
so it su�ces to show that Dı(x)[TxL] ⇢ kerD'(x). For this take f 2 C1(N) and
v 2 TxL. Then by the chain rule (Proposition 4.2), one has

D'(x) �Dı(x)[v](f) = D(' � ı)(x)[v](f) = v(f � ' � ı).

But f � ' � ı 2 C1(L) is the constant function x 7! f(y) and hence by Corollary
3.5 one has v(f � ' � ı) = 0. The result follows.

Proposition 5.15 finally allows us to recover the “intuitive” definition of the
tangent space for S2 given at the beginning of Lecture 2.
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Example 5.16. Let f : Rn+1 ! R be the map f(x) = |x|2�1. It is straightforward
to check that f is smooth and that the only critical point of f is 0 2 Rn+1. Thus by
the Implicit Function Theorem 5.13, Sn = f�1(0) is a smooth manifold of dimension
n. I leave it to you to check that this is the same smooth structure as the one given
in Proposition 1.21. If we denote by ı : Sn ! Rn+1 the inclusion then (as you will
check on Problem Sheet C), one has

Dı(x)[TxS
n] = Jx(x

?), (5.4)

where Jx : Rn+1 ! TxRn+1 was defined in Problem B.3 and

x? :=
�

y 2 Rn+1 | hx, yi = 0
 

,

where h·, ·i is the standard Euclidean dot product. Now a moment’s thought shows
that (5.4) implies that the tangent space to Sn at a point x is the hyperplane
tangent to Sn at x, as Figure 2.1 claimed.

We now state a version of Sard’s Theorem valid for manifolds. We will only
give a brief sketch of the proof, which is non-examinable. This theorem is the main
reason we assume that manifolds have at most countably many components (the
theorem is false if this condition is not imposed).

Theorem 5.17 (Sard’s Theorem for Manifolds). Let ' : Mn ! Nk be a smooth
map. The set of critical values of ' has measure zero and is nowhere dense. The
set of regular values of ' is residual and thus dense in N . In particular, if n < k
then every point of M is necessarily a critical point of ', and hence N \ '(M) is
dense in N .

(|) Proof. The classical version of Sard’s Theorem says that1 if O ⇢ Rn is an
open set and f : O ! Rk is a smooth map, then the set of critical values of f
has measure zero in Rk. Since manifolds have only countably many components,
they can covered by countably many open sets that are di↵eomorphic to balls in
Euclidean spaces, cf. part (1) of Remark 1.9. Since the countable union of measure
zero sets is also of measure zero, the result follows.

We conclude this lecture by briefly returning to the setting of the Implicit Func-
tion Theorem in Euclidean spaces (Theorem 5.3). Thus suppose O is a neighbour-
hood of 0 in Rn and f : O ! Rk is a smooth map. As Theorem 5.3 showed, if we
assumed that the rank of f at 0 was maximal (and thus either equal to n or k,
depending which was larger), then the rank of f was also maximal for all x near 0
too. Thus having maximal rank is an open condition.

If the rank is not maximal, then it can “jump”, i.e. if f has (non-maximal)
rank r at 0 then for x arbitrarily close to 0 the rank of f at x can be di↵erent to
r. However if one adds as a hypothesis that the rank of f does not jump, then an
analogous result to Theorem 5.3 holds. Here is a precise statement:

1A nice proof can be found in Chapter 3 of Milnor’s classic textbook “Topology from a
Di↵erentiable Viewpoint”.
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Theorem 5.18 (The Constant Rank Theorem). Let O be a neighbourhood of 0 in
Rn and suppose f : O ! Rk is a smooth map such that f(0) = 0. Assume that f
has constant rank r for all x 2 O, and let # : Rn ! Rk denote the map

#(x1, . . . , xn) = (x1, . . . , xr, 0, . . . , 0). (5.5)

There exists chart g about 0 on Rk and a chart h about 0 on Rn such that g�f�h = #
on a neighbourhood of 0 on Rn.

The proof is similar (albeit slightly messier) than Theorem 5.3, and we omit the
details. Just as in Proposition 5.6, one can immediately translate this to a local
statement about smooth maps between manifolds:

Corollary 5.19. Let ' : Mn ! Nk be a smooth map. Let x 2 M and assume
there exists a neighbourhood of x such that ' has constant rank r on that neigh-
bourhood. Then there exists a chart � on M about x and a chart ⌧ on N about
'(x) such that ⌧ � ' � ��1 = #, where # is as in (5.5).

Corollary 5.19 has the following global consequence, which will be useful in
Lecture 9.

Corollary 5.20. Let ' : Mn ! Nk be a smooth map. Assume that the rank of '
is constant on all of M . If ' is either injective or surjective, then the rank is auto-
matically maximal (and thus ' is either an immersion or a submersion respectively).
In particular, a bijective constant rank map is necessarily a di↵eomorphism.

Proof. If ' has rank r < n on a neighbourhood of x then it is clear that ' is
not injective near x, since with charts � and ⌧ as in Corollary 5.19, the map
# = ⌧ � ' � ��1 is not injective (since (0, . . . , 0, ") is mapped to (0, . . . , 0) for all
" small). Meanwhile if ' has rank r < k then2 by Sard’s Theorem 5.17 '(M) is
nowhere dense in N , and thus certainly ' is not surjective. Finally, if ' is bijective,
then ' must have rank r = n = k, and thus by the Inverse Function Theorem 5.2
' is locally a di↵eomorphism in a neighbourhood of every point, and hence also a
global di↵eomorphism.

2Actually using Sard’s Theorem here is overkill. A more elementary argument goes as follows:
For any point x 2 M , it follows from Corollary 5.19 that there is a neighbourhood U

x

of x such
that '(U

x

) is nowhere dense in N . Since M is Lindelöf (cf. part (ii) of Remark 1.9), we can cover
M with countably many such sets U

x

. Thus '(M) is the countable union of nowhere dense sets,
and hence by the Baire Category Theorem (which is valid as any manifold is locally compact and
Hausdor↵, cf. part (i) of Remark 1.9), '(M) is itself nowhere dense in N , and thus in particular
' is not surjective.
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LECTURE 6

The Whitney Theorems

In this lecture we will prove two famous theorems of Whitney. The first states
that every smooth manifold can be embedded inside Euclidean space. Recall a
continuous function f : X ! Y between two topological spaces is proper if the
preimage of any compact set in Y is compact in X. If X is compact and Y is
Hausdor↵ then every continuous function is proper.

Theorem 6.1 (The Whitney Embedding Theorem). Let M be a smooth manifold
of dimension n. Then there exists a proper embedding ' : M ! R2n.

Theorem 6.1 is a genuinely di�cult result. It is much easier to prove that Mn

always embeds in R2n+1 (this is sometimes called the “Weak Whitney Embedding
Theorem”). This is still too hard for us, however, so we will prove this only for the
special case of compact manifolds. We call this the “Baby Whitney Embedding
Theorem”.

Theorem 6.2 (The Baby Whitney Embedding Theorem). Let M be a compact
smooth manifold of dimension n. Then there exists a (proper) embedding ' : M !
R2n+1.

The “proper” is in parentheses, as this is automatic when M is compact.

Proof. We prove the result in four steps.
1. We begin by showing thatM admits an embedding into some Euclidean space

Rk (this method will typically produce a very large k). In the next step we will
reduce k down to 2n+1. Since M is compact we can find a finite cover {V1, . . . , Vr}
of open sets, with the property that there exist charts �i : Ui ! Oi ⇢ Rn for
i = 1, . . . , r with V i ⇢ Ui. Now let ⌘i : M ! R denote a smooth cuto↵ function
(whose existence is guaranteed by Lemma 3.2) such that ⌘i(V i) ⌘ 1, 0  ⌘i(x)  1
for all x 2 M and supp(⌘i) ⇢ Ui. Set fi = ⌘i �i, which we think of as a function
from M ! Rn be extending by zero outside of Ui. Then define

' : M ! Rnr+r, '(x) = (f1(x), . . . , fr(x), ⌘1(x), . . . , ⌘r(x)) .

We claim that ' is an injective immersion. Since M is compact, it then follows
(Problem C.4) that ' is an embedding. To see that ' is injective, suppose '(x) =
'(y). Since the sets {Vi} cover M , there is some i such that x 2 Vi, and hence
⌘i(x) = 1. Since '(x) = '(y), we also have ⌘i(y) = 1, and thus y 2 supp(⌘i) ⇢ Ui.
Then also

�i(x) = ⌘i(x)�i(x) = fi(x) = fi(y) = ⌘i(y)�i(y) = �i(y).

But �i is a di↵eomorphism, and hence in particular injective. Thus x = y.
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Finally, to check ' is an immersion, pick an arbitrary x 2 M . Then x 2 Vi for
some i. Since ⌘i ⌘ 1 on a neighbourhood of x, we have Dfi(x) = D�i(x), which
is injective. Thus also D'(x) is injective. This completes the proof of the weak
version we wished to prove, where we took k = nr + r.

2. Replacing M by '(M), we now have M ⇢ Rk. Assume that k > 2n + 1,
otherwise there is nothing to prove. Think of Rk�1 as sitting inside Rk as the
hyperplane

�

(x1, . . . , xk) | xk = 0
 

. Given v 2 Rk \Rk�1, let pv : Rk ! Rk�1 denote
the projection parallel to v (i.e. the linear map with kernel equal to R · v). We will
look for unit vectors v with the property that

pv|M : M ! Rk�1

is an embedding. Using Problem C.4 again, it su�ces to show that pv|M is an
injective immersion. But what that mean in this context? Saying that pv|M is
injective is saying that v is not parallel to any secant of M , that is,

v 6= x� y

|x� y| , 8 x, y 2M. (6.1)

Here and elsewhere in this lecture, the norm | · | is taken with respect to the
standard Euclidean norm. This is true both for points in M and for points in
TM ⇢ TRk = R2k. The kernel of the linear map pv is the line through v. Since
pv is linear, its derivative is the same linear map. Thus a tangent vector w 2 TxM
lies in the kernel of Dpv(x) if and only if w is parallel to v. We therefore see that
pv is an immersion if

v 6= w

|w| , 8w 2 TxM, 8 x 2M. (6.2)

3. We will use Sard’s Theorem 5.17 to prove a v exists such that both (6.1) and
(6.2) hold. For (6.1), consider the map

 : (M ⇥M) \�! Sk�1, (x, y) 7! x� y

|x� y| .

Here � is the diagonal inside M ⇥M :

� := {(x, x) | x 2M} .
Clearly v satisfies (6.1) if and only if v is not in the image of  . Note that (M ⇥
M)\� is an open set of M ⇥M , and thus (M ⇥M)\� is a manifold of dimension
2n by Lemma 1.20 and Problem A.2. The map  is visibly smooth. Since 2n <
k�1 = dimSk�1, by Sard’s Theorem 5.17 the image of  is nowhere dense in Sk�1.
Thus in particular, any non-empty open set of Sk�1 contains a point v satisfying
(6.1).

Now we consider (6.2). It su�ces to check that it holds for all vectors w of norm
1. To this end we focus on the unit tangent bundle

SM := {(x, w) 2 TM | |w| = 1} .
We will come back to unit tangent bundles next semester when we discuss Rie-
mannian geometry. To see this is a manifold, consider the map h : TRk ! R given
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by h(x, w) = |w|2. It is easy to see that 1 is a regular value of h|TM and that
SM = h|�1

TM(1). By the Implicit Function Theorem SM is a manifold of dimension
2n� 1. It is easy to see that SM is compact (since M is). Now identify TM with
a subset of M ⇥ Rk; then SM is identified with a subset of M ⇥ Sk�1. Projecting
onto the second factor, this gives us a map

SM !M ⇥ Sk�1 ! Sk�1

which geometrically takes a unit vector based at a point in M and translates it
to a unit vector based at the origin in Rk. Using Sard’s Theorem 5.17 again, the
image of the composite map SM ! Sk�1 is nowhere dense. Since SM is compact,
it follows that the complement—let us call it W—of the image is a dense open set
in Sk�1. Thus W meets Sk�1 \ (Rk \ Rk�1) in an non-empty open set W0. From
what we already proved, such a non-empty open set W0 contains a vector v which
is not in the image of  .

4. We now complete the proof. The choice of v found above gives us an embed-
ding pv : M ! Rk�1. If k� 1 = 2n+1 we are done, if not then 2n+1 < k� 1, and
the same argument again works to provide a new embedding in Rk�2. By induction,
we eventually obtain our desired embedding M ! R2n+1.

Remark 6.3. Extending Theorem 6.2 to cover all smooth manifolds (not just com-
pact ones) is not that much more work. However it requires the concept of a mani-
fold with boundary that we won’t define until later on in the course, and hence we
shall content ourselves with the compact case only. We emphasise though that the
stronger result (Theorem 6.1, where 2n+1 is reduced down to 2n) is much harder.

Theorem 6.1 implies one could equivalently define a manifold as an embedded
submanifold of Euclidean space (this is how manifolds are defined in most “baby”
courses on di↵erential geometry).

Definition 6.4 (Alternative definition of a manifold). Let n  k. A subset M ⇢
Rk is called a smooth manifold of dimension n if each point x in M has a
neighbourhood V in Rk such that M \ V is di↵eomorphic to an open set in Rn.

In more detail, this means: for each point x 2 M there exists an open set
O ⇢ Rn and a neighbourhood V ⇢ Rk of x, together with an injective smooth
map ⇣ : O ! Rk of maximal rank (= n) everywhere such that ⇣(O) = M \ V and
� := ⇣�1|M\V : M \ V ! O is continuous (where M is given the subspace topology
of Rk). One usually calls ⇣ a parametrisation of M . The inverse � of ⇣ is then
a chart on M in the normal sense. Note that if n = k then this forces M to be an
open subset of Rk, and hence if M is compact then one necessarily has n < k.

Remark 6.5. Definition 6.4 is superficially much simpler than our original defi-
nition (Definition 1.18)—there is no need to first define topological manifolds, or
even mention Hausdor↵, paracompactness, etc. The equivalence of the definitions
follows from Theorem 6.1 and the existence of slice charts (Definition 5.9). More-
over it is immediate from Definition 6.4 that manifolds are metrisable, since any
subset of a metric space inherits a metric that determines its subspace topology.

You might therefore reasonably ask: was there any point in the abstract defini-
tion? The answer is of course “yes”, as I will now try to explain.
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Indeed, an embedded submanifold of Euclidean space should really be thought
of as a pair (M,'), where M is an (abstract) smooth manifold and ' is a choice
of embedding. It is possible to embed a given manifold in many di↵erent ways (cf.
Remark 5.11, also, if you can embed M in Rk then you can also embed M in Rl for
any l � k), and a di↵erent choice of embedding can lead to dramatically di↵erent
geometry (this will be particularly evident when we study Riemannian geometry
next semester). Thus when proving results about embedded submanifolds, one
always needs to ask the question: is this proof really a statement about the manifold
itself, or does it depend on the embedding? This can often vastly complicate the
proofs. The upshot is that having a more complicated definition leads to simpler
proofs, and hence in the long run—since you only need to define things once but
there are many theorems to prove!—it is better to work with the abstract definition
whenever possible.

Still another reason to prefer the abstract definition is the following: One of the
key applications of di↵erential geometry in theoretical physics is Einstein’s theory of
General Relativity. Here one views the universe as 4-dimensional (curved) space-
time. In the finite universe model, the spacial part of space-time is taken to be
compact 3-dimensional hyperbolic manifold. Since (by definition) the universe is
“everything”, it doesn’t make any sense at all to require the theory to begin by
embedding the universe in a larger Euclidean space. . .

(|) Remark 6.6. Here are some additional remarks about the (strong) Whitney
Embedding Theorem 6.1:

(i) The Whitney Embedding Theorem is sharp in the sense that if n = 2r then
RP n cannot be embedded in R2n�1. This can be proved using characteristic
classes (see Proposition 37.22).

(ii) There are various other versions of the Whitney Embedding Theorem. For
instance, if M is a compact orientable smooth manifold of dimension n (we
will define orientability in Lecture 20) thenM embeds inside R2n�1. This does
not contradict the previous statement, since for n even RP n is not orientable.

(iii) In many cases the upper bound can be improved—for instance, we in Lecture
1 we saw that Sn embeds into Rn+1. Another result (due to Haefliger) is that
if M is a compact smooth manifold of dimension n whose homotopy groups
⇡i(M) vanish for i  k then if 2k + 3  n one can embed M in R2n�k. In
general, if e(M) denotes the optimal k such that M embeds inside Rk then
computing e(M) is an open problem for many manifolds M .

We now aim to prove another theorem, also due to Whitney (Theorem 6.14),
that allows us replace a continuous map with a smooth one. We begin with the fol-
lowing statement, which says a continuous function from a manifold to a Euclidean
space can be approximated arbitrarily well by a smooth one.

Proposition 6.7. Let M be a smooth manifold and let h : M ! Rk be a contin-
uous function. Given any positive continuous function � : M ! R, there exists a
smooth function f : M ! Rk such that

|f(x)� h(x)| < �(x), 8 x 2M.
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Proof. Fix x 2M and let Ux be a neighbourhood of x such that for all y 2 Ux, one
has

�(y) >
1

2
�(x), |h(y)� h(x)| < 1

2
�(x).

Such a neighbourhood exists as h and � are assumed to be continuous. Then in
particular we have that

|h(y)� h(x)| < �(y), 8 y 2 Ux.

The collection {Ux | x 2M} is an open cover ofM . Let {�x | x 2M} be a partition
of unity subordinate to this open cover and define

f : M ! Rk, f(y) :=
X

x2M
�x(y)h(x).

Recall that the right-hand side is actually a finite sum at every point, since {supp(�x)}
is locally finite, and hence f is smooth. Moreover since

P

x �x ⌘ 1 and supp(�x) ⇢
Ux, one has for any y 2M that

|f(y)� h(y)| =
�

�

�

�

�

X

x2M
�x(y)h(x)� h(y)

�

�

�

�

�

=

�

�

�

�

�

X

x2M
�x(y)h(x)�

X

x2M
�x(y)h(y)

�

�

�

�

�


X

x2M
�x(y)|h(y)� h(x)|

<
X

x2M
�x(y)�(y) = �(y).

This completes the proof.

Our aim now is to improve Proposition 6.7 to the case where the target space
is another manifold, not a Euclidean space. The “obvious” tactic (given that we
just proved the Whitney Embedding Theorem) is to embed the target manifold
in a Euclidean space, and then approximate via the result we just proved. Unfor-
tunately this doesn’t quite work, as even though the function f can be chosen to
be very close to h, it may still be the case that f “misses” our newly embedded
manifold (remember an embedded manifold is not an open subset unless it is of full
dimension). Thus we need a way to correct this. We will do this my making use of
tubular neighbourhoods, which will be defined shortly.

Definition 6.8. Let Mn be an embedded submanifold of Rk. We define the nor-
mal space to M at x to be the (k � n)-dimensional subspace Normx M ⇢ TxRk

consisting of all vectors that are orthogonal to TxM with respect to the Euclidean
dot product. We define the normal bundle of M as the set

Norm(M) :=
�

(x, v) 2 TRk = Rk ⇥ Rk | x 2M, v 2 NormxM
 

.
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On Problem Sheet C you proved that Norm(M) is an embedded k-dimensional
submanifold of TRk = Rk ⇥ Rk. We define a map

T : Norm(M)! Rk, T (x, v) := x+ v.

We emphasise that this only makes sense as M is embedded in Rk. In general one
cannot add points together on a manifold! The map T is smooth, since it is the
restriction to Norm(M) of the addition map Rk ⇥ Rk ! Rk. If oM denotes the
zero-section:

oM := {(x, 0) | x 2M} .
(the explanation of the name “zero section” will come in Lecture 10, when we
discuss vector bundles) then one has

T (oM) = M.

Thus it is reasonable to hope that a small neighbourhood of oM in Norm(M) gets
mapped under T to a small neighbourhood ofM in Rk. This motivates the following
definition.

Definition 6.9. A tubular neighbourhood of M is a neighbourhood U of M
in Rk which is the di↵eomorphic image under T of an open subset V ⇢ Norm(M)
of the of form

V = {(x, v) 2 Norm(M) | |v| < "(x)} , (6.3)

where " : M ! R is a strictly positive continuous function.

It is a non-trivial fact that such neighbourhoods always exist:

Theorem 6.10 (The Tubular Neighbourhood Theorem). Every embedded sub-
manifold M ⇢ Rk admits a tubular neighbourhood.

This proof is non-examinable, since I skipped it in class.

(|) Proof. We prove the result in four steps.
1. We will prove that DT (x, 0) is invertible at every point (x, 0) 2 oM . Since

T |o
M

: oM !M is obviously a di↵eomorphism, one sees thatDT (x, 0) maps T(x,0)oM ⇢
T(x,0) Norm(M) isomorphically onto TxM . Secondly, if we restrict T to the fibre
NormxM , T just becomes the a�ne map v 7! x + v, and thus DT (x, 0) maps
T(x,0)NormxM isomorphically onto NormxM (cf Problem B.4).

Thus by the Inverse Function Theorem 5.2 we see that for each x 2 M there
exists an "x > 0 such that if

U(x, "x) := {(y, v) 2 Norm(M) | |x� y| < "x, |v| < "x}

then T |U(x,"
x

) is a di↵eomorphism. To complete the proof we need to show that
there is open set of the form (6.3) on which T is a global di↵eomorphism.

2. Let " : M ! R be the function that assigns to a point x 2M the supremun of
all "  1 such that T is a di↵eomorphism on U(x, "). Then " is strictly positive, as
"(x) � "x. We now claim that " is actually a continuous function. Indeed, suppose
x, y 2M and suppose that |x� y| < "(x). Then for � := "(x)� |x� y|, one has by
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the triangle inequality that U(y, �) ⇢ U(x, "(x)), and hence "(y) � "(x) � |x � y|.
Thus if |x� y| < "(x) then

"(x)� "(y)  |x� y|.

On the other hand, if "(x)  |x� y| then since "(y) � 0 by definition, one trivially
also has

"(x)� "(y)  |x� y|.
Reversing the roles of x and y shows that

|"(x)� "(y)|  |x� y|,

which proves " is continuous.
3. Set

V :=

⇢

(x, v) 2 Norm(M) | |v| < 1

2
"(x)

�

.

We claim that T is injective on V . Indeed, suppose (x, v) and (y, w) both belong
to V and satisfy x + v = T (x, v) = T (y, w) = y + w. Without loss of generality,
assume "(y)  "(x). Then

|x� y| = |v � w|  |v|+ |w|  1

2
"(x) +

1

2
"(x) = "(x),

where the first equality used x+ v = y + w. Thus both (x, v) and (y, w) belong to
U(x, "(x)). But on this set T is injective by construction. Thus (x, v) = (y, w) as
required.

4. We complete the proof. Set U := T (V ). Then U is open as T is a local
di↵eomorphism. Since T |V is injective, we see that T : V ! U is smooth bijection,
and hence (as T is a local di↵eomorphism), also a di↵eomorphism. This completes
the proof.

Remark 6.11. Next semester we will define another “tubular neighbourhood” as-
sociated to compact submanifold M of any Riemannian manifold (N,m). This is
more general than the construction discussed here, since N does not have to be
equal to a Euclidean space.

Definition 6.12. Let Y ⇢ X be a subspace of a topological space. A retraction
of X onto Y is a continuous map r : X ! Y such that r|Y is the identity map on
Y .

Corollary 6.13. Let M ⇢ Rk be an embedded submanifold, and let U be a
tubular neighbourhood of M . There exists a smooth map r : U !M which is both
a retraction and a submersion.

Proof. Let T : V ⇢ Norm(M) ! U be our tubular neighbourhood, and write
⇡ : Norm(M) ! M for the footpoint map that sends a pair (x, v) to x. Define
r : U ! M by r := ⇡ � T�1|U . Since T |V is a di↵eomorphism and ⇡ is clearly a
submersion, it follows that r is a submersion. Finally since T (x, 0) = x, we see that
r(x) = ⇡ � T�1(x) = x, and hence r is a retraction.
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The next result (also due to Whitney) allows us make contact with the topo-
logical world. Recall that if h0, h1 : X ! Y are two continuous maps, we say they
are homotopic if there exists a continuous map H : X ⇥ [0, 1] ! Y such that
H(·, 0) = h0 and H(·, 1) = h1. We can now state and prove another result due
to Whitney. We will use this result later on in the course when we discuss the
homotopy invariance of de Rham cohomology in Lecture 23.

Theorem 6.14 (The Whitney Approximation Theorem). Let h : M ! N be a
continuous map between two smooth manifolds. Then h is homotopic to a smooth
map ' : M ! N .

Proof. By the Whitney Embedding Theorem 6.1, we may assume that N is a
properly embedded submanifold of some Euclidean space Rk. Let U be a tubular
neighbourhood of N , and let r : U ! N be a smooth submersive retraction (whose
existence is guaranteed by Corollary 6.13). Given y 2 N , let

0 < "(y) := sup {"  1 | B"(y) ⇢ U} ,

where B"(y) denotes the ball of radius " about y (in the Euclidean norm). We claim
that " is actually a continuous function. This argument is essentially identical to
the proof of Step 2 of Theorem 6.10, but we give it again anyway. So let y, z 2 N
and first suppose that |y � z| < "(y). Then for � := "(y)� |y � z|, one has by the
triangle inequality that B�(z) ⇢ B"(y)(y), and hence "(z) � "(y)� |y � z|. Thus if
|y � z| < "(y) then

"(y)� "(z)  |y � z|.
On the other hand, if "(y)  |y � z| then since "(z) > 0 by definition, one trivially
also has

"(y)� "(z)  |y � z|.
Reversing the roles of y and z shows that

|"(y)� "(z)|  |y � z|,

which proves " is continuous. Now define � := " � h : M ! R. Then � is continuous
(as h and " are) and positive (as " is). By Proposition 6.7, there exists a smooth
function f : M ! Rk such that

|f(x)� h(x)| < �(x), 8 x 2M.

Define
H : M ⇥ [0, 1]! N, H(x, t) := r((1� t)h(x) + tf(x)).

This is well-defined due to our choice of function �, which implies that (1� t)h(x)+
tf(x) 2 U for all t 2 [0, 1]. Since r is the identity on N ⇢ U and h takes values in
N , we see that H(·, 0) = h. Moreover if ' := r�f then ' is smooth and H(·, 1) = '.
This completes the proof.

We conclude this lecture with a a couple of non-examinable remarks. First, a
definition.
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Definition 6.15. Suppose M and N are smooth manifolds and A ⇢ M is an
arbitrary set. We say a map ' : A ! N is smooth on A if it can be locally
smoothly extended, i.e. if for every x 2 A there exists a neighbourhood U of x in
M and a smooth map '̃ : U ! N such that '̃|U\A = '.

(|) Remark 6.16. With a little bit more work, Theorem 6.14 can be improved
to give the following statement: Suppose h : M ! N is a continuous map between
two smooth manifolds. Suppose A ⇢ M is a closed set and h|A is already smooth
(in the sense of Definition 6.15). Then the homotopy H can be chosen such that if
x 2 A then H(x, t) = h(x) for all t. In particular, the final smooth map ' : M ! N
satisfies '|A = h|A.
(|) Remark 6.17. One can also play the same game with smooth homotopies.
Two smooth maps ', : M ! N are smoothly homotopic if there exists a
smooth map M ⇥ [0, 1]! N (note we are using Definition 6.15 again here to make
sense of this) such that H(·, 0) = ' and H(·, 1) =  . The homotopy version of
the Whitney Approximation Theorem says that if two smooth maps are homotopic
(in the normal sense) then they are also smoothly homotopic. Similarly if the
given normal homotopy H from ' to  is stationary on some closed set A (i.e.
H(x, t) = '(x) for all x 2 A—note this implies '|A ⌘  |A) then the approximating
smooth homotopy can also be chosen to be stationary on A.
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LECTURE 7

Vector fields

In this lecture we will define vector fields, which are smooth sections of the tangent
bundle. We first introduce1 the following standard notational convention, which will
hold for the remainder of the course.

The Einstein Summation Convention. If the same index appears exactly
twice in any monomial, written once as an upper index and once as a lower
index, then that term is understood to be summed over all possible values of
that index. Here are two examples:

1. If ei denotes the standard ith basis vector in Rn, then we write

v = ai ei as an abbreviation for v =
n
X

i=1

ai ei

2. If M is an n-dimensional smooth manifold, x 2M , (xi) are local coor-
dinates about x, and v 2 TxM , we write

v = ai
@

@xi

�

�

�

x
as an abbreviation for v =

n
X

i=1

ai
@

@xi

�

�

�

x

Here @
@xi

is understood to have i as a lower index, despite the fact that
xi has i as an upper index, because it is on the bottom of a fraction.

This convention will vastly simplify equations throughout the course. For
instance, when we start to talk about tensors, we will have cause to consider
quantities which have local expressions such as

A = Aij
kl

@

@xi
⌦ @

@xj
⌦ dxk ⌦ dxl,

which is much simpler than writing this abomination

A =
n
X

i=1

n
X

j=1

n
X

k=1

n
X

l=1

Aij
kl

@

@xi
⌦ @

@xj
⌦ dxk ⌦ dxl.

The caveat is that in order for the convention to “work”, the choice of whether
to write a given quantity as an upper index or a lower index is not arbitrary.

Will J. Merry, Di↵. Geometry I, Autumn 2018, ETH Zürich. Last modified: June 28, 2019.
1I delayed introducing this convention immediately, so that you could all see how cumbersome

proofs with multiple summation signs could be (eg. Theorem 4.16) and thus fully appreciate the
new convention!
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Definition 7.1. Let M be a smooth manifold and let W ⇢ M be a non-empty
open set (possibly equal to all of M). A vector field X on W is a smooth map
X : W ! TM (where we regard W as a smooth manifold in its own right) that
satisfies the section property:

⇡(X(x)) = x, 8 x 2 W, (7.1)

where ⇡ : TM !M is the footpoint map.

In order to keep the notation under control, we will start to be a little sloppy
when referring to points in the tangent bundle. If v 2 TxM , instead of writing (x, v)
for the corresponding point in TM , we will sometimes continue to just write v. With
this convention, one can think of a vector field as a smooth map X : W ! TM
such that X(x) 2 TxM for each x 2 W . We denote by X(W ) the set of all vector
fields on W .

Let us give various equivalent ways of expressing what smooth means in this
context. Suppose M has dimension n and let � : U ! O be a chart on M . Suppose
X : U ! TM is any function satisfying the section property (7.1) (not necessarily
smooth). Let x 2 U . Since

�

@
@xi

�

�

x
| i = 1, . . . , n

 

is a basis of TxM , we can write

X(x) = X i(x)
@

@xi

�

�

�

x
, (7.2)

(note here we are using the Einstein Summation Convention to omit the
Pn

i=1) for
some real numbers X i(x). If we do this for every point x 2 U , we can think of the
X i as defining functions X i : U ! R. In general these functions X i need not even
be continuous, but as will shortly see, if X is smooth (i.e. a vector field on U) then
the X i are actually smooth functions.

Here is yet another way to think about it. Suppose f 2 C1(U), and suppose
as above X is any map U ! TM satisfying the section property. Then for any
x 2 U , thinking of X(x) as a derivation of C1(U) at x, we can feed f to X(x) to
get a number X(x)(f). This gives us a function X(f) : U ! R:

X(f)(x) := X(x)(f), 8 x 2 U. (7.3)

Once again, if X is just any map satisfying the section property then X(f) will not
in general even be continuous. However if X is smooth (i.e. a vector field) then
X(f) is smooth.

Proposition 7.2. Let M be a smooth manifold and let W ⇢ M be a non-empty
open set. Let X : W ! TM be any function satisfying the section property (7.1).
Then the following are equivalent.

(i) X is a vector field on W .

(ii) If � : U ! O is any chart on M with U ⇢ W then the functions X i defined
in (7.2) belong to C1(U).

(iii) If V ⇢ W is any open set (possibly equal to all of W ) and f 2 C1(V ) then
the function X(f) defined by (7.3) also belongs to C1(V ).
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Proof. We begin with proving that (i) , (ii). Let x 2 W , and let � : U ! O be
a chart about x. By definition, the function X i defined in (7.2) is smooth if and
only if X i � ��1 is smooth in the normal sense. Note that by Proposition 3.9 and
the definition of dxi the function X i � ��1 is the function

z 7! dxi|��1(z)(X(��1(z))), z 2 O. (7.4)

Now let us recall from the proof of Theorem 4.16 that a chart � : U ! O on M
defines a chart �̃ : ⇡�1(U)! O ⇥ Rn on TM by2

�̃(x, v) =
�

�(x), dxi|x(v) ei
�

, x 2 U, v 2 TxM.

By definition, X is smooth at x if and only if the composition

�̃ �X � ��1 : O ! O ⇥ Rn

is smooth at �(x). Explicitly this is the map

O ! O ⇥ Rn, z 7! �

z, dxi|��1(z)(X(��1(z))) ei
�

. (7.5)

We see immediately that this map is smooth if and only if (7.4) is smooth for each
i = 1, . . . , n. This proves (1), (2).

Now let us prove (2) ) (3). Let V ⇢ W and let f 2 C1(V ). Choose a chart
� : U ! O with U ⇢ V . Then for x 2 U , we have that

X(f)(x) = X i(x)
@

@xi

�

�

�

x
(f)

The function x 7! @
@xi

�

�

x
(f) is smooth (this is just the function x 7! Di(f �

��1)(�(x)). By (2) the X i are also smooth functions, and hence X(f) is a fi-
nite sum of the pointwise product of smooth functions and hence is smooth. We
have proved X(f) is smooth on U . But since U was arbitrary and smoothness is a
local property, it follows that X(f) is smooth on all of V . This proves (3).

Finally we prove (3)) (2). Indeed, (2) is a special case of (3), since if � : U ! O
is a chart about x with local coordinates xi, then the function X i defined in (7.2)
is simply X(xi), where we think of the xi as elements of C1(U). This completes
the proof.

Example 7.3. Suppose � : U ! O is a chart onM with local coordinates xi = ui��.
Then we can think of @

@xi

as defining a vector field on U via:

@

@xi
(x) :=

@

@xi

�

�

�

x
.

It is immediate from Proposition 7.2 that @
@xi

is smooth.

We now introduce a notational convention that is both totally logical and some-
what confusing at the same time:

2Note how prettier this formula is with the Einstein Summation Convention in e↵ect.
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Definition 7.4. If f 2 C1(U) then we denote the function @
@xi

(f) from (7.3) with

X = @
@xi

by @f
@xi

. Thus @f
@xi

is the function

@f

@xi
(x) :=

@

@xi
(x)(f) =

@

@xi

�

�

�

x
(f) = Di(f � ��1)(�(x)).

If our given manifold is an open subset of Rn and � is the identity chart then the
notation @f

@xi

is consistent with the “usual” definition of partial derivative.

Let us now continue with the general case, where W ⇢ M is any non-empty
open subset. The space X(W ) is a real vector space under pointwise addition:

(X + Y )(x) := X(x) + Y (x), (cX)(x) := cX(x), X, Y 2 X(W ), c 2 R.

In fact, X(W ) forms a module over the ring C1(W ) by defining

(fX)(x) := f(x)X(x), X 2 X(W ), f 2 C1(W ).

In order for this to be well-defined, one needs to know that eg. X + Y is smooth
and fX is smooth. This however is immediate from Proposition 7.2.

Remark 7.5. Pay attention to the ordering. If X 2 X(W ) and f 2 C1(W ) then
X(f) belongs to C1(W ) whereas fX belongs to X(W )!

We now extend Definition 3.1 to derivations that are not based at a point.

Definition 7.6. Let M be a smooth manifold and let W ⇢ M be a non-empty
open set. A derivation on C1(W ) is a linear map

X : C1(W )! C1(W )

satisfying the derivation property

X (fg) = fX (g) + gX (f), 8 f, g 2 C1(W ).

Let us temporarily denote by X

deriv(W ) the set of derivations on W . Observe
that X

deriv(W ) is another module over C1(W ). It follows from Proposition 3.3
that any vector field X 2 X(W ) defines a derivation X 2 X

deriv(W ) via

X (f) := X(f)

In fact, the converse is true.

Proposition 7.7. Let M be a smooth manifold and let W ⇢ M be a non-empty
open set. Then X

deriv(W ) and X(W ) are isomorphic as modules over C1(W ).

Proof. Suppose X is a derivation on C1(W ). Fix x 2 W . Then X defines a
derivation on C1(W ) at x, which we suggestively write as X(x), via the formula

X(x)(f) := X (f)(x), 8 f 2 C1(W ).

We can then think of X as defining a map W ! TM by via x 7! X(x). (Here
we are using Proposition 3.3 repeatedly). We claim that X is smooth, and hence
defines a vector field on W . For this by part (iii) of Proposition 7.2 we need only
check that X(f) is smooth for any f 2 C1(W ). But by construction X(f) = X (f),
which is then smooth by assumption.
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From now on we will identify a vector fields X 2 X(W ) with the corresponding
derivation X of C1(W ) and write both with a Latin lettersX. We will also abandon
the notation X

deriv(W ) and just write X(W ). Our next goal is to turn X(W ) into
an algebra, that is, to have a bilinear operation

X(W )⇥ X(W )! X(W ).

The naive guess would be to try composition of derivations:

X � Y : C1(W )! C1(W ), (X � Y )(f) := X(Y (f)).

Unfortunately, this is not a derivation. Indeed, if we take f, g 2 C1(W ) and
compute:

(X � Y )(fg) = X
⇣

fY (g) + gY (f)
⌘

=
⇣

f(X � Y )(g) + g(X � Y )(f)
⌘

+
⇣

X(f)Y (g) +X(g)Y (f)
⌘

However, observe that the “error” term X(f)Y (g) +X(g)Y (f) is symmetric in X
and Y . This means that if we consider the commutator

[X, Y ] := X � Y � Y �X

then the error term cancels, and thus [X, Y ] is a derivation. We have thus justified
the following definition.

Definition 7.8. Let X, Y 2 X(W ). Then the commutator [X, Y ] := X �Y �Y �X
is another derivation. We call [X, Y ] the Lie bracket of X and Y .

Remark 7.9. Warning: A few authors3 define the Lie bracket with the opposite
sign: [X, Y ] := Y �X �X � Y . From a ‘high-level” point of view, this other sign
convention is actually the “correct” one, but this requires a little bit of infinite-
dimensional Lie group theory to understand, as we will explain in Remark 10.24.
The convention I am using, namely [X, Y ] := X �Y �Y �X, is consistent with the
majority of the literature.

The next proposition gives a formula for [X, Y ] in coordinates. The proof is
deferred to Problem Sheet D.

Proposition 7.10. Let � : U ! O be a chart on M with local coordinates xi, and
let X, Y 2 X(U). Write X = X i @

@xi

and Y = Y i @
@xi

. Then

[X, Y ] =

✓

X i@Y
j

@xi
� Y i@X

j

@xi

◆

@

@xj
,

where @Y j

@xi

and @Xj

@xi

are the functions from Definition 7.4.

In order to explain the name, we need an algebraic definition.

3Notably, Joel Robbin and Dietmar Salamon use the other sign convention in their wonderful
lecture notes.
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Definition 7.11. A (real) Lie algebra is a vector space g endowed with a bilinear
operation called the Lie bracket

g⇥ g! g, (v, w) 7! [v, w]

which in addition is antisymmetric, [v, w] = �[w, v] and satisfies the Jacobi iden-
tity

[u, [v, w]] + [v, [w, u]] + [w, [u, v]] = 0, 8 u, v, w 2 g.

Thus a Lie algebra is a non-associative algebra. The name “Lie” comes from
the Norwegian mathematician Sophus Lie. It is traditional to write Lie algebras
using fraktur symbols g and h. The dimension of a Lie algebra g is simply the
dimension of g as a vector space. If g is a Lie algebra then a linear subspace h ⇢ g

is called a Lie subalgebra if [v, w] 2 h for all v, w 2 h.

Example 7.12. Here are some examples of Lie algebras:

(i) The cross product [x, y] := x⇥ y makes R3 into a 3-dimensional Lie algebra.

(ii) The set Mat(n) of n⇥ n matrices is an n2-dimensional Lie algebra under the
normal commutator [A,B] := AB � BA.

(iii) If V is any vector space then we can turn V into a (rather boring) Lie algebra
by defining [v, w] := 0. Such an Lie algebra is called abelian.

You will probably not be surprised to learn we have just constructed another
example:

Theorem 7.13. Let M be a smooth manifold and let W ⇢ M be an open set.
Then X(W ) is a Lie algebra.

Proof. The only thing left to check is the Jacobi identity. This is Problem D.2 on
Problem Sheet D.

(|) Remark 7.14. As long as dimM > 0 then for any non-empty open subset
W , X(W ) is an infinite-dimensional Lie algebra. To see this, we need only note
that X(W ) is a module over C1(W ), and C1(W ) is an infinite-dimensional vector
space (cf. Remark 2.2).

Let us now investigate how functions and vector fields can be “pushed forward”
with a di↵eomorphism.

Definition 7.15. Let ' : M ! N be a di↵eomorphism. We define an algebra
homomorphism

'? : C
1(M)! C1(N), f 7! '?(f)

where
'?(f) := f � '�1.

The claim that '? is an algebra homomorphism is just the assertion that

'?(f + g) = '?(f) + '?(g), '?(fg) = '?(f)'?(g), '?(cf) = c'?(f)

for all f, g 2 C1(M) and c 2 R, which is immediate from the definitions.
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Remark 7.16. Warning! Many authors use the notation '? for the derivative
D'.

Definition 7.17. Suppose ' : M ! N is a di↵eomorphism and X 2 X(M). We
define the pushforward vector field '?(X) 2 X(N) by defining

'?(X)(y) := D'('�1(y))[X('�1(y))].

To check this is well defined, we need to know that (a) '?(X)(y) 2 TyN for each
y 2 N , which is obvious, and (b) that '?(X) : N ! TN is smooth. The latter
holds because it is simply the composition

N
'�1��!M

X�! TM
D'��! TN

of smooth maps, and hence is smooth.

The map '? is again linear:

'?(X + Y ) = '?(X) + '?(Y ), 8X, Y 2 X(M).

Moreover one has

'?(fX) = '?(f)'?(X), 8X 2 X(M), 8 f 2 C1(M).

Remark 7.18. It may at first seem confusing that we have defined two di↵erent
maps (one from functions to functions and one from vector fields to vector fields)
and called them both '?. The reason for this will become clear when we discuss
the tensor algebra T (M) of a manifold. Roughly speaking, the tensor algebra is a
big direct sum:

T (M) =
M

r,s�0

T r,s(M)

where T r,s(M) denotes the tensors of type (r, s). As we will eventually see, a tensor
of type (0, 0) is simply a function (so T 0,0(M) = C1(M)) and a tensor of type (1, 0)
is simply a vector field (so T 1,0(M) = X(M)). Given a di↵eomorphism ' : M ! N ,
in Lecture 18 we will construct a “master” morphism (see Definition 18.11)

'? : T (M)! T (N) (7.6)

that preserves type, i.e.
'?(T r,s(M)) ⇢ T r,s(N).

The map '? from Definition 7.15 is the restriction of the master '? from (7.6) to
T 0,0(M) ⇢ T (M) and the map '? from Definition 7.17 is the restriction of the
master '? from (7.6) to T 1,0(M) ⇢ T (M). Thus it makes sense to denote them
both by '?.

Definition 7.19. Let g and h be two Lie algebras. A Lie algebra homomor-
phism is a linear map T : g! h which respects the Lie brackets, i.e.

[Tv, Tw] = T [v, w], 8 v, w 2 g,

where the left-hand side is the Lie bracket in h and the right-hand side is the Lie
bracket in g. A Lie algebra isomorphism is a bijective Lie algebra homomor-
phism whose inverse is also a Lie algebra homomorphism.

Proposition 7.20. Let ' : M ! N be a di↵eomorphism. Then '? : X(M) !
X(N) is a Lie algebra isomorphism.

Proposition 7.20 is a special case of part (ii) of Problem D.5.
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LECTURE 8

Flows and the Lie derivative

Let us begin this lecture by recalling two theorems from the theory of ordinary
di↵erential equations.

Theorem 8.1 (Existence of solutions). Let O ⇢ Rn be open and let f : O ! Rn be
smooth. For any z 2 O there exists a neighbourhood V of z and an open interval
(a, b) with a < 0 < b, together with a smooth map h : (a, b)⇥ V ! O such that:

(i) h(0, y) = y, for all y 2 V ,

(ii) If we write
d

dt
h(t, y) := lim

s!0

h(t+ s, y)� h(t, y)

s

then
d

dt
h(t, y) = f(h(t, y)), 8 (t, y) 2 (a, b)⇥ V.

Theorem 8.1 can be interpreted as follows. Suppose � = (�1, . . . , �n) : (a, b)! O
is a smooth curve. One calls � an integral curve of f = (f 1, . . . , fn) if

(�i)0(t) = f i � �(t), 8 1  i  n. (8.1)

Thus Theorem 8.1 tells us that integral curves �(t) = h(t, y) exist for arbitrary
initial conditions �(0) = y, and depend smoothly on their initial conditions. More-
over, they all locally exist for a common time (i.e. for every y in V , the integral
curve with initial condition lasts for all t 2 (a, b). Next, we address uniqueness of
solutions.

Theorem 8.2 (Uniqueness of solutions). Let O ⇢ Rn be open and let f : O ! Rn

be smooth. If �, � : (a, b) ! O are two integral curves of f with �(t) = �(t) for
some t 2 (a, b) then � ⌘ �.

We will not prove either Theorem 8.1 or Theorem 8.2. They are both hopefully
familiar to you from previous courses you took on ordinary di↵erential equations.
Instead, we will generalise them to manifolds.

Definition 8.3. Let M be a manifold and let X be a vector field on M . Let
(a, b) ⇢ R be an interval, and suppose � : (a, b) ! M is a smooth map. We say
that � is an integral curve of X if

�0(t) = X(�(t)), 8 t 2 (a, b). (8.2)

Will J. Merry, Di↵. Geometry I, Autumn 2018, ETH Zürich. Last modified: June 28, 2019.
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Remark 8.4. This definition is consistent with the usual one (8.1) in the special
case where M = O is an open subset of Rn. A vector field X on O canonically
determines (and is determined by) a smooth function f : O ! Rn via X(x) =
Jx(f(x)), where Jx : Rn ! TxRn is the isomorphism from Problem B.3, and I leave
it up to you to check that under the map J�(t), the condition (8.2) (which is an
equality of tangent vectors in T�(t)O) is transformed into (8.1) (which is a series of
equality of real numbers).

Before stating the next result, let us introduce a convention. If M is a manifold
and (a, b) is an interval then (a, b)⇥M is also a manifold. Given x 2M we denote
by ıx : (a, b)! (a, b)⇥M the map ıx(t) := (t, x). We denote by

@

@t

�

�

�

(t,x)
:= Dıx(t)



@

@t

�

�

�

t

�

= ı0x(t) (8.3)

the tangent vector in T(t,x)((a, b)⇥M) obtained from the canonical generator @
@t

�

�

t
2

TtR. One can think of (t, x) 7! @
@t

�

�

(t,x)
as defining a vector field on (a, b) ⇥ M .

(Exercise: Why?)

Theorem 8.5 (Local flow). Let M be a smooth manifold and let X 2 X(M).
For any x 2 M there exists a neighbourhood W of x and an interval (a, b) with
a < 0 < b, together with a smooth map

✓loc : (a, b)⇥W !M.

such that

(i) ✓loc(0, y) = y, for all y 2 W .

(ii) For all (t, y) 2 (a, b)⇥W one has

D✓loc(t, y)



@

@t

�

�

�

(t,y)

�

= X(✓loc(t, y)). (8.4)

We call ✓loc a local flow of X. We will shortly get rid of the “loc”.

Proof. Let � : U ! O be a chart around x with local coordinates (x1, . . . , xn). Let
�̃ : ⇡�1(U) ! O ⇥ Rn denote the corresponding chart on TM . Then we can write
(cf. (7.5))

�̃ �X � ��1 = (id, f)

where f : O ! Rn is smooth. In fact1, writing f = (f 1, . . . , fn) one has

f i(z) := dxi|��1(z)(X(��1(z))).

Theorem 8.1 gives us a neighbourhood V of �(x), an interval (a, b), and a smooth
map h : (a, b)⇥V ! O such that the two stated conditions holds. To complete the
proof, set W := ��1(V ) and define

✓loc(t, y) := ��1 � h(t, �(y)), (t, y) 2 (a, b)⇥W.

That ✓loc satisfies the two required conditions is immediate from the fact that h
did.

1One should be aware of the slightly confusing fact that when we think of X(x) as a tangent
vector, we usually write it as a column vector. When we think of X (or in this case, its local
representative f) as a function, we normally write it as a row vector!
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Remark 8.6. The condition (8.4) is simpler that it looks. Given y 2 W , set
�y(t) := ✓loc(t, y), so that �y : (a, b)! U is a curve in our manifold. Then from how
velocity vectors are defined (cf. Definition 4.6), one has

D✓loc(t, y)



@

@t

�

�

�

(t,y)

�

= (✓loc � ıy)0(t) = �0y(t).

Thus (8.4) asserts that �y is an integral curve of X.

A similar argument also proves the manifold version of Theorem 8.2:

Theorem 8.7. LetM be a smooth manifold and letX 2 X(M). If �, � : (a, b)!M
are two integral curves of X with �(t) = �(t) for some t 2 (a, b) then � ⌘ �.

Thanks to Theorem 8.7, it makes sense to talk about the maximal integral curve
through a given point.

Definition 8.8. Let X be a vector field on M . Given a point x 2 M , we denote
by
�

t�(x), t+(x)
�

the maximal interval around 0 on which the (unique by Theorem
8.7) integral curve �x :

�

t�(x), t+(x)
�!M of X whose initial condition is �x(0) = x

is defined. We call �x the maximal integral curve through x.

Remark 8.9. It readily follows from maximality that for any point x 2M one has

t±(�x(s)) = t±(x)� s, 8 s 2 �t�(x), t+(x)�. (8.5)

This will useful later in establishing the group property for flows, see Remark 8.11.

We emphasise that
�

t�(x), t+(x)
�

typically will be larger than the interval (a, b)
given by Theorem 8.5—indeed, by construction ✓loc(t, x) never leaves the open set
U that the chart � was defined on. Thus whilst �x(t) = ✓loc(t, x) for small enough
t, in general the curve �x could wander all over the manifold. Our aim now is
to globalise Theorem 8.5 so that the equality �x(t) = ✓(t, x) holds whenever the
former is defined.

Theorem 8.10 (Maximal flow). Let M be a smooth manifold and let X 2 X(M).
There exists a unique open set D ⇢ R⇥M and a unique smooth map ✓ : D ! M
such that

(i) For all x 2M one has

D \ �R⇥ {x} � = �t�(x), t+(x)�⇥ {x} .

(ii) ✓(t, x) = �x(t) for all (t, x) 2 D.

We call ✓ the flow of X. If there is more than one vector field under consider-
ation we write ✓X .

Proof. Note that (i) determines D uniquely, and (ii) does the same for ✓. It remains
therefore to show that D is open and ✓ is smooth.

Fix x 2 M and let I denote the set of all t 2 �t�(x), t+(x)� for which there
exists some neighbourhood of (t, x) contained in D on which ✓ is smooth. Note that

3



I is clearly open by definition. (Its defining property is an open condition). We will
prove that I is nonempty and closed, whence it follows that I =

�

t�(x), t+(x)
�

.
Firstly, I is non-empty, since 0 2 I by Theorem 8.5. Now suppose t0 2 I.

Set x0 := �x(t0). We apply Theorem 8.5 at the point x0 to obtain a local flow
✓loc : (a, b)⇥ U0 !M about x0.

Since t0 belongs to the closure of I, we may choose t1 2 I close enough to t0
such that t0 � t1 belongs to (a, b) and such that �x(t1) belongs to U0 (here we are
using the fact that �x is continuous at t0 and that U0 is a neighbourhood of x0).

Since (a, b) is an interval, we can do a little better: we can choose an interval I0
about t0 such that t� t1 2 (a, b) for all t 2 I0. Finally, by continuity of ✓ at (t1, x),
there exists a neighbourhood V of x such that ✓({t1}⇥ V ) ⇢ U0.

We now claim that our original ✓ is defined and smooth on all of I0 ⇥ V , so
that in particular t0 2 I. Indeed, if t 2 I0 and y 2 V then t � t1 2 (a, b) and
✓(t1, y) 2 U0. Thus ✓loc(t � t1, ✓(t1, y)) is defined and smooth. But the curve
s 7! ✓loc(s � t1, ✓(t1, y)) is an integral curve of X which passes through ✓(t1, y) at
t1. By uniqueness, this curve is ✓(t, y). We thus see that ✓(t, y) = ✓loc(t�t1, ✓(t1, y))
is defined and smooth at (t, y).

We have thus shown that for all x 2 M and for all t 2 �t�(x), t+(x)�, there
exists a neighbourhood of (t, x) in D on which ✓ is smooth. Thus D is open and
✓ : D !M is smooth. This completes the proof.

Remark 8.11. We can play the same game and partition M up. Given t 2 R, let

Mt := {x 2M | (t, x) 2 D} .

Then Mt is open in M and there is a well-defined smooth map ✓t : Mt !M�t given
by

✓t(x) := ✓(t, x), x 2Mt

(the fact that ✓t takes values in M�t follows from (8.5)). This map ✓t is a di↵eo-
morphism, since ✓�t : M�t ! Mt is an inverse. More generally, if s, t 2 R then the
domain of ✓s � ✓t is contained in (though not necessarily equal to) Ms+t. If s and
t have the same sign then we have equality. In any case, one has ✓s � ✓t = ✓s+t on
the domain of ✓s � ✓t.

Restricting the maps ✓t to open subsets of M is annoying. The next condition
rules this out.

Definition 8.12. A vector field X is complete if the set D from Theorem 8.10
is all of R ⇥M . Equivalently, a vector field is complete if either (a) its integral
curves exist for all time or (b) the maps ✓t(x) := ✓(t, x) are all di↵eomorphisms of
the entire manifold M .

Definition 8.13. We write Di↵(M) for the set of di↵eomorphisms ' : M ! M .
Note that Di↵(M) is actually a group under composition, where the identity ele-
ment is just the identity map.

(|) Remark 8.14. Assume that M is compact. Then more is true: the group
Di↵(M) can itself be given a (Fréchet) manifold structure. We will say more about
this Remark 10.24.
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Definition 8.15. A one-parameter group of di↵eomorphisms is a smooth2

group homeomorphism R ! Di↵(M). Writing this as t 7! ✓t, the group property
tells us that

✓0 = id, ✓s+t = ✓s � ✓t, 8 s, t 2 R.

If {✓t} is a one-parameter group of di↵eomorphisms then we define its infinites-
imal generator as the (necessarily complete) vector field

X(x) := D✓(0, x)



@

@t

�

�

�

(0,x)

�

, (8.6)

where we wrote ✓(t, x) := ✓t(x) and used the convention from (8.3). Then the flow
of X is simply the one-parameter group ✓t. We have thus proved:

Proposition 8.16. Let M be a smooth manifold. Then there is a bijective cor-
respondence between one-parameter subgroups of di↵eomorphisms and complete
vector fields.

Example 8.17. Perhaps the easiest example of a non-complete vector field is given
by taking M = R2 \ 0 and taking X = @

@x1 . If (x1, x2) 2 R2 \ 0 then the flow line
passing through (x1, x2) takes the form: (x1, x2) 7! (t + x1, x2). It is then obvious
that something must go wrong if you take (x1, x2) = (�1, 0) and try and flow
forwards—indeed, if the flow existed for all time then at time t = 1 you would fall
out the manifold through the hole. . . (Exercise: Make this rigorous.)

For the remainder of this lecture (and indeed, the course), we will switch between
the notations ✓(t, x), ✓t(x) and �x(t) whenever convenient. Here is an easy way to
guarantee completeness.

Lemma 8.18. Let X be a vector field on M . Assume there exists " > 0 such that
(�", ") ⇢ �t�(x), t+(x)� for all x 2M . Then X is complete.

Proof. If not, there exists some x 2M such that either t+(x) <1 or t�(x) > �1.
Assume the former (the proof in the other case is almost identical). Choose a
number t0 such that t+(x)�" < t0 < t+(x). Set x0 := �x(t0). By assumption �x0(t)
is defined for all t 2 (�", "). Now consider the curve

�(t) :=

(

�x(t), t�(x) < t < t+(x),

�x0(t� t0), t0 � " < t < t0 + ".

These two definitions agree on the overlap, since

�x0(t� t0) = ✓t�t0(x0) = ✓t�t0 � ✓t0(x) = ✓t(x) = �x(t).

But then � is an integral curve for X with initial condition x which is defined on
�

t�(x), t0 + "
�

. Since t0 + " > t+(x), this contradicts the maximality of t+(x).

2Here “smooth” should be interpreted as saying that t 7! ✓
t

is a smooth map from the
manifold R to the (infinite-dimensional) manifold Di↵(M). In more down-to-earth language, this
just means that (t, x) 7! ✓

t

(x) is a smooth function R⇥M !M . See also Remark 10.24.
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We define the support of a vector field X in exactly the same way as we define
the support of a function:

supp(X) := {x 2M | X(x) 6= 0 2 TxM}.
Corollary 8.19. Let X be a vector field with compact support. Then X is
complete.

Proof. By Theorem 8.5 for each x 2 supp(X) there exists a neighbourhood Ux

of x and an interval (�"x, "x) such that the flow is defined on (�"x, "x) ⇥ Ux.
Since supp(X) is compact, we may select finitely many points x1, . . . , xN such that
supp(X) ⇢ SN

i=1 Ux
i

. Now set " := mini=1,...,N "x
i

. Then for every x 2 supp(X) one
has (�", ") ⇢ �t�(x), t+(x)�. Since X is identically zero on M \ supp(X), every
integral curve of X starting at some point in M \ supp(X) is trivially defined for
all t 2 R (and is constant). Thus the hypotheses of Lemma 8.18 are satisfied, and
the proof is complete.

Corollary 8.20. If M is compact then every vector field on M is complete.

Proof. If M is compact then certainly every vector field has compact support.

Here is another variant on Lemma 8.18 which is sometimes more useful.

Lemma 8.21. Let X be a vector field on M . If the maximal domain of an integral
curve �x is not all of R, then the image of that curve cannot be contained in any
compact subset of M .

Proof. Assume for instance that t+(x) <1 and that �x is contained in a compact
set K. Choose a sequence tn such that ti ! t+(x) from below. By compactness,
�x(ti) converges to some point x0. By Theorem 8.5, a local flow ✓loc of X is defined
on (�", ") ⇥ U for some " > 0 and some neighbourhood U of x0. Choose i large
enough so that �x(ti) 2 U and ti + " > t+(x). Then arguing just as in the proof of
Lemma 8.18, the curve

�(t) :=

(

�x(t), t�(x) < t < t+(x),

✓loc(t� ti, �x(ti)), ti � " < t < ti + ".

is a well-defined integral curve of X starting at x, and thus contradicts the maxi-
mality of t+(x).

We now move onto defining the Lie derivative associated to a vector field X.
As with maps '? from the last lecture, we will actually give two definitions, one
for the Lie derivative eating a function, and one for the Lie derivative eating a
vector field. When we discuss tensors (cf. Remark 7.18), these two definitions will
eventually be unified to give one “master” Lie derivative that eats any tensor and
spits out another tensor of the same type.

Definition 8.22. Let X 2 X(M) with flow ✓t. We define the Lie derivative of
X to be the map

LX : C1(M)! C1(M)

given by

LX(f)(x) := lim
t!0

f � ✓t(x)� f(x)

t
.
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To see that this is well-defined (i.e. why the limit exists and defines a smooth
function), we prove:

Lemma 8.23. LX(f) = X(f).

Proof. From the definitions one has

X(f)(x) = X(x)(f) = �0x(0)(f) = (f � �x)0(0).

But then clearly

(f � �x)0(0) = lim
t!0

f � �x(t)� f(x)

t
= lim

t!0

f � ✓t(x)� f(x)

t
.

Now we define the Lie derivative on vector fields.

Definition 8.24. Let X 2 X(M) have flow ✓t. We define the Lie derivative of
X to be the map

LX : X(M)! X(M)

by

LX(Y )(x) := lim
t!0

D✓�t(✓t(x))[Y (✓t(x))]� Y (x)

t
. (8.7)

To see that this is well-defined (i.e. why the limit exists and defines a vector
field) we prove:

Theorem 8.25. For any two vector fields on M , one has LX(Y ) = [X, Y ].

Theorem 8.25 also explains the name “Lie derivative”. Before going any further,
let us emphasise once more: the main point of the Lie derivative is that we will
eventually extend this to an operator LX : T (M) ! T (M) on the tensor algebra
of M (see Theorem 18.18 in Lecture 18). For now though, we can simply think of
the Lie derivative of giving more insight into the Lie bracket; an example of this is
Proposition 8.27 below. The proof of Theorem 8.25 requires a preliminary lemma,
which can be thought of as a manifold version of Lemma 3.8.

Lemma 8.26. Let U ⇢ M be open and let a < 0 < b. Let f : (a, b) ⇥ U ! R be
a smooth function such that f(0, x) = 0 for all x 2 U . Then there exists another
smooth function h : (a, b)⇥ U ! R such that

f(t, x) = th(t, x),
@

@t

�

�

�

(0,x)
(f) = h(0, x), 8 (t, x) 2 (a, b)⇥ U.

Here (t, x) 7! @
@t

�

�

(t,x)
is the vector field on (a, b)⇥ U defined in (8.3).

Proof. Simply define

h(t, x) :=

Z 1

0

@

@t

�

�

�

(st,x)
(f) ds.
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Then h is smooth. To see that f(t, x) = th(t, x) one considers the curve �(s) :=
f � ıx(st). Then

f(t, x) = f(t, x)� f(0, x) = �(1)� �(0) =
Z 1

0

�0(s) ds.

But by definition

�0(s) = t
@

@t

�

�

�

(st,x)
(f).

This completes the proof.

We now prove Theorem 8.25.

Proof of Theorem 8.25. Fix x 2 M . By Theorem 8.5, there exists a < 0 < b and
a neighbourhood U of x such that (a, b) ⇥ U ⇢ D, the domain of ✓. Now fix
g 2 C1(M). We apply Lemma 8.26 to the function f(t, y) := g(✓t(y)) � g(y) to
obtain a function h, which, writing ht(y) := h(t, y), we have:

g � ✓t = g + tht, h0 = X(g),

where we used Lemma 8.23. Thus for another vector field Y we have

D✓�t(✓t(x))[Y (✓t(x))](g) = Y (✓t(x))(g � ✓�t)

= Y (✓t(x))(g � th�t)

= Y (g) � ✓t(x)� tY (h�t) � ✓t(x).

We therefore have

LX(Y )(g)(x) = lim
t!0

Y (g) � ✓t(x)� (Y (g))(x)

t
� lim

t!0
Y (h�t) � ✓t(x)

= LX(Y (g))(x)� Y (h0)(x)

= X(Y (g))(x)� Y (X(g))(x)

= [X, Y ](g)(x).

Since x and g were arbitrary, this completes the proof.

An application of Theorem 8.25 is the following result, whose proof is deferred
to Problem Sheet E.

Proposition 8.27. Let X and Y be vector fields on M with flows ✓Xt and ✓Yt
respectively. Then [X, Y ] ⌘ 0 if and only if the two flows commute, i.e. ✓Xt � ✓Ys =
✓Ys � ✓Xt for all s, t small.
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LECTURE 9

Lie groups

In the next four lectures we will cover the basic theory of Lie groups. Lie groups
are important in many areas of mathematics (not just geometry!)—including rep-
resentation theory, harmonic analysis, di↵erential equations and more. Lie groups
also crop up naturally in physics—both classically (eg. Noether’s theorem that ev-
ery smooth symmetry of a physical system has a corresponding conservation law),
and in high-energy particle physics, via gauge theory. We will come back to gauge
theory in Di↵erential Geometry II when we study connections on principal bundles.

Definition 9.1. A Lie group G is a smooth manifold that is also a group in the
algebraic sense, with the property that the group multiplication

m : G⇥G! G, m(a, b) = ab,

and group inversion
i : G! G, i(a) = a�1,

are both smooth maps.

Remark 9.2. In contrast to manifolds, where we normally use the letters x and y
to denote points, for Lie groups we will use a and b. This distinction will become
important next lecture when we discuss Lie groups acting on manifolds.

Definition 9.3. A Lie group homomorphism ' : G ! H is a smooth map
G ! H which is also a group homomorphism. A Lie group isomorphism is a
Lie group homomorphism which is also a di↵eomorphism (and thus the inverse is
automatically a Lie group homomorphism.)

Example 9.4. Here are some examples of Lie groups.

(i) Rn is a Lie group under addition.

(ii) R \ {0} is a Lie group under multiplication.

(iii) The set GL(n) of invertible n⇥n matrices is a Lie group under matrix multi-
plication. Indeed, it is a manifold of dimension n2 (cf. Problem A.1). Multi-
plication is smooth because the matrix entries of a product AB are given by
polynomials in the entries of A and B, and inversion is smooth by Cramer’s
rule.

(iv) If G is a Lie group and H ⇢ G is an open subgroup (that is, a subgroup
which is also an open set in G) then H naturally inherits a Lie group structure
(cf. Proposition 1.20). Thus the set GL+(n) of invertible matrices with
positive determinant is a Lie group.

Will J. Merry, Di↵. Geometry I, Autumn 2018, ETH Zürich. Last modified: June 28, 2019.
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(v) The n-torus T n = Rn
�

Zn is an abelian Lie group (the group structure is
induced by addition on Rn). In fact, one can show that any compact abelian
Lie group is (isomorphic to) a torus.

(vi) The same underlying smooth manifold can carry multiple Lie group struc-
tures. For instance, a di↵erent Lie group structure on R3 is given by

m(x, y) :=
�

x1+y1, x2+y2, x3+y3+x1y2
�

, x = (x1, x2, x3), y = (y1, y2, y3).

This is the Heisenberg group. In order to see that this does indeed define
a group structure, we identify R3 with upper triangular 3⇥ 3 matrices:

(x1, x2, x3)  !
0

@

1 x1 x3

0 1 x2

0 0 1

1

A

The group multiplication m corresponds to normal matrix multiplication.

(vii) Not all smooth manifolds can be made into Lie groups. For instance, Sn

admits a Lie group structure only for n = 0, 1 and 3. The reason for this is
briefly discussed in Remark 12.14.

Going back to the general theory, we will usually denote group composition
simply by juxtaposition, and write e for the identity element. (Exception: if G is
a group of matrices then we denote the identity element by I).

Definition 9.5. Let G be a Lie group and let a 2 G. We let la : G ! G and
ra : G! G denote the left translation and right translation by a respectively

la(b) := ab, ra(b) = ba.

These maps are both di↵eomorphisms. For instance, la = m� ıa, where ıa : G!
G⇥G is the map b 7! (a, b), and hence is the composition of smooth maps. Moreover
la�1 is the inverse of la. A similar argument applies for ra.

Remark 9.6. Throughout this lecture (and indeed, this course), we will almost
exclusively work with left translations. This is purely a convention—everything
we do could be reformulated (with appropriate modifications) to work with right
translations instead. See also Remark 10.7 in the next lecture.

Proposition 9.7. Every Lie group homomorphism has constant rank.

Proof. Let ' : G! H be a Lie group homomorphism. Fix a 2 G. We show that '
has the same rank at a as it does at e. Indeed, since ' is a homomorphism, for all
b 2 G one has

'(la(b)) = '(ab) = '(a)'(b) = l'(a)('(b)),

that is,
' � la = l'(a) � '.

Now di↵erentiate both sides at e and use the chain rule for manifolds (Proposition
4.2) to obtain

D'(a) �Dla(e) = Dl'(a)(e) �D'(e). (9.1)

Since la and l'(a) are di↵eomorphisms, both Dla(e) and Dl'(a) are linear isomor-
phisms. The claim follows.
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Corollary 9.8. A Lie group homomorphism is a Lie group isomorphism if and
only if it is bijective.

Proof. This follows immediately from Proposition 9.7 and Corollary 5.20.

Definition 9.9. Let G be a Lie group. A Lie subgroup of G is a subgroup H
endowed with a topology and a smooth structure that simultaneously makes H into
a Lie group and into an immersed submanifold of G.

In fact, embedded submanifolds are automatically Lie subgroups.

Proposition 9.10. Let G be a Lie group, and let H ⇢ G be a subgroup which is
an embedded submanifold. Then H is a Lie subgroup.

Proof. We need to check that H is a Lie group in its own right. Thus for instance
we must show that the group multiplication m : H ⇥ H ! H is smooth. For this
we need the following two facts:

• If M ⇢ N is an immersed submanifold and ' : N ! L is smooth then
'|M : M ! L is also smooth. (Proof : the inclusion map ı : M ! N is
smooth by definition of an immersed submanifold, and '|M = ' � ı.)

• If M ⇢ N ia an embedded submanifold and ' : L! N is a smooth map with
'(L) ⇢ M then ' : L ! M is also smooth. (Proof : This is immediate from
the definition of the subspace topology.)

Going back to the proof, from the first bullet point, m|H⇥H : H ⇥ H ! G is
smooth. Since H is a subgroup, m(H ⇥ H) ⇢ H. By the second bullet point,
m|H⇥H : H ⇥H ! H is smooth. A similar argument applies for inversion.

The following result is much deeper. It is not that di�cult to prove, but it
would take the entire lecture (and then some), so we will skip it.

Theorem 9.11 (The Closed Subgroup Theorem). LetG be a Lie group and suppose
H is any subgroup of G. The following are equivalent:

(i) H is a closed subgroup (i.e. H is a closed set in G).

(ii) H is an embedded submanifold of G.

(iii) H is an embedded Lie subgroup of G.

Clearly (iii) implies (ii). Proposition 9.10 proved that (ii) implies (iii). On
Problem Sheet E you are asked to prove that (ii) implies (i). The trickier bit is to
show that (i) implies (ii), and this is what we will skip.

Example 9.12. Let O(n) ⇢ GL(n) denote the orthogonal matrices, i.e. those
matrices A with AAT = I. Then O(n) is closed in GL(n), and hence by the Closed
Subgroup Theorem 9.11, it is a Lie subgroup.

Due to its importance, let us give a direct proof of this example.

Proposition 9.13. The set of orthogonal matrices O(n) is a Lie subgroup of GL(n)
of dimension 1

2
n(n� 1).
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Proof. By Proposition 9.10 we need only show that O(n) is an embedded subman-
ifold. For this first consider the set Sym(n) of symmetric matrices. Clearly we

can identify Sym(n) ⇠= R
n(n+1)

2 , and thus Sym(n) is naturally a smooth manifold.
Consider the (obviously smooth) map ' : GL(n)! Sym(n) given by

'(A) := AAT ,

where AT denotes the transpose of A. Then O(n) = '�1(I), where I is the n ⇥ n
identity matrix. Thus by the Implicit Function Theorem 5.13, we need only show
that I is regular value of ', whence O(n) is an embedded submanifold of GL(n) of
dimension n2� 1

2
n(n+1) = 1

2
n(n� 1). For A 2 O(n) one has ' � rA = ', and thus

D'(A) � DrA(I) = D'(I). Since rA is a di↵eomorphism, it follows that the rank
of ' at A is the same as the rank of ' at I. Thus we need only show that ' has
maximal rank at I, i.e. that D'(I) is surjective.

Since GL(n) is an open subset of the vector space Mat(n), its tangent space is
canonically identified with Mat(n), and similarly TI Sym(n) ⇠= Sym(n). Using the
isomorphism JI from Problem B.3, if A 2 Mat(n) then1

D'(I)(JI(A)) =
d

dt

�

�

�

t=0
'(I + tA)

=
d

dt

�

�

�

t=0

�

I + t(A+ AT ) + t2AAT
�

= A+ AT

Now fix an arbitrary S 2 Sym(n) ⇠= TI Sym(n). To complete the proof we need to
find A 2 Mat(n) such that A+ AT = S. But this is easy: take A := 1

2
S.

Remark 9.14. A matrix Lie group is a closed subgroup of GL(n). Thus a
matrix Lie group is necessarily a Lie group in its own right, by the Closed Subgroup
Theorem 9.11. As in Proposition 9.13, it is typically possible to prove this directly.
Another example of this is on Problem Sheet E.

Definition 9.15. Let G be a Lie group. We define the Lie algebra of G, which
we will usually write2 as g, as the tangent space to G at the identity element e:

g

:= TeG.

Of course, for this definition not to be completely insane, the Lie algebra of a
Lie group better be a Lie algebra (in the sense of Definition 7.11). Luckily this is
indeed the case, as we will shortly prove in Corollary 9.20.

To make sure we are all on the same page, let us fix once and for all our notation
for matrix Lie groups.

1This makes sense as I+ tA necessarily belongs to GL(n) for t small enough (Exercise: Why?)
2The convention is that the Lie algebra of a given Lie group is written with the same letter,

only with a lower case Fraktur letter. Thus the Lie algebra of H is h, and the Lie algebra of K is
k, etc.

4



Notation: Let V and W be vector spaces.

(i) We write L(V,W ) for the vector space of all linear maps from V to W .

(ii) We write GL(V ) ⇢ L(V, V ) for the open set of all invertible linear maps.

(iii) We write gl(V ) := TI GL(V ) for its Lie algebra. Since GL(V ) is an
open subset of L(V, V ), the map JI defines a canonical isomorphism

JI : L(V, V )! gl(V ).

Often the isomorphism JI will be suppressed from the notation and we
write L(V, V ) ⇠= gl(V ) (or even L(V, V ) = gl(V )!)

(iv) Other matrix Lie subgroups of GL(V ) are written as you would
guess. For instance, if V is endowed with an inner product h·, ·i then
O(V ) ⇢ GL(V ) denotes the linear transformations that preserve h·, ·i,
and o(V ) := TI O(V ).

Finally, in the special case V = Rn, we write Mat(n) := L(Rn,Rn), GL(n) :=
GL(V ) and gl(n) := gl(V ).

Here are some examples.

Example 9.16. Here are some examples of Lie algebras of Lie groups.

(i) The Lie algebra of GL(n) is gl(n) ⇠= Mat(n).

(ii) The Lie algebra of O(n) is

o(n) :=
�

A 2 gl(n) | A+ AT = 0
 

.

This follows from Proposition 9.13 together with Proposition 5.15.

(iii) The Lie algebra of the T n is Rn. Indeed, for n = 1 this is clear, and for n > 1
this follows from Problem C.5. More generally, the Lie algebra of any abelian
Lie group is an abelian (and the converse holds if the Lie group is connected),
as you will prove on Problem Sheets E and G.

The key to proving that the Lie algebra of a Lie group is indeed a Lie algebra
is the following concept.

Definition 9.17. Let G be a Lie group. A vector field X 2 X(G) is said to be
left-invariant if (la)?(X) = X for all a 2 G. Equivalently, this means that

Dla(b)[X(b)] = X(ab), 8 a, b 2 G.

We denote by Xl(G) ⇢ X(G) the set of left-invariant vector fields.

It is immediate that Xl(G) is a linear subspace of X(G). In fact, much more is
true: the Lie bracket of two left-invariant vector fields is again left-invariant:
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Proposition 9.18. Let G be a Lie group and let X, Y 2 Xl(G). Then [X, Y ] also
belongs to Xl(G). Consequently Xl(G) is a Lie subalgebra of X(G).

Proof. Fix a 2 G. Then by Proposition 7.20 one has

(la)?[X, Y ] = [(la)?(X), (la)?(Y )] = [X, Y ].

Since a was arbitrary, the result follows.

The next result is the main step needed to show that g is a Lie algebra.

Theorem 9.19. Let G be a Lie group with Lie algebra g = TeG. The evaluation
map

evale : Xl(G)! g, evale(X) = X(e)

is a vector space isomorphism. Thus Xl(G) is a vector space of the same dimension
as G.

Proof. The map evale is clearly linear. If evale(X) = 0 then X is identically zero,
since for any a 2 G one has by left-invariance.

X(a) = Dla(e)[X(e)] = 0.

Thus we need only show that evale is surjective. For this, fix an arbitrary v 2 g =
TeG. We define a map Xv : G! TG by

Xv(a) := Dla(e)[v]. (9.2)

Then Xv certainly satisfies the section property (7.1), since Dla(e) : TeG ! TaG.
To show that Xv is a vector field, it su�ces to show that Xv(f) is smooth for any
f 2 C1(G). For this, choose a smooth curve � : (�", ") ! G such that �(0) = e
and �0(0) = v. Then following through the definitions, for any a 2 G one has

Xv(f)(a) = Xv(a)(f) = Dla(e)[v](f) = v(f � la) = (f � la � �)0(0).
The curve f � la � � is given by t 7! f(m(a, �(t))). Since f , � and m are all smooth,
this is smooth.

Next, we claim Xv is left-invariant. Indeed, if a, b 2 G then

Dla(b)[Xv(b)] = Dla(b) �Dlb(e)[v] = D(la � lb)(e)[v] = Dlab(e)[v] = Xv(ab).

Thus Xv 2 Xl(G). Since evale(Xv) = Xv(e) = v, this shows evale is surjective, and
thus completes the proof.

Corollary 9.20. Let G be a Lie group of dimension n. Then its Lie algebra is a
Lie algebra (!) of dimension n.

Proof. We need only define a Lie bracket on g. For this, using the notation from
Theorem 9.19, we simply set

[v, w] := evale([Xv, Xw]), v, w 2 g.

This works by Theorem 9.19 and Proposition 9.18.
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For the next result, let us recall from Problem D.5 that if ' : M ! N is a
smooth map between manifolds, and X 2 X(M) and Y 2 X(N) then we say that
X and Y are '-related if D'(x)[X(x)] = Y ('(x)) for all x 2M .

Proposition 9.21. Let ' : G ! H be a Lie group homomorphism between two
Lie groups. Then D'(e) : g! h is a Lie algebra homomorphism.

Proof. Let v 2 g and let Xv 2 Xl(G) denote the unique left-invariant vector field
such that Xv(e) = v. Let w := D'(e)[v] and let Yw 2 Xl(H) denote the unique left-
invariant vector field such that Yw(e) = w. We claim that Xv and Yw are '-related.
Indeed, by (9.1) one has

D'(a)[Xv(a)] = D'(a)�Dla(e)[v] = Dl'(a)(e)�D'(e)[v] = Dl'(a)(e)[w] = Yw('(a)).

Now by part (ii) of Problem D.5, if v1, v2 2 g and wi := D'(e)[vi] then [Xv1 , Xv2 ]
is '-related to [Yw1 , Yw2 ], and evaluating both sides at e gives

D'(e)[v1, v2] = [w1, w2].

This completes the proof.

Suppose now H is a Lie subgroup of G. Let ı : H ,! G denote the inclusion.
Then since Dı(e) : h = TeH ! g = TeG is injective, we can regard h as a linear
subspace of g. A priori however, this identification might not respect the Lie
brackets. Thanks to Proposition 9.21, however, it does:

Corollary 9.22. Let H ⇢ G be a Lie subgroup, and identify h with its image in
g. The Lie bracket on h is simply the restriction of the Lie bracket on g to h. Thus
h is a Lie subalgebra of g.

Proof. Apply Proposition 9.21 with ' the inclusion (note that the roles of H and
G have been reversed!)

Let us go back to GL(n). We now have potentially two di↵erent Lie brackets on
gl(n) ⇠= Mat(n): the one coming from Corollary 9.20, and the commutator bracket
(cf. part (ii) of Example 7.12). The next result (whose proof is deferred to Problem
Sheet E) tells us that these coincide.

Proposition 9.23. The Lie bracket on gl(n) is given by matrix commutation, i.e.

[A,B] = AB � BA, 8A,B 2 gl(n) ⇠= Mat(n).

Combining Corollary 9.22 and Proposition 9.23, we end up with:

Corollary 9.24. Let G be a matrix Lie group. Then the Lie bracket on g is given
by matrix commutation.

We conclude this lecture by stating the following result, which tells us that the
Lie group-Lie algebra correspondence goes both ways. The proof will be given in
Lecture 12 after we have proved the Frobenius Theorem in Lecture 11.

Theorem 9.25. Let G be a Lie group with Lie algebra g. If h is a Lie subalgebra
of g then there is a unique connected Lie subgroup H of G whose Lie algebra is h.
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LECTURE 10

The exponential map

In this lecture we define the exponential map of a Lie group G, which will be
a map exp: g ! G. The reason for the name will become apparent in Proposi-
tion 10.14—namely, the exponential map of a matrix Lie group is given by matrix
exponentiation.

Proposition 10.1. Let G be a Lie group and let X 2 Xl(G). Then X is complete.

Proof. By Theorem 8.5 there exists some " > 0 such that the integral curve �e(t)
of X with initial condition e is defined on (�", "). Now observe that la � �e is an
integral curve of X starting at a, and hence is equal to �a. Thus �a is also defined
on (�", "). The claim now follows from Lemma 8.18.

Definition 10.2. Let G be a Lie group with Lie algebra g. A one-parameter
subgroup of G is a Lie group homomorphism R! G.

Remark 10.3. In Definition 8.15 we defined a one-parameter subgroup of di↵eo-
morphisms. The two concepts are related, as we will discuss in Remark 10.24 at
the end of the lecture.

Proposition 10.4. Let G be a Lie group with Lie algebra g. Let v 2 g, and let
Xv 2 Xl(G) denote the unique left-invariant vector field with Xv(e) = v (defined as
in (9.2)). Let �v = �ve : R! G denote the integral curve of Xv with �v(0) = e (this
is defined on all of R by Proposition 10.1). Then �v is a one-parameter subgroup.
Moreover if � : R! G is any one-parameter subgroup then � = �v for some v 2 g.

Proof. To show that �v is a one-parameter subgroup we must show that

�v(s+ t) = �v(s)�v(t)

for all s, t 2 R, where on the right-hand side we use multiplication in G For this,
consider the curve

�(t) := �v(s)�1�v(s+ t).

Then �(0) = e, and by the chain rule

�0(t) = Dl�v(s)�1(�v(s+ t))[(�v)0(s+ t)]

= Dl�v(s)�1(�v(s+ t))[Xv(�
v(s+ t))]

(†)
= Xv

�

�v(s)�1�v(s+ t)
�

= Xv(�(t)).

where (†) used left-invariance. Thus by uniqueness of integral curves, one must
have �(t) = �v(t).
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Conversely, suppose � is a one-parameter subgroup. Let v := �0(0) 2 g. We
claim that �0(t) = Xv(�(t)). Since �(t+ s) = �(t)�(s) = l�(t)�(s), we have

�0(t) =
d

ds

�

�

�

s=0
�(t+ s)

=
d

ds

�

�

�

s=0
l�(t)�(s)

= Dl�(t)(�(0))[�
0(0)]

= Dl�(t)(e)[v]

= Xv(�(t)).

where the last line used the definition of Xv. Thus again by uniqueness of integral
curves we have � ⌘ �v. This completes the proof.

We can play a similar game by replacing v 2 g with a scalar multiple sv.

Lemma 10.5. For any s, t 2 R one has

�v(st) = �sv(t).

Proof. First note as Dla(e) is a linear map one has for any a 2 G that

Xsv(a) = Dla(e)[sv] = sDla(e)[v] = sXv(a).

Thus Xsv = sXv. Now by the chain rule

d

dt

�

�

�

t=t0
�v(st) = s(�v)0(st0) = sXv(�

v(st0)) = Xsv(�
v(st0)).

Thus t 7! �v(st) is an integral curve of Xsv with initial condition e, and hence by
uniqueness of integral curves once more, one has �v(st) ⌘ �sv(t).

Let us now write ✓vt : G! G for the flow ofXv. Thus by definition �v(t) = ✓vt (e).

Proposition 10.6. Let G be a Lie group with Lie algebra g. Let � : R! G be a
smooth curve with �(0) = e and �0(0) = v 2 g. The following are equivalent:

(i) � is a one-parameter subgroup,

(ii) �(t) = �v(t),

(iii) ✓vt = r�(t).

Proof. We already know that condition (i) is equivalent to condition (ii). To see
that (iii) implies (ii) observe that if (iii) holds then

�v(t) = ✓vt (e) = r�(t)e = �(t).

so that condition (ii) holds. Now assume that (ii) holds, and fix a 2 G. Then since
Xv is left-invariant, as in the proof of Proposition 10.1 a�v = la � �v is another
integral curve of Xv with initial condition a, and thus by uniqueness of integral
curves one last time we have r�(t)(a) = a�v(t) = ✓vt (a). Since a was arbitrary, (iii)
holds.
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Remark 10.7. In the following it will occasionally be useful for us also to consider
right-invariant vector fields. To this end we denote by X̃v the vector field on G
defined by

X̃v(a) = Dra(e)[v].

I will leave it to you to check that everything we proved for left-invariant vector
fields works in exactly the same way for right-invariant vector fields. In particular,
v 7! X̃v is a isomorphism from g to the space Xr(G) of right-invariant vector fields.

In particular, if �̃v is the integral curve of X̃v with initial condition e and ✓̃vt
denotes the flow of X̃v then in Proposition 10.6 we could replace condition (ii) with
�(t) = �̃v(t) and we could replace condition (iii) with ✓̃vt = l�(t).

We can now finally define the exponential map.

Definition 10.8. Let G be a Lie group with Lie algebra g. The exponential
map is the map

exp: g! G, v 7! �v(1).

The following result is an immediate corollary of Proposition 10.4, Lemma 10.5,
and Proposition 10.6.

Proposition 10.9 (Properties of the exponential map). The exponential map
exp: g! G satisfies:

(i) exp((s+ t)v) = exp(sv) exp(tv) for all v 2 g and s, t 2 R,

(ii) exp(�tv) = (exp(tv))�1 for all v 2 g and t 2 R,

(iii) The map t 7! exp(tv) is precisely the one-parameter subgroup �v(t).

(iv) The flow ✓vt of Xv is given by ✓vt = rexp(tv).

The following property of the exponential map is less obvious.

Theorem 10.10. The exponential map exp: g ! G is smooth. Moreover up to
the canonical isomorphism T0g

⇠= g, the derivative of the exponential map at 0 2 g

is the identity.

Proof. We prove the result in two steps.
1. Consider the map bX on the product manifold G⇥ g given by

bX(a, v) := (Xv(a), 0) 2 TaG⇥ Tvg
⇠= T(a,v)(G⇥ g),

where we are using the result from Problem C.5. We claim that bX is a vector
field. It clearly satisfies the section property 7.1, and thus we need only check
that bX is smooth. For this, suppose f 2 C1(G ⇥ g) is smooth. Given v 2 g, let
fv := f(·, v) : G ! R denote the smooth function given by regarding v as fixed.
Then

bX(f)(a, v) = Xv(fv)(a).

The vector field Xv depends linearly on v (and thus also smoothly). The function
fv depends smoothly on v as f is smooth as a function of both a and v. Thus
the expression (a, v) 7! Xv(fv)(a) depends smoothly on both a and v. Thus by
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Proposition 7.2, bX is indeed a vector field. Thus its flow b✓ of bX is also smooth. By
Proposition 10.6 this flow is given by

b✓(t, a, v) :=
�

a exp(tv), v
�

, (t, a, v) 2 R⇥G⇥ g.

In particular, b✓(1, e, ·) : g ! G ⇥ g is smooth. This is the map v 7! (exp(v), v).
Thus exp is smooth.

2. We now compute the derivative of exp. Our claim is that if J0 : g ! T0g is
the map from Problem B.3 then the following diagram commutes:

T0g g

g

D exp(0)

J0 id

So take v 2 g. Then J0(v) = �0(0) where �(t) = tv.

D exp(0)[J0(v)] = (exp ��)0(0) = d

dt

�

�

�

t=0
exp(tv) =

d

dt

�

�

�

t=0
�v(t) = v.

This completes the proof.

Corollary 10.11. The exponential map is a di↵eomorphism of some neighbour-
hood of the origin in g onto its image in G.

Proof. Since exp has maximal rank at 0 by Theorem 10.10, this follows immediately
from the Inverse Function Theorem.

Now let us investigate how the exponential map behaves with respect to Lie
group homomorphisms.

Proposition 10.12. Let G and H be Lie groups with Lie algebras g and h. Let
' : G! H be a Lie group homomorphism. Then the following diagram commutes:

g h

G H

D'(e)

exp exp

'

Proof. If � : R ! G is a homomorphism then since ' is a homomorphism so is
' � � : R ! H. Applying this with �(t) = exp(tv) shows that t 7! '(exp(tv)) is a
one-parameter subgroup of H. Since

(' � �)0(0) = d

dt

�

�

�

t=0
'(exp(tv)) = D'(e) �D exp(0)[v] = D'(e)[v],

where we used the chain rule and Theorem 10.10, we see by uniqueness of integral
curves that '(exp(tv)) = exp(tD'(e)[v]), which is what we wanted to prove.
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Applying Proposition 10.12 to an inclusion of a subgroup, as in Corollary 9.22
tells us:

Corollary 10.13. Let G be a Lie group with Lie algebra g and H ⇢ G a Lie
subgroup with Lie subalgebra h ⇢ g. Then the exponential map exp: h! H is the
restriction of exp: g! G to h.

We now identify the exponential map for G = GL(n).

Proposition 10.14. Let A 2 gl(n) = Mat(n). Then the matrix exponential

exp(A) :=
1
X

h=0

1

h!
Ah

converges and defines an element of GL(n). Moreover A 7! exp(A) is the exponen-
tial map of GL(n).

The proof is deferred to Problem Sheet F. As with Corollary 9.24, this also
allows us to characterise the matrix exponential for matrix Lie groups.

Corollary 10.15. Let G be a matrix Lie group with Lie algebra g. Then the
exponential map exp: g! G is given by matrix exponentiation: exp(A) = eA.

Proof. Apply Corollary 10.13 and Proposition 10.14.

Remark 10.16. Warning: Next semester we will define another map called the
“exponential map”. This is defined for any spray S on any manifold M (not neces-
sarily a Lie group G) (see Definition 43.2), and behaves similarly to the exponential
map defined here. In general there is no relation between the two exponential maps
(apart from sharing similar properties), and thus the terminology is a bit unfortu-
nate. However if G is a Lie group and m is a bi-invariant metric (meaning that
l?am = r?am = m for all a 2 G; then the exponential map corresponding to the
geodesic spray of the Levi-Civita connection (see Lecture 45) of m agrees with the
exponential map defined here.

We now look at a Lie group acting on manifold.

Definition 10.17. Let G be a Lie group and let M be a manifold. A smooth map
µ : G⇥M !M satisfying

µ(ab, x) = µ(a, µ(b, x)), µ(e, x) = x

for all a, b 2 G and x 2 M is called a left action of G on M . For fixed a 2 G,
this implies that x 7! µ(a, x) is a di↵eomorphism of M , which we denote by µa.

Remark 10.18. One can analogously define a right action of a Lie group on a
manifold. We will come back to this in Lecture 24 when we define principal bundles.

Definition 10.19. A linear action of a Lie group G on a vector space V is a
smooth1 left action µ : G ⇥ V ! V such that µa is a linear map for each a 2 G.
Thus one can think of a 7! µa as Lie group homomorphism G! GL(V ). In algebra
it is common to call this a representation of G.

1In fact, if µ is continuous then µ is automatically smooth—this can be proved using Problem
F.6.
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A point x 2M is called a fixed point if µ(a, x) = x for all a 2 G.

Proposition 10.20. Let µ : G ⇥M ! M be a left action of a Lie group G on a
manifold M . Assume that x is a fixed point of µ. Then the map

' : G! GL(TxM), '(a) := Dµa(x)

is a Lie group homomorphism (i.e. a representation).

Proof. Let us first check ' is a homomorphism. For this, observe

'(ab) = Dµab(x) = D(µa � µb)(x) = '(a)'(b).

The smoothness issue is a little more delicate. Suppose dimM = n, so that TxM ⇠=
Rn and GL(TxM) ⇠= GL(n). Under such an identification, '(a) is an n⇥ n matrix
with (i, j)th entry '(a)ij. We need to prove that a 7! '(a)ij is smooth for each (i, j).
If e1, . . . , en is our given basis of TxM with dual basis e1, . . . , en of T ⇤

xM , then the
(i, j)th entry of '(a) is ei('(a)[ej]). Thus we need to prove that a 7! ei('(a)[ej])
is smooth. In fact we will show something more general that does not require any
choice of basis: if v 2 TxM and p 2 T ⇤

xM are any two fixed elements then

a 7! p
�

Dµa(x)[v]
�

is smooth. More generally still, it su�ces to show that a 7! Dµa(x)[v] is smooth
as a map G! TM . But this is simply the composition

G! TG⇥ TM ⇠= T (G⇥M)! TM

where the first map is a 7! �

(a, 0), (x, v)
�

, the second map is the canonical identi-
fication coming2 from Problem C.5, and the last map is Dµ.

There are two main type of Lie group actions that we are interested in the next
few lectures. The first occurs when M = G and the action is given by conjugation.
The second occurs when the action of G on M is transitive. In this case M becomes
a homogeneous space and is necessarily di↵eomorphic to G/H for some Lie
subgroup H ⇢ G. We will study these in Lecture 12. In Lecture 24 we will come
back to Lie group actions in the context of principal bundles.

Definition 10.21. A Lie group G acts smoothly on itself on the left via inner
automorphisms:

µa : G! G, µa(b) = aba�1 = la(ra�1(b)) = ra�1(la(b)).

The identity e is a fixed point of this action, and hence by Proposition 10.20 we
obtain a Lie group homomorphism G! GL(g). This is called the adjoint repre-
sentation and is denoted by

Ad: G! GL(g).

We usually write Ad(a) = Ada : g! g.

2It follows from Problem C.5 that for any two manifolds M,N , the tangent bundles TM⇥TN
and T (M ⇥N) are canonically di↵eomorphic. Exercise: Why?
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We can then go one step further and di↵erentiate Ad. This requires us to look
at the Lie algebra of GL(g), which we write as

gl(g) = {all linear maps g! g} .

Definition 10.22. The derivative of the adjoint representation is denoted by

ad := D(Ad)(e) : g! gl(g).

We usually write ad(v) = adv : g! g.

Then Proposition 10.12 gives us a commutative diagram:

g gl(g)

G GL(g)

ad

exp exp

Ad

The map ad has a pleasing description. The proof of the next result is deferred to
Problem Sheet F.

Proposition 10.23. Let G be a Lie group with Lie algebra g. Then for v, w 2 g

one has adv(w) = [v, w].

We conclude this lecture by briefly discussing the most important infinite-
dimensional Lie group. This will also explain the discrepancy from Remark 7.9
on the sign of the Lie bracket. This material is strictly non-examinable.

(|) Remark 10.24. Let M be a compact manifold. The group Di↵(M) can itself
be given a (Fréchet) manifold structure, and thus Di↵(M) is an infinite-dimensional
Lie group. A Fréchet manifold is a weaker and less useful concept than that of a
Banach manifold (cf. Remark 1.31). The di↵erence is that a Fréchet manifold is
locally modelled on a Fréchet space rather than a Banach space. The reason they
are less useful is that the Inverse and Implicit Function Theorems are valid for
Banach manifolds, but not for Fréchet manifolds.

Sadly though we have no choice in the matter. Even if we wanted to work
with lower regularity, whilst the space of Cr-di↵eomorphisms Cr(M,M) does have
a Banach manifold structure, it is not a Lie group. Indeed, although right multipli-
cation is smooth as a map from Cr(M,M) to itself, left multiplication is not even
continuous! (Exercise: Why?)

In any case, if we give Di↵(M) its Fréchet smooth structure, then one can show
that

TidDi↵(M) = X(M),

(as one would expect, the tangent space to an infinite-dimensional manifold is itself
infinite-dimensional).

A one-parameter group t 7! ✓t (in the sense of Definition 8.15) simply as a curve
in the manifold Di↵(M). Thus its velocity vector d

dt

�

�

t=0
✓t should be a vector field
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on M , and indeed, one can check that that the formalism gives the infinitesimal
generator from in (8.6).

Proposition 10.1 and Proposition 10.4 can thus be thought of as justifying Def-
inition 8.15. The exponential map exp: X(M)! Di↵(M) assigns to a vector field
X the flow ✓Xt —this is well-defined by Corollary 8.20. The inner automorphism
action µ'( ) := ' �  � '�1 gives rise to the adjoint map

Ad' : X(M)! X(M)

which one easily sees is given by

Ad'(X) = '?(X).

But now the “bug” in the definition becomes apparent: if we di↵erentiate this to
get ad: X(M)! gl(X(M)), we find that

adX(Y ) = LYX = [Y,X], 8X, Y 2 X(M),

which contradicts (!) Proposition 10.23.
Of course there is no actual contradiction, since this is all a matter of conven-

tions. What we have learnt is that: if we want to think of X(M) as the Lie algebra
of the infinite-dimensional Lie group Di↵(M) then the Lie bracket “should” be
given by [X, Y ] = LYX.

This is the reason why some authors define the Lie bracket the other way round.
Nevertheless, as mentioned in Remark 7.9, I have chosen the “incorrect” sign con-
vention so as to be consistent with the vast majority of the literature.
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LECTURE 11

Distributions and the Frobenius Theorem

In this lecture we introduce distributions and prove the Frobenius Theorem. This
theorem will be used repeatedly throughout the course (and is the cornerstone of an
area of di↵erential geometry called foliation theory). We will see some immediate
applications next lecture to Lie groups. We begin with the following preliminary
result.

Proposition 11.1. Let M be a smooth manifold of dimension n and let W ⇢ M
be a non-empty open set. Suppose X1, . . . , Xk 2 X(W ) are vector fields such that

(i) There exists x0 2 W such that the vectors Xi(x0) are all linearly independent
in Tx0M (and thus necessarily k  n)

(ii) For all i, j one has [Xi, Xj] ⌘ 0.

Then there exists a neighbourhood U ⇢ W of x0 and a chart � : U ! O with local
coordinates xi = ui � � such that @

@xi

= Xi|U for all 1  i  k.

An immediate corollary is the following extension of Problem D.1.

Corollary 11.2. Let M be a smooth manifold of dimension n and let W ⇢M be
a non-empty open set. Let X 2 X(W ) and suppose X(x0) 6= 0 for some x0 2 W .
Then there exists a neighbourhood U ⇢ W of x0 and a chart � : U ! O such that
X|U = @

@x1 .

Proof of Proposition 11.1. We prove the result in two steps. The first step reduces
the problem to Rn. That this is possible should be clear from the statement, since
the assertion is visibly local.

1. Suppose � : U ! O is a chart on M . Let us write Di 2 X(O) for the vector
field given by1

Di(y)(f) := Dif(y) = Df(y)[ei], y 2 O, f 2 C1(O). (11.1)

Let xi = ui � � denote the local coordinates of �. Then by definition one has

�?

✓

@

@xi

◆

= Di.

Since �?
�

@
@xi

�

is uniquely determined by �, it is su�cient to find a chart � : U ! O
such that

�?(Xi|U) = Di, 8 1  i  k.

Will J. Merry, Di↵. Geometry I, Autumn 2018, ETH Zürich. Last modified: June 28, 2019.
1We often denote this vector field by @

@x

i

, but for obvious reasons that would be too confusing
in this proof. . .
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Now suppose ⌧ : U ! O is any chart on M about x0. Assume that ⌧(x0) = 0 2 O
for simplicity, and let Yi 2 X(O) denote the unique vector field such that

⌧?(Xi|U) = Yi.

Since the Xi are linearly independent at x0, the Yi are linearly independent at 0.
Thus there exists a linear isomorphism T : Rn ! Rn that maps J �1

0 (Yi(0)) to the
standard basis vector ei for each 1  i  k. Then if we replace ⌧ by T � ⌧ we may
assume that the vector fields Yi satisfy

Yi(0) = Di(0), 8 1  i  k. (11.2)

We emphasise this identity only holds at the point 0. We wish to find a local
di↵eomorphism h defined on a neighbourhood V ⇢ Rn about 0 such that h(0) = 0
and such that for all 1  i  k one has

h?(Yi) = Di on V.

Then setting � = h � ⌧ one has

�?(Xi) = h? � ⌧?(Xi) = h?(Yi) = Di.

2. It thus su�ces to find such an h. Note by Proposition 7.20 that the vector
fields Yi satisfy [Yi, Yj] ⌘ 0. Let ✓it denote the flow of Yi. For a su�ciently small
neighbourhood ⌦ of 0 in Rn there is a well defined smooth function

f : ⌦! Rn, f(y1, . . . , yn) =
�

✓1y1 � · · · � ✓kyk
�

(0, . . . , 0, yk+1, . . . , yn).

Let g 2 C1(⌦). We compute

Df(y)[D1(y)](g) = D1(y)(g � f)

= lim
t!0

�

g � ✓1y1+t � · · · � ✓kyk
�

(0, . . . , 0, yk+1, . . . , yn)� (g � f)(y)
t

= lim
t!0

g � ✓1t (f(y))� g(f(y))

t
= Y1(f(y))(g).

Thus f?(D1) = Y1. Since the Lie brackets vanish, using induction and Proposition
8.27 we have for any 1  i  k that

✓1y1 � · · · � ✓iyi � · · · � ✓kyk = ✓iyi � · · · � ✓1y1 � · · · � ✓kyk ,
and thus exactly the same argument shows that f?(Di) = Yi for all 1  i  k.
Moreover for k < i  n if we take y = 0 we have

Df(0)[Di(0)](g) = Di(0)(g � f)
= lim

t!0

(g � f)(0, . . . , 0, t, 0 . . . , 0)� (g � f)(0)
t

= lim
t!0

g(0, . . . , 0, t, 0 . . . , 0)� g(0)

t
= Di(0)(g).
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Since Yi(0) = Di(0) by (11.2), we have Df(0)[Di(0)] = Di(0) for all 1  i  n,
which tells us that Df(0) is the identity. Thus by the Inverse Function Theorem
there exists V ⇢ ⌦ containing 0 such that f |V is a di↵eomorphism. Set h := f |�1

V .
Then h?(Yi) = Di and the proof is complete.

We now introduce the notion of a distribution.

Definition 11.3. Let M be a smooth manifold of dimension n, and let k  n.
A distribution � on M of dimension k is a choice of k-dimensional linear
subspace �x ⇢ TxM for each x 2 M that varies smoothly with x in the following
sense: For each point x0 2 M there exists a neighbourhood U of x0 and k vector
fields X1, . . . , Xk 2 X(U) such that

�x = spanR{X1(x), . . . , Xk(x)}, 8 x 2 U.

The simplest example is k = 1.

Example 11.4. SupposeX is a nowhere-vanishing vector field onM (this means
that X(x) 6= 0 for all x 2 M). Then X defines a one-dimensional distribution by
setting �x := spanR{X(x)} for each x 2M .

Remark 11.5. Not every manifold admits such a vector field. Indeed, if n is even
then every vector field on Sn vanishes in at least one point. This is the so-called
“Hairy Ball Theorem”. See Problem L.8 for a proof of this fact.

In fact, the Hairy Ball Theorem is a purely topological result, and thus the
smoothness assumption is not necessary: if n is even then any continuous map
Sn ! TSn satisfying the section property 7.1 must vanish somewhere. This can be
proved by applying the Whitney Approximation Theorem 6.14 to the smooth case,
but it is also easy to show using some basic algebraic topology. I proved it about
half-way through Algebraic Topology I last year here.

Definition 11.6. Let� be a k-dimensional distribution onM , and suppose L ⇢M
is a k-dimensional immersed submanifold. We say that L is an integral manifold
of � if

Dı(x)[TxL] = �x, 8 x 2 L,

where ı : L ,!M is the inclusion.

Example 11.7. Let � be a one-dimensional distribution on M . We claim through
any point x 2M there exist (many) integral manifolds L of�. Indeed, by definition
of a distribution, given any x0 2 M there exists a neighbourhood W of x0 and a
vector field X 2 X(W ) such that �x = spanR{X(x)} for all x 2 W . Since in
particular X(x0) 6= 0, by Corollary 11.2 there exists a neighbourhood U ⇢ W of
x0 and a chart � : U ! O such that �(x0) = 0 and such that if xi are the local
coordinates of � then X|U = @

@x1 . Then the set

L :=
�

x 2 U | x2(x) = · · · = xn(x) = 0
 

is an embedded one-dimensional submanifold of M by Proposition 5.10. Moreover
the proof of Proposition 5.10 shows that Dı(x)[TxL] =

@
@x1

�

�

x
for all x 2 L, where

ı : L ,! M is the inclusion. Thus L is an integral manifold of � containing x0. In
fact, any connected integral manifold of � which is contained in U is of this form.
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For k > 1 however this is not necessarily the case—there exist distributions that
not admit integral manifolds through every point. Here is the standard example of
such a distribution.

Example 11.8. Consider the distribution on R3 spanned by the vector field

X :=
@

@x1
+ x2 @

@x3
, Y :=

@

@x2
.

See Figure 11.1. Suppose an integral manifold L existed through the origin. Then
(as the picture indicates), one would have T(0,0,0)L equal to the (x1, x2)-plane. But
now suppose � : S1 ! L is a closed curve in L that circles round the x3-axis.
Since � is tangent to �, one readily sees that the x3-component of � is an in-
creasing function. But then � endlessly spirals upwards, and hence cannot close
up—contradiction.

Figure 11.1: The standard contact distribution on R3. (Taken from Wikipedia.)

(|) Remark 11.9. Example 11.8 is the starting point for the field of geometry
called contact geometry. In general a contact distribution on a manifold is a
distribution which is “maximally” non-integrable. Such a manifold is necessarily
odd-dimensional. Contact manifolds are the odd-dimensional cousins of symplec-
tic manifolds. We won’t study either contact or symplectic manifolds in this
course. If you are interested (and you should be interested!) then I recommend
attending Jagna Wísniewska’s course next semester.

We now formulate a condition that implies integral manifolds always exist.

Definition 11.10. Let � be a distribution on M and let X be a vector field on
M . We say that X belongs to � if X(x) 2 �x for each x 2M .

Definition 11.11. A distribution � is said to be integrable if [X, Y ] belongs to
� whenever X and Y belong to �. Thus an integrable distribution is one for which
the space of vector fields belonging to it forms a Lie subalgebra of X(M).

Remark 11.12. Some authors use the word involutive instead of integrable to
describe a distribution satisfying the conditions of Definition 11.11.

The following condition is occasionally useful for checking integrability.
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Lemma 11.13. Let � be a distribution on M of dimension k. If for every x 2 M
there exists a neighbourhood U of x and k vector fields X1, . . . , Xk 2 X(U) such
that � is spanned by the Xi over U and such that [Xi, Xj](y) 2 �y for all y 2 U
and for all 1  i, j  k then � is integrable.

Proof. Let x 2 M and let X and Y be vector fields that belong to �. Choose
a neighbourhood U of x for which there exist vector fields spanning � as in the
hypotheses of the Lemma. Then on U we can write

X|U = ai Xi, Y |U = bi Xi

for some smooth2 functions ai, bi : U ! R. By Problem D.4 one has on U that

[X, Y ]|U = [aiXi, b
jXj] = aibj[Xi, Xj] + aiXi(b

j)Xj � bjXj(a
i)Xi.

Since [Xi, Xj](y) 2 �y for all y 2 U , this shows that [X, Y ] belongs to � for every
point in U . Since x was arbitrary, if follows that [X, Y ] belongs to �.

Every one-dimensional distribution is integrable. (Exercise: Why?) More gen-
erally, we have:

Proposition 11.14. Let � be a distribution on M . Assume that for every x 2M
there exists an integral manifold Lx of � with x 2 Lx. Then � is integrable.

Proof. LetX and Y belong to�. Fix an arbitrary point x 2M , and let ı : Lx ,!M
denote the inclusion. In the language of Problem D.6, X and Y are tangent to
Lx. By part (iii) of Problem D.6, [X, Y ] is also tangent to Lx, or equivalently,
[X, Y ](x) 2 Dıx(x)[TxLx] = �x. Since x was arbitrary, we conclude [X, Y ] belongs
to �.

A more di�cult result states that the converse holds.

Remark 11.15. In this lecture it will be convenient to be slightly more flexible in
the definition of a slice chart (cf. Definition 5.9). Let Ir := (�1, 1)r denote the
r-dimensional open unit cube, and write an element of Ir as a tuple c = (c1, . . . , cr).
Suppose Mn is a manifold and � : U ! In is a chart with corresponding local
coordinates xi. A slice in M of dimension k is an embedded submanifold of the
form

L(c) :=
�

x 2 U | xk+1(x) = c1, . . . , xn(x) = cn�k
 

, c = (c1, . . . , cn�k) 2 In�k.

Thus the di↵erence (compared to Definition 5.9 and Proposition 5.10) is that instead
of requiring the last n� k coordinates to all be zero, instead we are requiring them
to be some fixed element in In�k. Of course, this makes no di↵erence in the grand
scheme of things.

Theorem 11.16 (The Local Frobenius Theorem). Let M be a smooth manifold of
dimension n, and let � be an integrable k-dimensional distribution on M . Then

2If you are worried why these functions are smooth, see Remark 16.9.
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for every x 2 M there exists a chart � : U ! In with �(x0) = 0 and such that for
any c 2 In�k, the slice

L(c) :=
�

x 2 U | xk+1(x) = c1, . . . , xn(x) = cn�k
 

is an integral manifold of �. Moreover every connected integral manifold of �
contained in U is of this form.

Proof. Once again, the statement is purely local, so by arguing as in Step 1 of
Proposition 11.1, we may assume that M = Rn, x0 = 0, and �0 is spanned by the
vector fields Di(0) for i = 1, . . . , k. (Exercise: Fill in these details!)

As in the proof of the Implicit Function Theorem 5.13, Let ⇡1 and ⇡2 denote
the two projections Rn ! Rk and Rn�k respectively:

⇡1(x
1, . . . , xn) = (x1, . . . , xk), ⇡2(x

1, . . . , xn) = (xk+1, . . . , xn).

Let Px := D⇡1(x)|�
x

: �x ! TxRk. Then x 7! Px is a smooth family of linear maps
(whose domain also ranges smoothly with x). By assumption P0 is an isomorphism.
Since being invertible is an open condition3, it follows that there is a neighbourhood
W of 0 in Rn such that Px is an isomorphism for all x 2 W . Thus there are unique
vector fields Xi 2 X(W ) belonging to � that are ⇡1-related to Di for i = 1, . . . , k.
By part (ii) of Problem D.5 one has that [Xi, Xj] is ⇡1-related to [Di, Dj]. By
Proposition 7.10, [Di, Dj] = 0, and thus [Xi, Xj] is ⇡1-related to the zero vector
field. Now since � is integrable, [Xi, Xj] belongs to �, and since D⇡1(x)|�

x

= Px

is injective for x 2 W , it follows that [Xi, Xj] = 0. (This is the only place where
we use integrability of �!)

Thus by Proposition 11.1 there is a chart � : U ! In defined on U ⇢ W such
that Xi|U = @

@xi

. Now let ' := ⇡2 � � : U ! In�k. Then ' is a smooth surjective
submersion, and thus by the Implicit Function Theorem 5.13, for any c 2 In�k, the
set L(c) := '�1(c) is an embedded submanifold of M , and any x 2 U belongs to
a unique L(c) (namely, c = '(x)). Moreover by Proposition 5.15, if we denote by
ı : L(c) ,! U the inclusion then for any x 2 L(c) one has

Dı(x)[TxL(c)] = kerD'(x)

=
�

v 2 TxU | v(xi) = 0, 8 i = k + 1, . . . , n
 

= spanR

⇢

@

@xi

�

�

�

x
| 1  i  k

�

= �x.

Finally, if L is any integral manifold of � contained in U then for any x 2 L and
v 2 TxL, one has Dı(x)[v](xi) = 0 for i = k + 1, . . . , n. Thus D(xi � ı)(x) is the
zero map for each i = k+1, . . . , n, and hence x 7! xi(ı(x)) is locally constant. If L
is connected, then it is constant, and thus L = L(c) is a slice as described above.
This completes the proof.

We now globalise Theorem 11.16. Note that so far all our integral manifolds have
actually been embedded, despite the fact that the definition only required them to

3This is a very special case of the Inverse Function Theorem 5.1 for linear maps—alternatively
one could simply use that x 7! detP

x

is a continuous function.
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be immersed. The reason for this is that “glue” together the integral manifolds
(this will be made precise below) we typically lose the embedded property. Let us
formalise this with a definition.

Definition 11.17. LetM be a smooth manifold of dimension n. A k-dimensional
foliation F of M is a partition of M into k-dimensional connected immersed
submanifolds, called the leaves of the foliation, such that:

(i) The collection of tangent spaces to the leaves defines a distribution � on M .

(ii) Any connected integral manifold of � is contained in some leaf of F .

Each leaf L of F is called a maximal integral manifold of �. One says that the
distribution � is induced by F .

Here is the global version of Theorem 11.16.

Theorem 11.18 (The Global Frobenius Theorem). Let � be an integrable distri-
bution on M . Then � is induced by a foliation.

The proof is rather tricky, and we will be a little sketchy. This is non-examinable.

(|) Proof. Let � be an integrable distribution. By Theorem 11.16 for any point
x0 2M there is a chart � : U ! In such that the slices

L(c) :=
�

x 2 U | xk+1(x) = c1, . . . , xn(x) = cn�k
 

(11.3)

for c 2 In�k are integral manifolds of �. Since M is Lindelöf (cf. part (ii) of
Remark 1.9), there is a countable set {xh}1h=1 of points such that the corresponding
charts �h : Uh ! In about xh cover M . Now let L denote the collection of all slices
L(c) of the form (11.3) for the charts �h. Define an equivalence relation on L by
declaring that L ⇠ L0 if there exists a finite sequence L = L0, L1, . . . , Lr = L0 such
that Li \ Li+1 6= ; for i = 0, . . . , r � 1. Each equivalence class can only contain
countably many slices L 2 L, since if L ⇢ Uh is a slice then L can intersect another
Uj in at most countably many components (since Uj is connected and L has at
most countably many components). Now consider the union of all slices in a given
equivalence class. This is a connected immersed integral manifold of �. Moreover
any two such unions are either equal or disjoint, and by definition any connected
integral manifold of � is contained in such a union.

Although the leaves of a foliation are typically not embedded submanifolds, they
do retain some properties of embedded submanifolds. Here is one:

Definition 11.19. Let L ⇢ M be an immersed submanifold. We say that L
is weakly embedded if for every smooth manifold N and every smooth map
' : N !M such that '(N) ⇢ L, the map ' is also smooth as a map N ! L.

Embedded submanifolds are automatically weakly embedded (we used this in
the proof of Proposition 9.10).

Proposition 11.20. Let � be an integrable distribution on a smooth manifold M .
Every integral manifold L of � is a weakly embedded submanifold of M .
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Proof. Assume that ' : N !M is a smooth map such that '(N) ⇢ L. Let y0 2 N
and let x0 := '(y0) 2 L. Choose a chart � : U ! In with �(x0) = 0 such that all
connected integral submanifolds of � contained in U are of the form

L(c) =
�

x 2 U | xk+1(x) = c1, . . . , xn(x) = cn�k
 

for c 2 In�k. Thus there are countably many ch 2 In�k such that L\U is contained
in the union of the slices L(ch). Choose a connected neighbourhood V ⇢ N of y0
and a chart ⌧ defined on V . Let f := � � ' � ⌧�1. Then if f i = ui � f the last
(n� k) functions (fk+1, . . . , fn) can only take values in the countable set {ch}1h=1,
and thus they are locally constant. Since V is connected, it follows they are actually
constant. Thus '(V ) is contained in a single slice L(ch0). Since L \ L(ch0) is an
open subset of L that is embedded in M , it follows that '|V is a smooth map from
V to L \ L(ch0), and thus also the composition '|V : V ! L \ L(ch0) ,! L. Since
y0 was an arbitrary point of N the claim follows.
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LECTURE 12

Homogeneous spaces

In this lecture we study homogeneous spaces, which are manifolds that admit a
transitive Lie group action of di↵eomorphisms. We begin however by proving The-
orem 9.25 from Lecture 9. This is our first application of the Frobenius Theorem.

Theorem 12.1. Let G be a Lie group with Lie algebra g. If h is a Lie subalgebra
of g then there is a unique connected Lie subgroup H of G whose Lie algebra is h.

Proof. Given a 2 G, let�a denote the subspace of TaG given by the set of allXv(a),
where Xv 2 Xl(G) is a left-invariant vector field such that v = Xv(e) 2 h ⇢ g. Thus

�a := {Dla(e)[v] | v 2 h} .
To see that � really is a distribution, note that if {vi} is a basis of h then the
left-invariant vector fields {Xv

i

(a)} span �a at every point a 2 G. Moreover since
h is a Lie subalgebra, [vi, vj] 2 h for each i, j and thus [Xv

i

, Xv
j

] = X[v
i

,v
j

] belongs
to � for every i, j. Thus by Lemma 11.13 it follows that � is integrable. Let H
be the leaf of the foliation induced by � containing e. For any b 2 G be have
Dlb(a)[�a] = �ba by construction, and hence Dlb leaves the distribution invariant.
Thus lb permutes the leaves of the foliation, i.e. it maps the leaf passing through
a di↵eomorphically onto the leaf passing through ba. In particular, if b 2 H then
lb�1 maps H to the leaf containing e, which is just H again. Thus lb�1(H) = H,
which proves that H is a subgroup. It remains to prove that the multiplication
map m : H ⇥H ! H is smooth. We know that the multiplication m : H ⇥H ! G
is smooth and m(H ⇥ H) ⇢ H. Thus by Proposition 11.20 from the last lecture,
m is also smooth as a map H ⇥H ! H. This complete the proof.

Corollary 12.2. Every Lie subgroup H of a Lie group G is weakly embedded.

Proof. Immediate from the proof of Theorem 12.1 and Proposition 11.20.

Corollary 12.3. Let G be a Lie group with Lie algebra g, and let H ⇢ G be a
Lie subgroup with Lie subalgebra h ⇢ g. Let v 2 g. Then

v 2 h , exp(tv) 2 H, 8 t 2 R.

Proof. If v 2 h then exp(tv) 2 H for all t 2 R by Corollary 10.13. Conversely if
�(t) := exp(tv) 2 H for all t 2 R, then � : R ! G is a smooth map with image
in H. Since H is weakly embedded by Corollary 12.2, � is smooth as a map from
R into H. Thus � is a 1-parameter subgroup of H, and so in particular v = �0(0)
belongs to h by Proposition 10.4.

Note that the foliation of G defined in the proof of Theorem 12.1 has leaves the
left cosets of H in G, i.e. the leaf through a is the coset aH = la(H). We will
exploit this fact again in the proof of the next theorem.
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Theorem 12.4. Let G be a Lie group and let H ⇢ G be a closed subgroup. Let
G/H denote the set of left cosets of H. Then G/H is a topological manifold with
the quotient topology of dimension dim(G/H) = dimG � dimH. Moreover there
exists a smooth structure on G/H such that the projection map ⇡ : G! G/H is a
smooth submersion.

Note that dimH makes sense, for H is automatically a Lie group in its own
right (and thus in particular a manifold), thanks to the Closed Subgroup Theorem
9.11. Note also that Theorem 12.4 is not asserting that G/H is a Lie group. Indeed,
G/H is not even a group! If H is a normal subgroup however then G/H is a group,
and we will see in Proposition 12.8 that in this case G/H is also a Lie group. The
proof of Theorem 12.4 is non-examinable, since it is a bit technical.

(|) Proof. We prove the result in four steps.
1. Let us first show that G/H is a Hausdor↵ paracompact space with at most

countably many components. These are all standard point-set topological argu-
ments; we will cover the Hausdor↵ one in detail and leave the others as exercises.

Observe that the quotient map ⇡ is an open map for the quotient topology, as
if U ⇢ G is open then

⇡�1(⇡(U)) =
[

b2H
rb(U)

is open in G. To see that G/H is Hausdor↵, first consider the set C ⇢ G ⇥ G
of all pairs (a, b) with the property that there exists a1 2 H such that a = a1b.
Then C is closed in G⇥G as H is closed in G (it is the preimage of H under the
continuous map (a, b) 7! b�1a). Now suppose ⇡(a) 6= ⇡(b) as elements of G/H.
This means that (a, b) 62 C. Since C is closed, there exist neighbourhoods U and
V of a and b respectively such that (U ⇥ V ) \ C = ;. Then ⇡(U) and ⇡(V ) are
open neighbourhoods (since ⇡ is an open map) of ⇡(a) and ⇡(b) in G/H such that
⇡(U) \ ⇡(V ) = ;. Thus G/H is Hausdor↵1.

Similarly the fact that G/H is paracompact is again pure point-set topology,
and I will omit the details2. Finally the claim that G/H has at most countably
many components is clear, since the connected components of G/H are the images
of the connected components of G under H (this is true for all quotient spaces).

2. We now start the construction of a smooth atlas on G/H. In this step we
find a set V ⇢ G containing e such that ⇡ : V ! ⇡(V ) ⇢ G/H is bijective. For
this, let ⇡1 and ⇡2 denote (as usual) the two projections Rn ! Rk and Rn ! Rn�k

respectively:

⇡1(x
1, . . . , xn) = (x1, . . . , xk), ⇡2(x

1, . . . , xn) = (xk+1, . . . , xn).

As in the proof of Theorem 12.1, we apply the Frobenius Theorem to the distribu-
tion � given by �a := Dla(e)[TeH]. As mentioned before the statement of Theorem

1This is a special case of the following more general point-set topological fact: if X is any
Hausdor↵ space and ⇠ is an equivalence relation on X ⇥X such that ⇡ : X ! X/ ⇠ is an open
map then ⇠ is closed in X ⇥X if and only if X/ ⇠ is Hausdor↵.

2A stronger result, which is much harder to prove and is due to Antonyan, states that if X is
paracompact Hausdor↵ topological group and Y ⇢ X a locally compact subgroup then the orbit
space X/Y is paracompact (which in particular applies to our situation).
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12.4, the corresponding foliation of G has leaves the left cosets of the connected
component of H containing e in G. Theorem 11.16 gives us a chart � : U ! In
about e, where �(e) = 0, such that each slice

�

a 2 U | xk+1(a) = c1, . . . xn(a) = cn�k
 

for c = (c1, . . . , cn�k) 2 In�k is contained in a left coset of H (here xi = ui � � are
the local coordinates of � as usual). Let L denote the slice containing e itself (i.e.
where ci = 0 for each i). Note L is connected by Theorem 11.16.

Since H is an embedded submanifold, there exists a connected neighbourhood
U1 ⇢ U of e such that U1 \ L = U1 \H. Choose a smaller neighbourhood U2 ⇢ U1

of e such that U2 = U�1
2 and that U2 · U2 ⇢ U1 (i.e. a 2 U2 if and only if a�1 2 U2,

and a, b 2 U2 implies ab 2 U1). Now let

V :=
�

a 2 U2 | ⇡1(�(a)) = 0 2 Rk
 

. (12.1)

We claim that ⇡ is injective on V . Indeed, if a, b 2 V and ⇡(a) = ⇡(b) then
a�1b 2 U1 \H = U1 \ L, and thus b 2 la(U1 \ L). Now la(U1 \ L) is a connected
integral manifold of � which lies in U , and hence by Theorem 11.16 it lies in a
single slice. Since this set also contains a, we have that a and b lie in the same slice.
Thus �(a) = �(b). Since � is a di↵eomorphism (and thus in particular bijective),
we have a = b.

3. We are now ready to construct our smooth atlas, and thus prove that G/H
is a smooth manifold. With V as in (12.1), the map ⇡|V is open and bijective, and
hence is a homeomorphism. Set W := ⇡(V ) and define

⌧ := ⇡2 � � � ⇡|�1
V : W ! ⌧(W ) ⇢ Rn�k.

Then ⌧ is also a homeomorphism, and it is our desired chart on G/H around ⇡(e).
We now use left translations to produce charts around any other point ⇡(a): let
l̃a : G/H ! G/H denote the homeomorphism

l̃a(⇡(b)) := ⇡(ab).

Then ⌧a := ⌧ � l̃a�1 : l̃a(W )! ⌧(W ) is a homeomorphism about ⇡(a). The transition
function ⌧a � ⌧�1

b is given by

⌧ � l̃a�1 � �⌧ � l̃b�1

��1
= ⇡2 � �|V � la�1b � (⇡2 � �|V )�1,

which is the composition of smooth maps and hence is smooth.
4. It remains to show that ⇡ is a smooth map. Keeping with the notation from

above, observe that if a 2 G then � � la�1 is a chart of G about a and ⌧ � l̃a�1 is a
chart on G/H about ⇡(a), and

�

⌧ � l̃a�1

� � ⇡ � �� � la�1

��1
= ⌧ � ⇡ � ��1 = ⇡2,

which is smooth. This completes the proof.

In fact, the proof given showed slightly more.
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Corollary 12.5. Let G be a Lie group and let H ⇢ G be a closed subgroup.
Endow G/H with the smooth structure constructed in Theorem 12.4. Then for
any a 2 G there exists a neighbourhood Wa of ⇡(a) and a smooth map  : Wa ! G
such that ⇡ �  = id.

(|) Proof. Using the notation from the proof of Theorem 12.4, set Wa = l̃a(W )
and set  := ⇡|�1

V � l̃a�1 .

We call the map  a local smooth section of ⇡.

Corollary 12.6. Let G be a Lie group and let H ⇢ G be a closed subgroup. The
topological manifold G/H of left cosets has a unique smooth structure for which
⇡ : G! G/H is a smooth map that admits local smooth sections.

Proof. Suppose (G/H)0 is the same topological manifold, but endowed with a dif-
ferent smooth atlas for which ⇡ is smooth and admits local smooth structures. We
claim that id : G/H ! (G/H)0 is a di↵eomorphism:

G

G/H (G/H)0

⇡ ⇡

id

Indeed, locally the identity map and its inverse can be expressed as the composition
of local smooth sections into G followed by ⇡. Thus the smooth atlases on G/H
and (G/H)0 both define the same smooth structure.

This allows us to make the following definition.

Definition 12.7. A homogeneous space is a smooth manifold M which is dif-
feomorphic to a smooth manifold of the form G/H, where G is a Lie group, H is a
closed subgroup, and G/H is given the smooth structure from Theorem 12.4.

Proposition 12.8. Let G be a Lie group and let H be a closed normal subgroup.
Then the homogeneous space G/H with its natural group structure is a Lie group.

Proof. The multiplication on G/H is given by

m(⇡(a), ⇡(b)) := ⇡(ab).

To check this is smooth, fix a, b 2 G and let  a and  b be smooth local sections of
G/H near a and b respectively. Then near the point (⇡(a), ⇡(b)) 2 G/H ⇥ G/H,
one has

m = ⇡ �mG � ( a, b),

where mG : G ⇥ G ! G is the multiplication on G. Thus near (⇡(a), ⇡(b)), m is
the composition of smooth maps, and hence is smooth. Since ⇡(a) and ⇡(b) were
arbitrary, m is smooth everywhere. A similar argument works for the inversion
map.
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Many manifolds are homogeneous spaces (we will shortly see some examples).
The key tool used to prove a given manifold is a homogeneous space is Theorem
12.11 below, which needs a few preliminary definitions.

Definition 12.9. Let µ : G ⇥ M ! M be a left action of a Lie group G on a
smooth manifold M , as in the sense of Definition 10.17. The action µ is said to be
transitive if for any two points x, y 2M there exists a 2 G such that µa(x) = y.

Suppose now µ : G⇥M !M is a left action. Fix a point x 2M , and set

H := {a 2 G | µa(x) = x} .

Then H is a closed subgroup of G, and the action of G restricted to H gives an
action of H on M for which x is a fixed point. We call H the isotropy group at
x.

Definition 12.10. Since x is a fixed point for the action of H, by Proposition
10.20 there is a Lie group homomorphism (a representation) H ! GL(TxM). We
call the image of H inside GL(TxM) the linear isotropy group at x. We will
come back to this in Lecture 25.

Theorem 12.11. Let µ : G ⇥M ! M be a transitive left action of a Lie group
G on a smooth manifold M . Fix x 2 M and let H denote the isotropy group at
x. Let ⇡ : G ! G/H denote the quotient map, and endow G/H with the smooth
structure from Theorem 12.4. Define

' : G/H !M, '(⇡(a)) := µa(x).

Then ' is a di↵eomorphism, and hence M is a homogeneous space.

Proof. First observe that ' is well defined, since if b 2 H then µab(x) = µa(µb(x)) =
µa(x). Next note that ' is surjective as µ is a transitive action. Moreover ' is
injective since if '(⇡(a)) = '(⇡(b)) then µa�1b(x) = x, whence a�1b 2 H and thus
⇡(a) = ⇡(b).

It remains to show that ' is a di↵eomorphism. By the Inverse Function Theorem
5.2, it su�ces to show that ' is smooth and that D' has maximal rank at every
point of G/H. To show that ' is smooth in a neighbourhood of a point ⇡(a), it
su�ces to show that ' � ⇡ is smooth near a. Indeed, if ' � ⇡ is smooth at a and
 : G/H ! G is a smooth local section of ⇡ at ⇡(a) then ' = (' � ⇡) �  is the
composition of smooth maps. Now observe that '�⇡ = µ�ıx, where ıx : G! G⇥M
is the smooth map a 7! (a, x), and thus ' � ⇡ is the composition of smooth maps
and hence is smooth.

Since ⇡ is a submersion, by Proposition 5.15 we have kerD⇡(a) = Ta(la(H)),
where we are suppressing the inclusion map la(H) ,! G, and thus to prove that '
has maximal rank at ⇡(a) it su�ces to show that

kerD(' � ⇡)(a) = kerD⇡(a).

Since
' � ⇡ = µa � (' � ⇡) � la�1 (12.2)
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for any a 2 G, and µa and la�1 are di↵eomorphisms, it su�ces to work at e. Let g
denote the Lie algebra of G and h denote the Lie algebra of H. We need to prove
that

kerD(' � ⇡)(e) = kerD⇡(e) = h. (12.3)

It is obvious that h ⇢ kerD('�⇡)(e), so we must verify the opposite inclusion. Let
v 2 g, and suppose

v 2 kerD(' � ⇡)(e). (12.4)

To show that v 2 h, it su�ces by Corollary 12.3 to show that exp(tv) 2 H for
all t 2 R. Let �(t) := '(⇡(exp(tv)). We will show that �0(t) ⌘ 0, which implies
that � is the constant curve �(t) ⌘ x, and then by definition of H it follows that
exp(tv) 2 H for all t. We now compute using (12.2) with a = exp(tv) that

�0(t) = Dµexp(tv) �D(' � ⇡) �Dlexp(�tv)(exp(tv))



d

dt

�

�

�

t
exp(tv)

�

| {z }

=v by Proposition 10.9

= Dµexp(tv) �D(' � ⇡)(e)[v]
| {z }

=0 by (12.4)

= 0.

This completes the proof.

Thus we can equivalently define a homogeneous space as a smooth manifold
that admits a transitive Lie group action. We emphasise a given smooth manifold
can sometimes be made into a homogeneous space in multiple ways.

Example 12.12. The Lie group GL(n) acts on Rn. This in itself is not very
interesting, but observe the action of O(n) ⇢ GL(n) restricts to a transitive action
on Sn�1 ⇢ Rn by elementary linear algebra. Moreover the isotropy subgroup of
en = (0, 0, . . . , 0, 1) 2 Sn�1 is given by those matrices A 2 O(n) of the form

A =

0

B

B

B

@

0

@ B

1

A

0
...
0

0 · · · 0 1

1

C

C

C

A

where B 2 O(n� 1). We conclude that Sn�1 is the homogeneous space

Sn�1 ⇠= O(n)
�

O(n� 1).

The same argument works to show that

Sn�1 ⇠= SO(n)
�

SO(n� 1).

Example 12.13. Let U(n) ⇢ GL(n;C) denote the unitary group and SU(n) ⇢ U(n)
the special unitary group. If we regard S2n�1 as the unit sphere in Cn then a similar
argument shows that

S2n�1 ⇠= U(n)
�

U(n� 1) and S2n�1 ⇠= SU(n)
�

SU(n� 1).

For n = 1, SU(1) is just the 1 ⇥ 1 identity matrix. Thus S3 is di↵eomorphic to
SU(2), and hence S3 can be given a Lie group structure.
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(|) Remark 12.14. Not all smooth manifolds admit the structure of a Lie group.
For instance, Sn admits a Lie group structure only for n = 0, 1 or n = 3. For n = 0
this is trivial. For n = 1, this was part (vi) from Example 9.4 above, and we just
did the case of S3 in Example 12.13. The proof that no other sphere admits a Lie
group structure is quite tricky, but roughly speaking proceeds as follows: suppose
Sn admits a Lie group structure for n > 1. Since Sn is simply connected for n > 1,
the Lie group structure is necessarily non-abelian. Next, one can show3 that any
compact non-abelian Lie group G carries a natural closed but not exact bi-invariant
di↵erential 3-form. Thus H3(G;R) 6= 0. For Sn this forces n = 3.

3This will be an exercise on one of the Problem Sheets next semester.
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LECTURE 13

Fibre bundles and vector bundles

In this lecture we define the general notion of a fibre bundle. We then quickly
specialise to the case of vector bundle. In Lecture 24 we will focus on another
type of fibre bundle called a principal bundle.

Definition 13.1. Let E,M and F be smooth manifolds, and suppose ⇡ : E !M
is a smooth surjective map. We say that ⇡ : E ! M is a fibre bundle over M
with fibre F if for every point x 2M there exists a neighbourhood U of x and a
smooth map

↵ : ⇡�1(U)! F

such that
(⇡,↵) : ⇡�1(U)! U ⇥ F

is a di↵eomorphism. We call ↵ : ⇡�1(U)! F a bundle chart. We call E the total
space of the bundle, M the base space, and F the fibre.

We should really say “smooth fibre bundle”, but since we won’t ever have cause
in this course to look at non-smooth fibre bundles, we omit the adjective smooth.
Note that unlike the definition of a smooth atlas on a manifold, there are no com-
patibility conditions on the bundle charts ↵. This is because the spaces E,M and
F are all already manifolds. In particular if ↵ : ⇡�1(U) ! F and � : ⇡�1(V ) ! F
are two bundle charts with U \ V 6= ; then ↵|⇡�1(U\V ) and �|⇡�1(U\V ) are two
more bundle charts. Any collection of bundle charts with the property that the
corresponding sets U ⇢M form an open cover of M is called a bundle atlas.

Example 13.2. The simplest example of a fibre bundle is the product manifold
E = M ⇥ F with ⇡ : M ⇥ F ! M the first projection. In this case we can take
U to be all of M and define ↵ : M ⇥ F ! F to be the second projection. More
generally, any fibre bundle E which is globally di↵eomorphic to M ⇥ F is called a
trivial bundle.

We will usually abuse notation and write just E for the fibre bundle over M (or
sometimes just ⇡), rather than ⇡ : E ! M . A typical point in E will be written
with the letter p or q (in contrast to points in M that are written with x and y).

Definition 13.3. Given a fibre bundle E over M with fibre F , we set Ex := ⇡�1(x)
for x 2M and call Ex the fibre over x.

Each fibre Ex is di↵eomorphic to F , as the next lemma shows.

Lemma 13.4. Let ⇡ : E ! M be a fibre bundle with fibre F . Then ⇡ is a sub-
mersion, and moreover each fibre Ex is an embedded submanifold of E which is
di↵eomorphic to F .

Will J. Merry, Di↵. Geometry I, Autumn 2018, ETH Zürich. Last modified: June 28, 2019.
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Proof. Let ↵ : ⇡�1(U) ! F be a bundle chart, and let pr1 : U ⇥ F ! U and
pr2 : U ⇥ F ! F denote the two projections. Then Dpr1(x, z) maps T(x,z)(M ⇥ F )
onto TxM , and hence pr1 is a submersion. Since (⇡,↵) is a di↵eomorphism, its
di↵erential at a point p is a bijection TpE ! T(⇡(p),↵(p))(M ⇥ F ). Then D⇡(p) is
the composition

D⇡(p) = D pr1(⇡(p),↵(p)) �D(⇡,↵)(p) : TpE ! T⇡(p)M

and hence is surjective. Thus ⇡ is submersion. The Implicit Function Theorem 5.13
then tells us that each fibre Ex is naturally an embedded submanifold of E. Finally,
for each x 2 U , (⇡,↵) maps Ex di↵eomorphically onto the embedded submanifold
{x}⇥ F of U ⇥ F , and pr2 is a di↵eomorphism from this onto F .

Definition 13.5. Let M ⇢ N be an embedded submanifold. Suppose ⇡ : E !M
is a fibre bundle with fibre F and ⇡1 : E1 ! N is another fibre bundle with fibre
F1. Assume that F ⇢ F1 and E ⇢ E1 are also both embedded submanifolds. We
say that E is a subbundle of E1 if for every bundle chart ↵ : ⇡�1(U) ! F of E
and any x 2 U there exists a bundle chart � : ⇡�1

1 (V ) ! F1, where V is an open
neighbourhood of x in N such that

�

⇡,↵|⇡�1(U\V )

�

= (⇡1, �)|⇡�1
1 (U\V ).

In short, this means that the bundle chart � on E1 restricts to a bundle chart of E.
Not all bundle charts have this property if F 6= F1, as there are di↵eomorphisms of
F1 that do not map F to itself.

Example 13.6. If E is any fibre bundle and ↵ : ⇡�1(U) ! F is a bundle chart,
then we can consider ⇡|⇡�1(U) : ⇡�1(U)! U as a fibre bundle in its own right. This
fibre bundle is trivial and is a subbundle of E. As a result we often say that E is
trivial over U if there exists a bundle chart with domain ⇡�1(U).

Suppose now that ↵ : ⇡�1(U) ! F and � : ⇡�1(V ) ! F are two bundle charts
with U \V 6= ;. Then ↵|⇡�1(U\V ) and �|⇡�1(U\V ) are two more bundle charts. Since
for each x 2 U \ V , both ↵ and � map the fibre Ex di↵eomorphically onto F , we
have a well defined map:

⇢↵� : U \ V ! Di↵(F ), ⇢↵�(x) := ↵|E
x

� �|�1
E

x

.

We usually call ⇢↵� the transition function1 from the bundle chart ↵ to the
bundle chart �, and refer to the collection {⇢↵�} of all transitions functions arising
from the bundle atlas as the transition functions of the bundle atlas. Thus if
p 2 ⇡�1(U \ V ) one has

↵(p) = ⇢↵�(⇡(p))(�(p)).

If � : ⇡�1(W )! F is another bundle chart with U \ V \W 6= ; then the following
cocycle condition is automatically satisfied:

⇢↵�(x) = ⇢↵�(x) � ⇢��(x), 8 x 2 U \ V \W. (13.1)

The composition on the right-hand side occurs in Di↵(F ). The meaning of the
word “cocycle” will be explained in Remark 14.12 next lecture. In particular,

⇢↵�(x)
�1 = ⇢�↵(x). (13.2)

1Warning : This is a slightly di↵erent meaning of the word “transition function” than was
used in Definition 1.15.
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Remark 13.7. Suppose ↵ : ⇡�1(W ) ! F is a bundle chart on E. Let � : U ! O
and ⌧ : V ! ⌦ be (manifold) charts on M and F respectively with U ⇢ W . Then
(� � ⇡, ⌧ � ↵) is a manifold chart on an open set in E which is compatible with the
given smooth structure on E.

It is often useful to work backwards. Suppose we begin with a set E and a
surjective map ⇡ : E ! M , where M is a smooth manifold. Suppose in addition
we are given another smooth manifold F and an open cover {Ua | a 2 A} of M ,
together with a collection of functions

↵a : ⇡
�1(Ua)! F

such that (⇡,↵a) is a bijection for each a 2 A. We can then attempt to define a
smooth structure by declaring that charts on E are of the form (��⇡, ⌧ �↵a), where
� is a chart on M defined on an open subset of Ua, and ⌧ is some chart on F . Of
course, now there is something to check. By Proposition 1.22, if one can verify
that the transition functions are di↵eomorphisms, this will endow E with a smooth
manifold structure in such a way that the {↵a} become a bundle atlas.

Definition 13.8. Let F be a smooth manifold and suppose we are given a left
action µ : G⇥F ! F of a Lie group G on F . We say that µ is an e↵ective action
if the only element a 2 G for which µa = id is a = e.

If µ : G⇥F ! F is an e↵ective action then the map a 7! µa defines an injective
group homomorphism G ! Di↵(F ). Thus via µ we can view G as a subgroup of
Di↵(F ).

Definition 13.9. Suppose ⇡ : E !M is a fibre bundle with fibre F , and suppose
G is a Lie group acting e↵ectively on F via µ : G⇥F ! F . We say that two bundle
charts ↵ : ⇡�1(U)! F and � : ⇡�1(V )! F with U\V 6= ; are (G, µ)-compatible
if there exists a smooth map ⇢̃↵� : U \ V ! G such that

⇢↵�(x)(z) = µ(⇢̃↵�(x), z), 8 x 2 U \ V, 8 z 2 F. (13.3)

We will usually omit explicit reference to the action µ and just say that the
two bundle charts are G-compatible. Similarly wherever possible we will suppress
the di↵erence between ⇢↵� and ⇢̃↵� and write them both as ⇢↵�. This is usually
harmless, since most of the time the action µ is considered to be fixed, and is
thus suppressed from the notation. In particular, if F = Rk is a vector space and
G ⇢ GL(k) is a matrix Lie group then the action µ is always understood to be the
standard one. If however the particular choice of µ is important (or non-standard)
then we will continue to include it in our notation and terminology.

Definition 13.10. Let ⇡ : E !M be a fibre bundle with fibre F , and let µ : G⇥
F ! F be an e↵ective Lie group action. A G-bundle atlas is a bundle atlas for E
with the property that if ↵ : ⇡�1(U) ! F and � : ⇡�1(V ) ! F are any two charts
in this atlas whose domains intersect, then ↵ and � are G-compatible. If such an
atlas exists, we say that E is a fibre bundle with structure group G.

Remark 13.11. Just as with smooth atlases on manifolds, since G-bundle atlases
come with compatibility conditions, the union of two G-bundle atlases may not be
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still be a G-bundle atlas. However we can define an equivalence relation on the set
of G-bundle atlases by declaring two atlases to be equivalent if their union is another
G-bundle atlas. We then define a G-bundle structure to be an equivalence class.
Alternatively, a G-bundle structure can be thought of as a maximal G-bundle atlas.
(Compare Remark 1.17). In practice however, just as with smooth atlases versus
smooth structures on manifolds, the distinction is usually unimportant.

Example 13.12. Let G be a Lie group and H ⇢ G a closed subgroup. Then
⇡ : G! G/H is a fibre bundle with fibre H and structure group H (where H acts
on itself via left translations). Exercise: Prove this using the proof of Theorem
12.4.

Definition 13.13. A vector bundle of rank k is a fibre bundle ⇡ : E ! M
whose fibre is F = Rk and whose structure group is G = GL(k), or some matrix
Lie subgroup thereof.

Remark 13.14. It is important to realise that E can have structure group G for
many di↵erent Lie groups G (and thus we should really say “a structure group”
rather than “the structure group”). Indeed, it is often advantageous to make the
structure group as small as possible: if E has structure group G and H ⇢ G is a
subgroup, then sometimes it is possible to find a new G-bundle atlas such that each
transition function ⇢↵� takes image in H ⇢ G. Then this G-bundle atlas is actually
an H-bundle atlas, and we say that we have reduced the structure group to
H.

For instance, if E is a vector bundle of rank k then it is always possible to reduce
the structure group to O(k) ⇢ GL(k) (we will prove this next semester when we
discuss metrics, see Corollary 36.13). On the other hand, only sometimes is it
possible to reduce the structure group to GL+(k) (as we will see, this is equivalent
to the bundle being orientable, cf Proposition 20.16).

Example 13.15. LetM be a smooth manifold. Then the tangent bundle ⇡ : TM !
M is a vector bundle of rank n over M . Indeed, if � : U ! O is a chart on M with
local coordinates xi then if we set

↵ : ⇡�1(U)! Rn, ↵(x, v) = dxi|x(v)ei
as in Theorem 4.16, then ↵ is a bundle chart. Moreover if ⌧ : V ! ⌦ is another chart
onM with overlapping domain and � the corresponding map � : ⇡�1(V )! Rn then

⇢↵�(x) = D(� � ⌧�1)(⌧(x)) 2 GL(n) ⇢ Di↵(Rn).

by (4.8). A similar argument shows that the cotangent bundle T ?M is another
vector bundle of rank n over M .

Thus a vector bundle of rank k is a fibre bundle whose fibre is Rk, but not every
fibre bundle whose fibre is Rk is a vector bundle (due to the additional requirement
that the structure group is GL(k)). The next proposition clarifies the di↵erence.

Proposition 13.16. Let ⇡ : E !M be a fibre bundle with fibre F = Rk. Then E
is a vector bundle if and only if it is possible to endow each fibre Ex with a vector
space structure and find a bundle atlas with the property that if ↵ : ⇡�1(U)! Rk

is any bundle chart belonging to the atlas then ↵|E
x

: Ex ! Rk is a vector space
isomorphism for each x 2 U .
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Proof. If ⇡ : E ! M is a vector bundle of rank k then the fact that each fibre Ex

admits the structure of a vector space of dimension k follows from Problem B.1,
since each transition function ⇢↵�(x) is a linear isomorphism. By construction, this
vector space structure has the property that each ↵|E

x

: Ex ! Rk is a vector space
isomorphism.

For the converse, we simply note that if ↵ : ⇡�1(U)! Rk and � : ⇡�1(V )! Rk

are two overlapping bundle charts as in the statement then for x 2 U \ V , c 2 R
and v, w 2 Rk, one has

⇢↵�(x)[cv + w] = ↵|E
x

� �|�1
E

x

(cv + w)

= ↵|E
x

�

c�|�1
E

x

(v) + �|�1
E

x

(w)
�

= c⇢↵�(x)[v] + ⇢↵�(x)[w]

Thus each ⇢↵� is linear, as required.

Proposition 13.16 allows us to make the following alternative definition.

Definition 13.17. Let ⇡ : E !M be a surjective map between two smooth man-
ifolds, and set Ex := ⇡�1(x). We say that E is a vector bundle of rank k if
each Ex admits the structure of a k-dimensional vector space, and any x 2 M has
a neighbourhood U together with a smooth map ↵ : ⇡�1(U)! Rk such that

(i) (⇡,↵) : ⇡�1(U)! U ⇥ Rk is a di↵eomorphism,

(ii) ↵|E
x

: Ex ! Rk is a vector space isomorphism.

We will call such a map ↵ a vector bundle chart (instead of a GL(k)-bundle
chart).

Let us explore some more constructions with fibre bundles.

Example 13.18. Let ⇡i : Ei ! Mi be fibre bundles with fibres Fi and structure
groups Gi for i = 1, 2. Then (⇡1, ⇡2) : E1 ⇥ E2 ! M1 ⇥M2 is another fibre bundle
with fibre F1 ⇥ F2 and structure group G1 ⇥G2. In particular, the product of two
vector bundles is another vector bundle. An example of this is the tangent bundle
T (M1 ⇥M2), which is di↵eomorphic to TM1 ⇥ TM2.

Here is a generalisation of the preceding example, which is typically much more
interesting.

Example 13.19. Let ' : M ! N be a smooth map, and suppose ⇡ : E ! N is a
fibre bundle with fibre F . Then M⇥E is a trivial fibre bundle over M with fibre E.
Whilst this is not a particularly interesting bundle, we can use ' to define a much
more interesting subbundle. The pullback bundle '?E is defined as follows: Set

'?E := {(x, p) 2M ⇥ E | '(x) = ⇡(p)} ,

with projection pr1 : '
?E !M . The fibre of '?E over x in M is {x}⇥E'(x), which

is di↵eomorphic to E'(x) under pr2. If ↵ : ⇡
�1(U)! F is a bundle chart for E then

↵ � pr2 : pr�1
1 ('�1(U))! F is a bundle chart for '?E. Thus '?E is a fibre bundle
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over M with fibre F , and we can summarise this with the following commuting
picture:

'?E E

M N

pr2

pr1 ⇡

'

Note that '?E is a subbundle of M ⇥ E. On Problem Sheet G you are asked to
verify the following two additional properties of '?E:

(i) If E has structure group G then '?E has structure group a Lie subgroup of
G. In particular, if E is a vector bundle then so is '?E.

(ii) The tangent bundle of '?E (this makes sense, since '?E is a manifold) is
given by

T(x,p)('
?E) = {(v, ⇣) 2 TxM ⇥ TpE | D'(x)[v] = D⇡(p)[⇣]} .

Another example is given by composition.

Example 13.20. Let ⇡ : E ! M be a fibre bundle with fibre F . Assume in
addition that E is itself the base space of another fibre bundle ⇡1 : E1 ! E with
fibre F1. Then ⇡ � ⇡1 : E1 ! M is a fibre bundle with fibre F ⇥ F1 called the
composite bundle. Indeed, if ↵ : ⇡�1(U) ! F is a bundle chart for E over
U ⇢ M and ↵1 : ⇡

�1
1 (U1) ! F1 is a bundle chart for E1 over U1 ⇢ E such that

W := ⇡(U1) \ U 6= ;, then

↵2 := (↵ � ⇡1,↵1) : (⇡ � ⇡1)�1(W )! F ⇥ F1

is a bundle chart for ⇡�⇡1 overW . If � : ⇡�1(V )! F and �1 : ⇡
�1
1 (V1)! F1 are two

more choices of bundle charts on E and E1 respectively such that W1 := ⇡(V1)\ V
has non-empty intersection with W , then if �2 is the corresponding bundle chart
for ⇡ � ⇡1 over W1 then I invite you to check that the transition function ⇢↵2�2 is
given by

⇢↵2�2(x)(z, z1) :=
�

⇢↵�(x)(z), ⇢↵1�1 � (⇡, �)�1(x, z)(z1)
�

for (z, z1) 2 F ⇥ F1 and x 2 W \W1.

As a concrete example of this, if Mn is a manifold then the tangent bundle TM
is another manifold, and its tangent bundle T (TM) is then a vector bundle over
M of rank 3n.
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LECTURE 14

Constructing new vector bundles

We begin this lecture with a recipe for constructing fibre bundles starting from the
transition functions. We state the general version for fibre bundles, but we will
mainly use this for vector bundles.

Theorem 14.1. Let {Ua | a 2 A} be an open covering of a manifold M . Let G be a
Lie group. Suppose for each a, b 2 A such that Ua \Ub 6= ;, we are given a smooth
map ⇢ab : Ua \ Ub ! G such that the following cocycle condition is satisfied:

(

⇢ac(x) = ⇢ab(x)⇢bc(x), 8x 2 Ua \ Ub \ Uc, if Ua \ Ub \ Uc 6= ;,
⇢aa(x) = e, 8 x 2 Ua, 8 a 2 A.

(14.1)

Suppose in addition we are given an e↵ective action µ : G ⇥ F ! F of G on a
manifold F . Then there exists a fibre bundle ⇡ : E !M with fibre F and structure
group G. Moreover there is a bundle atlas {↵a : ⇡�1(Ua)! F | a 2 A} such that
the transition function ⇢↵a↵b

are given by ⇢ab.

As you might expect from a theorem with such complicated hypotheses (com-
pare the Proposition 1.22), the proof is basically trivial—most of the work is in
formulating the hypotheses correctly!

Proof. Let

E :=

 

G

a2A
Ua ⇥ F

!

.

⇠,

where we identify (x, p) 2 Ua ⇥ F with (y, q) 2 Ub ⇥ F if and only if x = y and

p = µ(⇢ab(x), q).

Let ⇡ : E !M denote the map induced by first projection. Let⇧ :
F

a2A Ua⇥F ! E
denote the projection. Then for each a 2 A, the restriction of ⇧ to Ua ⇥ F onto
its image in E is a homeomorphism. Its inverse is of the form (⇡,↵a), where
↵a : ⇡�1(Ua) ! F . This is our desired bundle atlas on E: we first make E into a
smooth manifold using the procedure outlined in the second half of Remark 13.7—
the fact that this gives a well-defined smooth structure follow from (14.1). It is then
immediate from the definition that the transition functions of this bundle atlas are
given by the maps ⇢ab. This completes the proof.

Example 14.2. Take G = Z2 = {±1} and take F = R, with G acting by multipli-
cation. We take M = S1 ⇢ C. Let U1 = S1 \{i} and U2 := S1 \{�i}. By Theorem
14.1 a smooth map ⇢12 : U1 \ U2 ! G determines a vector bundle of rank 1 over
M . If we set

⇢21(z) :=

(

1, <(z) > 0,

�1, <(z) < 0,

Will J. Merry, Di↵. Geometry I, Autumn 2018, ETH Zürich. Last modified: June 28, 2019.
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then the vector bundle so obtained is called the Möbius band1.

For the rest of this lecture we will work exclusively with vector bundles, since
this allows for slightly simpler definitions. We now formulate the correct notion of
a map from one vector bundle to another.

Definition 14.3. Let ⇡i : Ei ! Mi denote two vector bundles. Suppose we are
given two smooth maps � : E1 ! E2 and ' : M1 !M2. We say that � is a vector
bundle morphism along ' if the restriction of � to each fibre E1|x is a linear
map from the vector space E1|x to the vector space E2|'(x). Thus the following
commutes:

E1 E2

M1 M2

�

⇡1 ⇡2

'

If � maps each fibre E1|x isomorphically onto E2|'(x) then � is called a vector
bundle isomorphism along ', and we say that E1 and E2 are isomorphic
vector bundles along '.

Example 14.4. Let ' : M ! N be a smooth map between two smooth manifolds.
Then D' : TM ! TN is a vector bundle morphism along '.

Let us spell out a particular case in detail, where we take ' to be the identity.

Definition 14.5. Let ⇡i : Ei !M be two vector bundles over the same base space
M . A vector bundle homomorphism � : E1 ! E2 is simply a vector bundle
morphism along the identity map id: M ! M . That is, � is a smooth map that
maps each fibre linearly to itself. If � maps each fibre E1|x isomorphically onto E2|x
(i.e. so that � is a vector bundle isomorphism along the identity map) then � is
called a vector bundle isomorphism, and E1 and E2 are said to be isomorphic
vector bundles.

Remark 14.6. A vector bundle homomorphism is a vector bundle isomorphism if
and only if it is a di↵eomorphism. This is not true for vector bundle morphisms
along a map. For instance, if M is a manifold and x 2 M then (thinking of {x}
as a zero-dimensional manifold) we have a smooth map ıx : {x} ,! M given by
inclusion. If E is any vector bundle over M then the inclusion map Ex ,! E is a
vector bundle isomorphism along ıx, but of course it is not a di↵eomorphism.

Example 14.7. Let us revisit the pullback bundle construction from Example
13.19. Let ⇡ : E ! N be a vector bundle and let ' : M ! N be a smooth map.
Then '?E is isomorphic to E along ' via pr2 : '

?E ! E. Moreover '?E is unique
up to isomorphism in the following sense: if E1 ! M is another vector bundle
on M then E1 is isomorphic to '?E if and only if E1 is isomorphic to E along
'. Moreover pullbacks are functorial2: if  : L ! M is another smooth map then
 ?('?E) is isomorphic to (' �  )?E (see Problem Sheets G and H).

1More accurately: a Möbius band of infinite width.
2We are about to define this word precisely!
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Example 14.8. If M ⇢ N is an embedded submanifold then a vector bundle E
over M is a vector subbundle (i.e. a subbundle in the sense of Definition 13.5,
where all bundle charts are required to be vector bundle charts) of a vector bundle
E1 ! N if and only the inclusion E ,! E1 is a vector bundle morphism along the
inclusion M ,! N .

Example 14.9. If � is a distribution on M then one can think of � as a vector
subbundle of TM .

The next result clarifies the relation between the isomorphism class of a vector
bundle and its transition functions. The proof is deferred to Problem Sheet H.

Proposition 14.10. Let M be a smooth manifold and suppose ⇡i : Ei ! M are
two vector bundles over M of the same rank k. Let {Ua | a 2 A} be an open cover
of M such that both3 E1 and E2 admit GL(k)-bundle atlases over the Ua. Let

⇢1ab : Ua \ Ub ! GL(k), and ⇢2ab : Ua \ Ub ! GL(k)

denote the transition functions of E1 and E2 with respect to these bundle atlases.
Then E1 and E2 are isomorphic if and only if there exists a smooth family ⌫a : Ua !
GL(k) of functions such that

⌫a(x) � ⇢1ab(x) = ⇢2ab(x) � ⌫b(x), 8 x 2 Ua \ Ub, 8 a, b 2 A.

Corollary 14.11. The vector bundle constructed in Theorem 14.1 is unique up
to isomorphism.

(|) Remark 14.12. Proposition 14.10 tells us that the isomorphism classes of rank
k vector bundles over M are in bijective correspondence with Ȟ1(M ; GL(k)), i.e.
the first Čech cohomology group ofM with coe�cients in the sheaf C1(⇤,GL(k)) =:
GL(k).

We now move onto to a general method to create new vector bundles from old
ones. We will first state and imprecise “metatheorem” and explain how to use it. A
formal proof is rather more involved, and requires ideas from a field of mathematics
called category theory.

Metatheorem. Anything you can do with vector spaces, you can also do
with vector bundles.

What does this mean? Let us look at some examples:

(i) If V is a vector space then its dual space V ⇤ = L(V,R) is another vector space
of the same dimension. Thus if E ! M is a vector bundle, we can form a
new vector bundle E⇤ !M called the dual bundle by setting

E⇤ :=
G

x2M
E⇤

x

where E⇤
x = L(Ex,R) is the dual vector space to Ex. The cotangent bundle is

an example of this construction: it is the dual bundle to the tangent bundle.

3This can always be achieved by taking intersections.
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(ii) If V and W are vector spaces then their direct sum V �W is another vector
space of dimension dimV + dimW . Thus if ⇡1 : E1 ! M and ⇡2 : E2 ! M
are two vector bundles over the same manifold M , we can form the direct
sum bundle E1 � E2 !M by setting

E1 � E2 :=
G

x2M
E1|x � E2|x

Warning: As vector spaces, the direct sum V �W is the same thing as the
product V ⇥W , and we often use the notation interchangeably (for instance,
we usually write Rn ⇥ Rk, not Rn � Rk, and next lecture we will typically
write ⇥ instead of � when discussing multilinear maps). However as vector
bundles, we will exclusively use the direct sum notation, because the product
E1⇥E2 refers to the product bundle over M⇥M as defined in Example 13.18.
The two concepts are related however: if � : M ! M ⇥M is the diagonal
map x 7! (x, x) then

�?(E1 ⇥ E2) ⇠= E1 � E2,

as I invite you to verify.

(iii) If V and W are vector spaces then L(V,W ), the space of linear maps from V
to W is another vector space of dimension dimV · dimW . (The dual space is
the special case where W = R). Thus if ⇡1 : E1 ! M and ⇡2 : E2 ! M are
two vector bundles, the homomorphism bundle Hom(E1, E2) is defined by

Hom(E1, E2) :=
G

x2M
L(E1|x, E2|x) (14.2)

The fact that the left-hand side is written Hom(E1, E2) rather than the
(slightly more logical name) L(E1, E2) will be explained in Lecture 16 (see
part (iv) of Example 16.2).

(iv) One can iterate these constructions: for instance, if E1, E2, E3, E4, E5 are
vector bundles of rank ki then

L(E1 � E⇤
2 ,L(E

⇤
3 , E4 � E5))

is another vector bundle of rank (k1 + k2)k3(k4 + k5).

In the next lecture, we will see two more important cases of this: the tensor
bundle E1 ⌦ E2 and the exterior algebra bundle

V

(E).
Of course, in all of these examples we have not proved that these constructions

give rise to vector bundles: we have simply stuck vector spaces over each point in
M and claimed that the resulting object is a vector bundle. In all of these cases, it
is not too hard to prove this directly (i.e. that the total space is a smooth manifold,
that the relevant bundle atlas exists, etc). However doing so would be very “ad
hoc”—one would need a separate proof for every example, and, as part (iv) above
showed, since we can iterate we would swiftly need infinitely many proofs. This is
not ideal. Thus we will search for a way to prove everything in one fell swoop.

Enter category theory . . .
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Definition 14.13. A category C consists of three ingredients. The first is a class
obj(C) of objects. Secondly, for each ordered pair of objects (A,B) there is a set
Hom(A,B) of morphisms from A to B. Sometimes instead of f 2 Hom(A,B) we

write f : A ! B or A
f�! B. Finally, there is a rule, called composition, which

associates to every ordered triple (A,B,C) of objects a map

Hom(A,B)⇥ Hom(B,C)! Hom(A,C),

written
(f, g) 7! g � f,

which satisfies the following three axioms:

1. The Hom sets are pairwise disjoint; that is, each f 2 Hom(A,B) has a unique
domain A and a unique target B.

2. Composition is associative whenever defined, i.e. given

A
f�! B

g�! C
h�! D

one has
(h � g) � f = h � (g � f).

3. For each A 2 obj(C) there is a unique morphism idA 2 Hom(A,A) called the
identity which has the property that f � idA = f and idB �f = f for every
f : A! B.

(|) Remark 14.14. Note that we said that obj(C) was a class and Hom(A,B)
was a set. There is (an important, but technical) di↵erence between a class and
a set. If you’ve ever taken a class on logic/set theory, you’ll know that not every
“collection” of objects is formally a set. For instance, the collection of all sets is
itself not a set. A class is a more general concept (the collection of all sets is a
class). Nevertheless, as far as this course is concerned, the distinction is essentially
irrelevant.

Remark 14.15. A word of warning: category theory is often (lovingly) referred to
as abstract nonsense. But fear not: nothing we will do will ever be that abstract!

Here are six examples of categories. The first three are algebraic in nature.

Example 14.16. The category Sets of sets. The objects of Sets are all the sets, and
Hom(A,B) is just the set Maps(A,B) of all functions from A to B, and composition
is just the usual composition of functions.

Example 14.17. The category Groups of groups. The objects of Groups are just
groups, and Hom(G,H) is the set of all group homomorphisms from G to H, and
composition is just the usual composition of homomorphisms.

Example 14.18. The category Vect = VectR of finite-dimensional real vec-
tor spaces. The objects of Vect are finite-dimensional real vector spaces, and
Hom(V,W ) is the set L(V,W ) of all linear maps from V to W .
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Here are three more examples more pertinent to this course.

Example 14.19. The category Top of topological spaces. The objects of Top are
all the topological spaces, and Hom(X, Y ) is just the set C(X, Y ) of all continuous
functions from X to Y , and composition is just the usual composition of functions.

Example 14.20. The category Man of smooth manifolds. The objects of Man
are smooth manifolds, and Hom(M,N) is the set C1(M,N) of all smooth maps
' : M ! N . Composition is given by normal composition of maps; this is well
defined by Proposition 1.26.

Example 14.21. The category VectBundles of vector bundles. The objects of
VectBundles are vector bundles ⇡ : E ! M , and morphism from ⇡1 : E1 ! M1 to
⇡2 : E2 !M2 is a pair (�,'), where ' : M1 !M2 is a smooth map and � : E1 ! E2

is a vector bundle morphism from E1 to E2 along '.

Remark 14.22. The category Vect is rather special: its morphism sets are them-
selves objects of the category. That is, if V and W are vector spaces then L(V,W )
is itself naturally a vector space. This is not true in the category of Groups—the set
of all group homomorphisms from one group to another typically does not have a
group structure. Similarly the set C1(M,N) of smooth maps between two smooth
manifolds is never itself a (finite-dimensional) manifold when dimM > 0.

Remark 14.23. The fact that we require the morphism sets to be pairwise disjoint
has several pedantic consequences. For example, suppose A ( B are two sets. Then
the inclusion ı : A ,! B and the identity map idA : A! A are di↵erent morphisms,
since they have di↵erent targets. One should be aware that we only allow the
composition g � f when the range of f is exactly the same as the domain of g.
Suppose L,M,N and P are manifolds, and suppose M is an embedded submanifold
of N . Let ' : L ! M be smooth and let  : N ! P be smooth. Then as we
have seen, the composition  � ' : L ! P is also smooth (since M is embedded).
Nevertheless, from the point of view of category theory, the composition  �' does
not exist! Rather, one must first take the inclusion ı : M ,! N and then consider
the composition  � ı � ', which is a well-defined element of the morphism space
C1(L, P ).

Definition 14.24. Suppose C and D are two categories. We say that C is a
subcategory of D if:

1. obj(C) ✓ obj(D),

2. HomC(A,B) ✓ HomD(A,B) for all A,B 2 obj(C), where we denote Hom sets
in C by HomC(⇤,⇤),

3. if f 2 HomC(A,B) and g 2 HomC(B,C) then the composite g�f 2 HomC(A,C)
is equal to the composite g � f 2 HomD(A,C),

4. if C 2 obj(C) then idC 2 HomC(C,C) is equal to idC 2 HomD(C,C).

If for every pair A,B 2 obj(C) one always has HomC(A,B) = HomD(A,B) then we
say that C is a full subcategory of D.

6



Example 14.25. Here are two examples of subcategories:

(i) The category Ab of abelian groups is a full subcategory of the category Groups.

(ii) Let Vect1 denote the category of all real vector spaces (finite-dimensional
or infinite-dimensional). Then Vect is a full subcategory of Vect1.

A functor is a map from one category to another. These come in two flavours:
covariant and contravariant. We discuss the former first.

Definition 14.26. Suppose C and D are two categories. A covariant functor
F : C ! D associates to each A 2 obj(C) an object F(A) 2 obj(D), and to each

morphism A
f�! B in C a morphism F(A)

F(f)��! F(B) in D which satisfies the
following two axioms:

1. If A
f�! B

g�! C in C then F(A)
F(f)��! F(B)

F(g)��! F(C) in D and

F(g � f) = F(g) � F(f).

2. F(idA) = idF(A) for every A 2 obj(C).

The easiest example of a functor is a forgetful functor:

Example 14.27. The forgetful functor Top! Sets simply “forgets” the topological
structure. Thus it assigns to each topological space its underlying set, and to each
continuous function it assigns the same function, considered now simply as a map
between two sets (i.e. it “forgets” the function is continuous). The same thing works
as a functor Man! Top, where one “forgets” the smooth manifold structure.

Example 14.28. There is slightly more interesting forgetful functor VectBundles!
Man that sends a vector bundle ⇡ : E ! M to its base space M (i.e. it “forgets”
the vector bundle sitting over the base). On morphisms, this functor just “forgets”
the vector bundle morphism: (�,') 7! '.

Here is a pertinent example of a functor from the category Vect to itself:

Example 14.29. Let V be a fixed vector space. Then there is a covariant functor

L(V,⇤) : Vect! Vect

that assigns to a vector space W the vector space L(V,W ). If T : W1 ! W2 is a
linear map then

L(V,⇤)(T ) : L(V,W1)! L(V,W2)

is given by S 7! T � S.
(|) Remark 14.30. Algebraic topology is an excellent source of functors. For
instance, the fundamental group ⇡1 is a covariant functor from the pointed
homotopy category hTop⇤ to Groups, and the higher homotopy groups are
covariant functors ⇡n : hTop⇤ ! Ab. Singular homology (or indeed, any ho-
mology theory) is a covariant functor hTop2 ! Ab, where hTop2 is the homotopy
category of pairs.

7



One can also formulate the definition of a functor of more than one variable.
This requires us to define the notion of a product category.

Definition 14.31. Let C and D be two categories. The product category (C,D)
is the category whose objects are ordered pairs (C,D) where C 2 obj(C) and
D 2 obj(D), and

Hom(C,D)((C,D), (C 0, D0)) = {(f, g) | f 2 HomC(C,C
0) g 2 HomD(D,D0)} .

The composition (f, g) �C⇥D (f 0, g0) is defined as you expect:

(f, g) �(C,D) (f
0, g0) := ((f �C f 0), (g �D g0)) .

The identity element id(C,D) is simply the pair (idC , idD).

Example 14.32. The category (Vect,Vect) has objects ordered pairs (V,W ) of
vector spaces, and morphisms pairs of linear maps.

Definition 14.33. A covariant functor of two variables is a covariant functor
defined on a product category: F : (C,D)! E.

Example 14.34. Let V and W be vector spaces. Then the4 direct sum V �W
of V and W is another vector space. Thus we get a functor � : (Vect,Vect)! Vect
that assigns to (V,W ) the vector space V �W , and assigns to a pair (S, T ) of linear
maps S : V1 ! V2 and T : W1 ! W2 the linear map S � T : V1 �W1 ! V2 �W2.

In the same way, one can form a r-fold product category (C1, . . . ,Cr) of
categories Ci, and a covariant functor of r variables is a covariant functor of
the form F : (C1, . . . ,Cr)! D. For example, there is a functor

(Vect, . . . ,Vect)! Vect, (V1, . . . , Vr)! V1 � · · ·� Vr.

A contravariant functor is defined in almost the same way, but it reverses the
arrows.

Definition 14.35. Suppose C and D are two categories. A contravariant functor
G : C ! D associates to each A 2 obj(C) an object G(A) 2 obj(D), and to each

morphism A
f�! B in C a morphism G(B)

G(f)��! G(A) in D which satisfies the
following two axioms:

1. If A
f�! B

g�! C in C then G(C)
G(g)��! G(B)

G(f)��! G(A) in D and

G(g � f) = G(f) � G(g).

2. G(idA) = idG(A) for every A 2 obj(C).

Here is a simple example of a contravariant functor on the category of vector
spaces.

4I will use the direct sume notation here as well (instead of the product) so as not to confuse
you with the product category.

8



Example 14.36. Let W be a fixed vector space. Then there is a contravariant
functor

L(⇤,W ) : Vect! Vect

that assigns to a vector space V the vector space L(V,W ). If T : V1 ! V2 is a linear
map then

L(⇤,W )(T ) : L(V2,W )! L(V1,W )

is given by S 7! S � T (note the order of V1 and V2!) It is important for you to
understand why L(V,⇤) is covariant but L(⇤,W ) is contravariant.

Taking W = R shows that V 7! V ⇤ is a contravariant functor.

(|) Remark 14.37. Going back to algebraic topology, singular cohomology is
a contravariant functor hTop2 ! Ab. Later in this course we will look at de Rham
cohomology.

Similarly one can consider contravariant functors of more than one variable.
In fact, one can even consider functors that are covariant in some variables and
contravariant in others. This is easiest to see with an example.

Example 14.38. Let L(⇤,⇤) : (Vect,Vect) ! Vect denote the functor that sends
a pair (V,W ) to the vector space L(V,W ). As Example 14.29 and 14.36 showed,
this is contravariant in the first variable and covariant in the second variable. If
S : V1 ! V2 and T : W1 ! W2 then

L(⇤,⇤)(S, T ) : L(V2,W1)! L(V1,W2)

sends a linear map A : V2 ! W1 to the linear map T � A � S : V1 ! W2.

We have now almost arrived at the correct setting for which to prove the
Metatheorem. The only thing that is left is to take into the account that we
require our functors to be smooth.

Definition 14.39. Let F : Vect ! Vect be a covariant functor. We say that F is
smooth if for any two vector spaces V,W , the map

L(V,W )! L(F(V ), F(W )), T 7! F(T )

is itself smooth in the normal sense.

A similar definition makes sense for functors of r variables which are covariant
in some variables and contravariant in others, provided one remembers to flip the
domain and target in each contravariant variable:

Definition 14.40. Let F : (Vect, . . . ,Vect) ! Vect be a functor of r variables of
either (or mixed) variance. We say that F is a smooth functor if for any vector
spaces V1, . . . Vr and W1, . . . ,Wr, the induced map

r
M

i=1

eL(Vi,Wi)! L(F(V1, . . . , Vr), F(W1, . . .Wr)), (T1, . . . , Tr) 7! F(T1, . . . , Tr)

(14.3)
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where

eL(Vi,Wi) :=

(

L(Vi,Wi), if F is covariant in the ith variable,

L(Wi, Vi), if F is contravariant in the ith variable,

is a smooth map in the usual sense (note again each side is simply a vector space).

In fact, in all the examples we have seen, the map (14.3) is actually a linear
map (and so is certainly smooth). We emphasise though that for a general functor
this may not be the case. Here now is a precise statement of the Metatheorem.

Theorem 14.41. Let F : (Vect, . . . ,Vect)! Vect be a smooth functor of r variables
of either variance in each variable. Let ⇡i : Ei !M be r vector bundles. Define

F(E1, . . . , Er) :=
G

x2M
F(E1|x, . . . , Er|x),

with associated projection ⇡ : F(E1, . . . , Er) ! M . Then F(E1, . . . , Er) is a vector
bundle.

Warning: This proof is very easy, but it is notationally quite challenging. I
recommend you write out for yourself the case r = 2 where F is say, contravariant
in the first variable and covariant in the second (the L(⇤,⇤) functor from Example
14.38 is such an example). Once you understand this, the general case is just
messier. In any case, the proof is non-examinable.

(|) Proof. Choose an open set U ⇢M over which all the Ei are trivial, i.e. so that
there exist vector bundle charts ↵i : ⇡

�1
i (U)! Rk

i , where Ei has rank ki. Then for
each x 2 U and each i, we have a linear isomorphism ↵i|E

i

|
x

: Ei|x ! Rk
i . Set

↵̃i,x :=

(

↵i|E
i

|
x

: Ei|x ! Rk
i , if F is covariant in the ith variable,

↵i|�1
E

i

|
x

: Rk
i ! Ei|x, if F is contravariant in the ith variable.

Since F is a functor, we can feed it the morphisms ↵̃i,x to get a map

↵̃x = F(↵̃1,x, . . . , ↵̃r,x) 2 L
�

F(E1|x, . . . , Er|x), F(Rk1 , . . . ,Rk
r)
�

By functoriality, ↵̃x is linear isomorphism. Define ↵̃ : ⇡�1(U) ! F(Rk1 , . . . ,Rk
r)

by letting ↵̃ be equal to ↵̃x on F(E1|x, . . . , Er|x). We now declare that (⇡, ↵̃) is a
bundle chart for F(E1, . . . , Er) over U .

To complete the proof, we need to show that the transition functions are smooth
linear isomorphisms. For this, suppose �i : ⇡

�1
i (U) ! Rk

i were di↵erent choices of
vector bundle chart on each Ei, with corresponding chart �̃ on F(E1, . . . , Er). We
must show that the transition function ⇢↵̃�̃ is smooth and linear. But this again
follows almost immediately from functorality. If x 2 U then

⇢↵̃�̃(x) = ↵̃|F(E1|x,...,Er

|
x

) � �̃|�1
F(E1|x,...,Er

|
x

)

= F(↵̃1,x, . . . , ↵̃r,x) � F(�̃1,x, . . . , �̃r,x)�1

= F(↵̃1,x, . . . , ↵̃r,x) � F(�̃�1
1,x, . . . , �̃

�1
r,x)

= F
�

↵̃1,x � ��1
1,x, . . . ↵̃r,x � ��1

r,x

�

= F(⇢̃↵1�1(x), . . . ⇢̃↵r

�
r

(x)),
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where

⇢̃↵
i

�
i

(x) :=

(

⇢↵
i

�
i

(x) if F is covariant in the ith variable,

⇢↵
i

�
i

(x)�1 if F is contravariant in the ith variable.

Thus since F is a functor, F(⇢̃↵1�1(x), . . . ⇢̃↵r

�
r

(x)) is a linear isomorphism. Moreover
since F is a smooth functor, x 7! F(⇢̃↵1�1(x), . . . ⇢̃↵r

�
r

(x)) depends smoothly on x.
This completes the proof.
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LECTURE 15

Tensor and exterior algebras

In this lecture we continue our theme of constructing new vector bundles from old,
but this time we focus on two constructions you may be less familiar with on the
linear algebra level.

Definition 15.1. Let V and W be two vector spaces. Their tensor product is
the vector space V ⌦W which is defined as follows. First, let Free(V ⇥W ) denote
(infinite-dimensional) vector space which has as basis all pairs (v, w) where v 2 V
and w 2 W . Thus an element of Free(V ⇥W ) consists of a finite linear combination
of pairs (v, w) with v 2 V and w 2 W . Now let R(V,W ) denote the linear subspace
of Free(V ⇥W ) generated by the set of all elements of the form

8

>

>

>

<

>

>

>

:

(v1 + v2, w)� (v1, w)� (v2, w), v1, v2 2 V, w 2 W,

(v, w1 + w2)� (v, w1)� (v, w2), v 2 V, w1, w2 2 W,

c(v, w)� (cv, w), v 2 V, w 2 W, c 2 R,
c(v, w)� (v, cw), v 2 V, w 2 W, c 2 R.

Let V ⌦W denote the quotient vector space Free(V,W )
�

R(V,W ). The coset in
V ⌦W containing (v, w) is denoted by v ⌦ w. By construction one has

8

>

>

>

<

>

>

>

:

(v1 + v2)⌦ w = v1 ⌦ w + v2 ⌦ w, v1, v2 2 V, w 2 W,

v ⌦ (w1 + w2) = v ⌦ w1 + v ⌦ w2, v 2 V, w1, w2 2 W,

c(v ⌦ w) = (cv)⌦ w, v 2 V, w 2 W, c 2 R,
c(v ⌦ w) = v ⌦ (cw), v 2 V, w 2 W, c 2 R.

A typical element in V ⌦ W is a finite sum
P

i ai vi ⌦ wi where the ai are real
numbers. An element of the form v ⌦ w is called decomposable.

There is a natural bilinear map ⌦ : V ⇥W ! V ⌦W that sends (v, w) 7! v⌦w.
Here is a useful property of the tensor product.

Lemma 15.2. Let V,W and U be vector spaces and suppose B : V ⇥W ! U is a
bilinear map. Then there exists a unique linear map T : V ⌦W ! U such that the
following diagram commutes:

V ⇥W V ⌦W

U

⌦

B T

Moreover this property uniquely characterises V ⌦W .

Will J. Merry, Di↵. Geometry I, Autumn 2018, ETH Zürich. Last modified: June 28, 2019.
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Proof. LetB : V⇥W ! U be a bilinear function. Recall V⌦W = Free(V,W )
�

R(V,W ).

We first extend B by linearity to a map B̃ : Free(V,W ) ! U . Bilinearity then
tells us that R(V,W ) ⇢ ker B̃, and hence B̃ factors to define a homomorphism
T : V ⌦W ! U such that T (v ⌦ w) = B(v, w) for all (v, w) 2 V ⇥W . Moreover
the map T is unique, since the decomposable elements generate V ⌦W .

Finally, to see why this property uniquely determines ⌦, suppose that X is
another vector space equipped with a bilinear map b : V ⇥W ! X with the property
that if B : V ⇥W ! U is bilinear then there exists a unique linear map S : X ! U
such that the diagram commutes:

V ⇥W X

U

b

B S

We apply this with U = V ⌦ W and B = ⌦. This gives us a unique linear
map S : X ! V ⌦W such that the diagram commutes. Now we go back to our
original diagram and chose U = X and B = b. Thus we get a unique linear map
T : V ⌦W ! X such that the diagram commutes. The composition T � S makes
the following diagram commute:

V ⇥W X

V ⌦W

V ⇥W X

⌦

b

S

T⌦

b

Thus the composition makes this diagram commute:

V ⇥W X

X

b

b T�S

But there is meant to only be one map that makes this diagram commute, and
another choice is the identity map X ! X. Thus T � S = idX . Similarly S � T =
idV⌦W , and we conclude that X and V ⌦W are isomorphic, as claimed.

(|) Remark 15.3. In category-theoretic language, we just established that the
tensor product could be defined by a universal property. Thus the last half of the
proof (proving uniqueness) was formally unnecessary, since solutions to universal
properties are always unique up to isomorphism (if they exist).

2



Corollary 15.4. Let V and W denote vector spaces, and let V ⇤ = L(V,R) denote
the dual space. Then there is a natural isomorphism L(V,W ) ⇠= V ⇤ ⌦W .

Proof. Define B : V ⇤ ⇥W ! L(V,W ) by B(�, w)(v) := �(v) · w. This gives us a
linear map T : V ⇤ ⌦W ! L(V,W ) by Lemma 15.2. This map is an isomorphism,
as an inverse S : L(V,W ) ! V ⇤ ⌦W is given by S(L) := ei ⌦ Lei, where ei is any
basis of V and ei is the dual basis of V ⇤.

Corollary 15.5. If (ei) is a basis for V and (e0j) is a basis for W then ei⌦ e0j is a
basis for V ⌦W . Thus dim(V ⌦W ) = dimV · dimW .

Corollary 15.6. If V,W and U are vector spaces then there are natural isomor-
phisms V ⌦W ⇠= W ⌦ V and (U ⌦ V ) ⌦W ⇠= U ⌦ (V ⌦W ). (And thus we can
unambiguously write U ⌦ V ⌦W .)

The proof of Corollary 15.6 is on Problem Sheet H. Going back to our category-
theoretic point of view, we obtain another functor:

Example 15.7. There is a covariant functor ⌦ : (Vect,Vect) ! Vect given by
(V,W ) 7! V ⌦W .

Definition 15.8. Let r and s be non-negative integers. Define a functor T r,s : Vect!
Vect by setting

T r,s(V ) := V ⌦ · · ·⌦ V
| {z }

r

⌦
s

z }| {

V ⇤ ⌦ · · ·⌦ V ⇤.

One calls an element of T r,s(V ) a tensor of type (r, s). The vector space T r,s(V )
has dimension (dimV )r+s.

Note we are using Corollary 15.6 to write the right-hand side without brackets.
Corollary 15.6 also shows us that it is unimportant in which order we present the
factors: for convenience we write the V factors first and the V ⇤ factors afterwards.

Let Multr,s(V ) denote the space of multilinear maps

V ⇥ · · ·⇥ V
| {z }

r

⇥
s

z }| {

V ⇤ ⇥ · · ·⇥ V ⇤ ! R.

Proposition 15.9. There is a canonical isomorphism between the vector space
T r,s(V ) and the vector space Mults,r(V ).

Note the r and the s swapped round—this is not a typo! Recall that a perfect
pairing of a vector space V with another W is a bilinear map � : V ⇥W ! R
such that �(v, ·) is identically zero if and only if v = 0, and �(·, w) is identically
zero if and only if w is zero. If V and W are finite-dimensional then such a pairing
induces an isomorphism T : V ! W ⇤ given by (Tv)(w) := �(v, w).

Example 15.10. The natural isomorphism1 V ⇠= V ⇤⇤ arises from the perfect pairing
V ⇥ V ⇤ ! R given by (v, p) 7! p(v).

1Remember we assume all vector spaces are finite-dimensional!
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Proof of Proposition 15.9. We define a perfect pairing of T r,s(V ) with T r,s(V ⇤).
Namely, if

v = v1 ⌦ · · ·⌦ vr ⌦ p1 ⌦ · · ·⌦ ps 2 T r,s(V )

and
w = q1 ⌦ · · ·⌦ qr ⌦ w1 ⌦ · · ·⌦ ws 2 T r,s(V ⇤)

then we can naturally feed them each other2

�(v, w) :=
r
Y

i=1

qi(vi) ·
s
Y

j=1

pj(wj) (15.1)

Now extend this bilinearly to all elements. Thus T r,s(V ) is isomorphic to
�

T r,s(V ⇤)
�⇤
.

Next, a trivial extension of Lemma 15.2 shows that

Multr,s(V
⇤) ⇠= �T r,s(V ⇤)

�⇤
(15.2)

Indeed, for each B 2 Multr,s(V ⇤) there exists a unique T : T r,s(V ⇤) ! R, i.e.
T 2 �T r,s(V ⇤)

�⇤
such that the diagram commutes.

V ⇤ ⇥ · · ·⇥ V ⇤
| {z }

r

⇥
s

z }| {

V ⇥ · · ·⇥ V V ⇤ ⌦ · · ·⌦ V ⇤
| {z }

r

⌦
s

z }| {

V ⌦ · · ·⌦ V

R

⌦

B T

Since B is uniquely determined by T , this sets up the desired isomorphism (15.2).
Finally we clearly have Multr,s(V ⇤) ⇠= Mults,r(V ), and thus the proof is complete.

Remark 15.11. On decomposable elements the isomorphism T r,s(V ) ⇠= Mults,r(V )
is easier to describe. Suppose for simplicity A 2 T 2,3(V ) is the decomposable
element

A = v1 ⌦ v2 ⌦ p1 ⌦ p2 ⌦ p3.

Then if we use Proposition 15.9 to regard A as an element of Mult3,2(V ) then A is
given explicitly as

A(w1, w2, w3, q
1, q2) = q1(v1) q

2(v2) p
1(w1) p

2(w2) p
3(w3).

We can use Theorem 14.41 (“the Metatheorem”) to transfer these linear algebra
constructions to vector bundles:

Corollary 15.12. Let ⇡i : Ei !M be vector bundles for i = 1, 2 of rank ki. Then
there is a vector bundle E1⌦E2 !M of rank k1k2 whose fibre over x is E1|x⌦E2|x.

Recall the Hom-bundle from (14.2) in the last lecture.

2We are not using the Einstein Summation Convention in this formula—this is a product not
a sum!
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Corollary 15.13. Let ⇡i : Ei ! M be vector bundles for i = 1, 2. Then there is
a natural vector bundle isomorphism

Hom(E1, E2) ⇠= E⇤
1 ⌦ E2.

Proof. Define  : Hom(E1, E2) ! E⇤
1 ⌦ E2 fibrewise by declaring that the map

 x : L(E1|x, E2|x) ! E⇤
1 |x ⌦ E2|x is the isomorphism from Corollary 15.4. This

assignment x 7!  x is smooth and thus  is a vector bundle isomorphism. (If you
are worried about why x 7!  x is smooth, you could use Proposition 16.26 from
the next lecture).

Similarly Corollary 15.6 tells us that the tensor product of vector bundles is
commutative and associative:

Corollary 15.14. Let ⇡i : Ei ! M be vector bundles for i = 1, 2, 3. Then the
bundles E1 ⌦E2 and E2 ⌦E1 are isomorphic, and the bundles E1 ⌦ (E2 ⌦E3) and
(E1 ⌦ E2)⌦ E3 are isomorphic.

(|) Remark 15.15. Corollary 15.13 and Corollary 15.14 are special cases of a
more general result, which goes as follows: Let F1 and F2 be two functors as in the
statement of Theorem 14.41. Assume there exists a smooth natural isomorphism
⌧ : F1 ! F2. Then the vector bundles obtained by applying Theorem 14.41 to F1

and F2 are naturally isomorphic. The proof is very similar to that of Theorem 14.41
and is not any harder. However since I have not defined precisely what a natural
transformation is, I will not go into the details. If you are interested, here is where
I defined natural transformations last year in Algebraic Topology I.

Corollary 15.16. Let ⇡ : E ! M be a vector bundle. Then there is a vector
bundle T r,s(E)!M whose fibre over x 2M is the vector space T r,s(Ex).

Let us recall the formal definition of an algebra.

Definition 15.17. A vector space V is said to be an algebra if there exists a
bilinear map V ⇥ V ! V (or equivalently, a linear map V ⌦ V ! V ), which we
call multiplication.

Whilst each T r,s(V ) is not an algebra, if we sum them all together we obtain
one.

Definition 15.18. The tensor algebra of V is defined to be

T (V ) :=
M

r,s�0

T r,s(V ),

where T 0,0(V ) := R. This is a graded algebra, in the sense that ⌦ gives a natural
map

⌦ : T r,s(V )⇥ T r1,s1(V )! T r+r1,s+s1(V ). (15.3)

The natural map is defined as one would guess: on decomposable elements it simply
tensors everything together and then rearranges the factors so the V elements come
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first, so as to fit with our convention. We illustrate this with (r, s) = (1, 2) and
(r1, s1) = (2, 1):

⇣

(v1 ⌦ p1 ⌦ p2), (w1 ⌦ w2 ⌦ q1)
⌘

7! v1 ⌦ w1 ⌦ w2 ⌦ p1 ⌦ p2 ⌦ q1. (15.4)

If (r, s) = (0, 0) then tensor multiplication with a scalar is defined to be normal
scalar multiplication, i.e.

r ⌦ v := rv, r 2 R, v 2 V. (15.5)

Remark 15.19. Warning: The space T (V ) is an infinite-dimensional vector space.
This means that T is not a functor Vect ! Vect! Thus if ⇡ : E ! M is a vector
bundle, whilst for any finite r, s we can speak of the bundle T r,s(E) ! M , we
cannot apply3 Theorem 14.41 to obtain a vector bundle T (E)!M .

We now define another linear algebra construction, called the exterior alge-
bra. This will associate to a vector space V another (finite-dimensional) vector
space

V

(V ) which, like the tensor algebra T (V ), admits an algebra structure. This
defines a functor

V

: Vect ! Vect, and thus by Theorem 14.41 we can apply it to
vector bundles.

Let V be a vector space. Let T+(V ) denote the subalgebra given by T+(V ) :=
L

r�0 T
r,0(V ). Let I(V ) denote the two-sided ideal in T+(V ) generated by all

elements of the form v ⌦ v for v 2 V . Thus for instance u⌦ v ⌦ v ⌦ w belongs to
I(V ).

Definition 15.20. The exterior algebra is defined to be the quotient algebra
V

(V ) := T+(V )/I(V ). We denote the image of v1⌦ · · ·⌦vr in
V

(V ) by v1^ · · ·^vr
and call ^ the wedge product.

Such an element v1^ · · ·^vr is called decomposable. If we set
Vr(V ) to be the

image of T r,0(V ) in
V

(V ) under the projection T+(V )! V

(V ) there is a canonical
vector space isomorphism

^r
(V ) ⇠= T r,0(V )

.

Ir(V ),

where Ir(V ) := T r,0(V ) \ I(V ). Note that
V1(V ) = V and

V0(V ) = R. This
definition may seem a little abstract, so let us unpack things a bit.

Proposition 15.21 (Properties of the wedge product). Let V be a vector space.
Then

(i) For all v, w 2 V , v ^ w = �w ^ v.

(ii) Assume r, s > 0. If v 2 Vr(V ) and w 2 Vs(V ) then v ^ w 2 Vr+s(V ) and

v ^ w = (�1)rsw ^ v, (15.6)

This continues to hold if either r = 0 or s = 0 if we use the convention that
for a real number a and a vector v, one has a ^ v := av.

3Actually, there is an infinite-dimensional analogue of Theorem 14.41, and using this it is
possible to define T (E), but this goes beyond the scope of the course and we won’t need it.
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(iii) If v1 ^ · · · ^ vr 2
Vr(V ) is a decomposable element then transposing vi with

vj acts as multiplication by -1:

v1 ^ · · · ^ vi ^ · · · ^ vj ^ · · · ^ vr = �v1 ^ · · · ^ vj ^ · · · ^ vi ^ · · · ^ vr

(iv) If % 2 S(r) is a permutation on r letters and vi 2 V then

v%(1) ^ · · · ^ v%(r) = sgn(%)v1 ^ · · · ^ vr.

Proof. To prove part (i), we note that for any u 2 V , u ⌦ u belongs to I(V ), and
thus in

V

(V ), u ^ u = 0. Applying this with u = v + w we have

0 = (v + w) ^ (v + w)

= v ^ v + v ^ w + w ^ v + w ^ w

= v ^ w + w ^ v.

To prove part (ii), as both sides are linear in v and w, it su�ces to verify it for de-
composable elements, and for such, the conclusion follows by repeated applications
of part (i). Next, to prove part (iii), we may assume i < j. Set u := vi+1^ · · ·^vj�1.
Then by part (ii) one has

vi ^ u ^ vj = �vj ^ u ^ vi,

and thus part (iii) follows. Finally, part (iv) is immediate from the fact that any
permutation may be written as a product of transpositions.

There is an analogous universal mapping property for the exterior algebra.

Definition 15.22. Let V and W be vector spaces. Let Altr(V,W ) denote the
space of alternating r-linear maps, i.e. multilinear maps A : V ⇥ · · ·⇥ V ! W
(r times) that vanish whenever any two of the arguments are equal:

A(· · · , v, · · · , v, · · · ) = 0.

We abbreviate Altr(V ) = Altr(V,R).

The map ^ : V ⇥ · · ·⇥ V ! Vr(V ) given by sending (v1, . . . , vr) 7! v1 ^ · · ·^ vr
is an example of such a map. We aim to prove the following alternating version of
Proposition 15.9:

Proposition 15.23. There is a canonical isomorphism between
Vr(V ⇤) andAltr(V ).

The proof strategy is similar to that of Proposition 15.9, and we will be brief.
First, we need an analogue of the universal mapping property (Lemma 15.2).

Lemma 15.24. Let V and W be vector spaces. For any A 2 Altr(V,W ) there is a
unique linear map T :

Vr(V )! W such that the following diagram commutes:

r
z }| {

V ⇥ · · ·⇥ V
Vr(V )

W

^

A T

Moreover
Vr(V ) is uniquely characterised by this property.
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Corollary 15.25. Let V be a vector space of dimension k with basis {e1, . . . , ek}.
Then

{ei1 ^ · · · ^ ei
r

| 1  i1 < · · · < ir  k}
is a basis of

Vr(V ) and
Vr(V ) = 0 for r > k. Thus dim

Vr(V ) =
�

k
r

�

and
dim

V

(V ) = 2k.

The proofs of Lemma 15.24 and Corollary 15.25 are on Problem Sheet H. Just
as with (15.2), it follows that we can identify

Altr(V ) ⇠=
⇣

^r
(V )
⌘⇤

. (15.7)

The next step is to exhibit a perfect pairing of
Vr(V ⇤) with

Vr(V ). This formula
is a little harder to guess than in (15.1), but once you know the formula it is easy
to check. Namely, we define

↵ :
^r

(V ⇤)⇥
^r

(V )! R

by declaring on decomposable elements that:

↵
�

(p1 ^ · · · ^ pr), (v1 ^ · · · ^ vr)
�

:= detA (15.8)

where A is the r ⇥ r matrix whose (i, j)th entry is pi(vj). Then extend this by
bilinearity to all elements. I will leave it to you to verify this is indeed a perfect
pairing.

We end today’s lecture by applying Theorem 14.41 to the functors
Vr : Vect!

Vect and
V

: Vect! Vect.

Corollary 15.26. Let ⇡ : E ! M be a vector bundle of rank k. Then for any
0  r  k, there is a vector bundle

Vr(E) ! M whose fibre over x 2 M is given
by
Vr(Ex). It has rank

�

k
r

�

. Similarly there is a vector bundle
V

(E)!M of rank
2k whose fibre over x 2 M is given by

V

(Ex). It is the direct sum of the vector
bundles

Vr(E).

Remark 15.27. Let V be k-dimensional vector space which is also an algebra
in the sense of Definition 15.17. Let ⇡ : E ! M be a vector bundle of rank k.
We say that E is an algebra bundle if each fibre Ex admits the structure of an
algebra, and there exists a bundle atlas of charts ↵ : ⇡�1(U) ! V such that for
each x 2 U the map ↵|E

x

: Ex ! V is not only a linear isomorphism but also an
algebra isomorphism. Thus the exterior algebra bundle

V

(E)! M is an example
of an algebra bundle.
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LECTURE 16

Sections of vector bundles

A fibre bundle ⇡ : E ! M is a surjective submersion between manifolds with the
property that the domain E has extra structure. Smooth maps that go in the
opposite direction are—from the point of view of fibre bundles—uninteresting unless
they respect this extra structure.

Definition 16.1. Let ⇡ : E ! M be a fibre bundle. A section of E is a smooth
map s : M ! E such that ⇡ � s = id, that is, a smooth map s : M ! E such that

s(x) 2 Ex, 8x 2M. (16.1)

The set of all sections is denoted by �(E). A local section of E is a section of the
bundle ⇡�1(U)! U of E over an open set U ⇢ M . We denote by �(U,E) the set
of all local sections with domain U .

Example 16.2. Here are some examples of sections:

(i) Let M be a manifold. A vector field X on M is a section of the tangent
bundle. Thus

X(M) = �(TM).

Similarly a vector field X defined on an open subset of M is a local section:

X(U) = �(U, TM).

In particular, if � : U ! O is a chart on M with local coordinates xi then @
@xi

is an element of �(U, TM).

(ii) In a similar vein, if f 2 C1(M) then in Example 4.12 we defined a section
df of T ⇤M . If f 2 C1(U) then df 2 �(U, T ⇤M).

(iii) A section of the trivial fibre bundle M ⇥ F ! M is the same thing as a
smooth map M ! F . Thus for instance, a section of M ⇥ R ! M is just a
smooth function on M .

(iv) Let ⇡1 : E1 ! M and ⇡2 : E2 ! M denote two vector bundles, and let
Hom(E1, E2) ⇠= E⇤

1 ⌦E2 !M denote the bundle obtained by applying Theo-
rem 14.41 to the functor L(⇤,⇤) (cf. (14.2)). A section � 2 �(Hom(E1, E2))
is a smooth map x 7! �x where �x : E1|x ! E2|x is a linear map. Thus:

�(Hom(E1, E2)) = {vector bundle homomorphisms � : E1 ! E2}.

(v) If G is a Lie group and H ⇢ G is a closed subgroup then the projection
map ⇡ : G ! G/H is a fibre bundle with fibre H (see Example 13.12). We
proved in Corollary 12.5 that ⇡ admitted local sections around every point,
and exploited this fact repeatedly in Theorem 12.11.

Will J. Merry, Di↵. Geometry I, Autumn 2018, ETH Zürich. Last modified: June 28, 2019.
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Lemma 16.3. Let ⇡ : E ! M be a fibre bundle and let s 2 �(U,E). Then s(U) is
an embedded submanifold of E of dimension equal to the dimension of M .

Proof. If � is a chart on V ⇢ U then � � ⇡ is a chart on s(V ).

Example 16.4. Let ⇡ : E !M be a vector bundle. The zero section o : M ! E
assigns to each x 2M the zero vector in Ex. This allows us to see M ⇠= o(M) ⇢ E
as an embedded submanifold of E.

The space of sections of a vector bundle has extra structure not present in
normal fibre bundles. We already saw this for vector fields in Lecture 7, but let us
go over it again here1.

Lemma 16.5. Let ⇡ : E ! M be a vector bundle. Then for any non-empty open
set U ⇢M , the set �(U,E) is a vector space and a module over the ring C1(U).

Proof. Suppose s 2 �(U,E). Let � : V ! O be a chart on V ⇢ U and let ↵ be
a vector bundle chart on E defined on ⇡�1(V ). Then as in Remark 13.7, we may
take (� � ⇡,↵) as a chart on E. The assumption that s is smooth means that the
composition

(� � ⇡,↵) � s � ��1 : O ! O ⇥ Rk

is smooth (here k is the rank of E as a bundle). Moreover the section property tells
us that this local map is of the form

(� � ⇡,↵) � s � ��1 = (id, s̃) (16.2)

where s̃ : O ! Rk is some smooth map. Just as in the proof of Proposition 7.2,
this argument reverses, and we see that a map s satisfying the section property is
smooth if and only if each local map s̃ is smooth.

With this in hand the lemma is trivial: if s and t are two sections and a 2 R
then x 7! a s(x) + t(x) certainly satisfies the section property (16.1), and its local
expression is given by as̃+ t̃ which is smooth if s̃ and t̃ are. Moreover if f 2 C1(U)
then we define

(fs)(x) := f(x) s(x), x 2 U.

The local expression of fs is f̃ s̃ where f̃ = f � ��1.

Definition 16.6. Let ⇡ : E ! M be a vector bundle of rank k and let U ⇢ M
be open. A local frame for E over U is a collection {e1, . . . , ek} of sections ei 2
�(U,E) such that {e1(x), . . . ek(x)} form a basis of the vector space Ex for each
x 2 U .

Local frames always exist for vector bundles: if ↵ : ⇡�1(U) ! Rk is a vector
bundle chart then if we define

ei(x) := ↵|�1
E

x

(ei), (16.3)

where ei is the standard basis vector in Rk, then ei is smooth (use the argument
from the proof of Lemma 16.5) and the collection {ei(x)} is a basis of Ex since

1In fact, many of the arguments in this lecture will feel reminiscent of arguments from Lecture
3 and 7—the reason for this will become clear next lecture, when we unify things using sheaves.
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↵|E
x

is a linear isomorphism. Conversely, the existence of a local frame over U
determines a vector bundle chart ↵ : ⇡�1(U) ! Rk. Indeed, if such a frame exists
then every point p 2 ⇡�1(U) can be written as a linear combination p = ai ei(x).
We define

↵ : ⇡�1(U)! Rk, p 7! (a1, . . . , ak). (16.4)

A global frame of a vector bundle is a frame defined on U = M . The next lemma
is the vector bundle version of Problem F.4.

Corollary 16.7. A vector bundle ⇡ : E ! M admits a global frame if and only
if it is trivial.

Remark 16.8. On Euclidean spaces, we typically used x = (x1, . . . , xn) for a point.
Then on manifolds we continued to use the notation xi, only instead of points these
were now local functions (see Remark 2.7). The same is now true on vector bundles:
ei no longer denotes a single vector in Rk, it is now a local section of a vector
bundle. Once again, the idea is to make the notation “look” as similar as possible
to standard di↵erential calculus on Euclidean spaces.

Remark 16.9. If {e1, . . . , ek} is a local frame for E over U then any map s : U ! E
satisfying the section property (16.1) can be written as

s = ai ei, for some functions ai : U ! R.

If we take the vector bundle chart ↵ on E from (16.4) associated to the local frame
{e1, . . . , ek} then for any chart � on M with appropriate domain, the function s̃
associated to s from (16.2) is given by

s̃(z) =
�

a1(��1(z)), . . . , ak(��1(z))
�

.

This tells us that s is smooth (and hence belongs to �(U,E)) if and only if the
functions ai are smooth functions on U .

Definition 16.10. A local frame {e1, . . . , ek} of E over U determines a local frame
{"1, . . . , "k} of the dual bundle E⇤ over U by requiring that

"i(x)(ej(x)) = �ij, for all x 2 U.

(Exercise: Why is this smooth?) One calls {"1, . . . , "k} the dual frame.

Remark 16.11. If s 2 �(U,E) then if we write s = ai ei for smooth functions ai as
per Remark 16.9 then observe that

"i(x)(s(x)) = ai(x).

Similarly if ! 2 �(U,E⇤) is any section of the dual bundle then we can write
! = bi "i where the function bi 2 C1(U) is given by

bi(x) = !(x)(ei(x)).
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Example 16.12. Let M be a smooth manifold of dimension n and let � : U ! O
be a chart on M with local coordinates xi. Then

⇢

@

@xi
| i = 1, . . . , n

�

is a local frame for TM over U . Similarly

{dxi | i = 1, . . . , n}
is a local frame for T ⇤M over U . This is the dual frame. Taking this one step
further,

⇢

@

@xi
⌦ dxj | 1  i, j  n

�

is a local frame for TM ⌦ T ⇤M over U .

In general, a section of a vector bundle is often (although not always) called
a field on M , where the “type” of field depends on the vector bundle. Thus for
instance, the tangent bundle consists of vectors; thus a section of the tangent bundle
is called a vector field.

Definition 16.13. A tensor field of type (r, s) on M is a section of T r,s(TM). We
normally use the special notation T r,s(M) for tensor fields. The space of sections
T r,s(U) := �(U, T r,s(TM)) is defined similarly; these are the tensor fields of type
(r, s) over U . We already briefly met these in Remark 7.18, and we will study these
in more depth in Lecture 18. Let us unpack this a bit. The bundle T r,s(TM) is the
bundle whose fibre over x 2M is

T r,s(TxM) := TxM ⌦ · · ·⌦ TxM
| {z }

r

⌦
s

z }| {

T ⇤
xM ⌦ · · ·⌦ T ⇤

xM.

If A 2 T r,s(M) then we can think of the value of A at x, which we write either as
A(x) or Ax (the latter is preferred if there are many variables) as a multilinear map

Ax : T
⇤
xM ⇥ · · ·⇥ T ⇤

xM
| {z }

r

⇥
s

z }| {

TxM ⇥ · · ·⇥ TxM ! R

thanks to Proposition 15.9. A tensor field of type (1, 0) is just a vector field: in this
case we think of X(x) : T ⇤

xM ! R as the linear map given by X(x)(p) := p(X(x)).
If A 2 T r,s(M) then and � : U ! O is a chart on M then locally we can write2

A = Ai1···ir
j1···js

@

@xi1
⌦ · · ·⌦ @

@xi
r

⌦ dxj1 ⌦ · · ·⌦ dxj
s (16.5)

where the function Ai1···ir
j1···js 2 C1(U) is defined by

Ai1...ir
j1...js(x) = Ax

✓

dxi1 |x, . . . , dxi
r |x, @

@xj1

�

�

�

x
, . . . ,

@

@xj
s

�

�

�

x

◆

.

2Expressions of this form are the main reason we introduced the Einstein Summation Con-
vention!
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An even more important example is the notion of a di↵erential form, which is
a section of the exterior algebra bundle of the cotangent bundle.

Definition 16.14. A di↵erential r-form (often simply called “an r-form”) on
M is a section of

Vr(T ⇤M). We use the special notation ⌦r(M) for the space of
di↵erential r-forms. If ! 2 ⌦r(M) and x 2 M then we can think of !(x) = !x as
an alternating map

!x : TxM ⇥ · · ·⇥ TxM
| {z }

r

! R,

thanks to Proposition 15.23.

We will come back to tensor fields and di↵erential forms in Lectures 18 and 19.
They are particularly important since they are the objects that can be integrated
on manifolds.

We now investigate how vector bundle homomorphisms act on sections. The
main result (Theorem 16.30), which we call the “Hom� Theorem3”, gives an alter-
native way to define a vector bundle homomorphism. In the next lecture we will
study this more abstractly; this will lead us to the relation between vector bundles
and locally free sheaves.

Definition 16.15. Let ⇡1 : E1 ! M and ⇡2 : E2 ! M denote two vector bundles
over the same manifoldM . Let � : E1 ! E2 denote a vector bundle homomorphism.
We define a map

�? : �(E1)! �(E2), s 7! � � s
The map �? is clearly a linear map between the two vector spaces �(E1) and

�(E2). Moreover a moment’s thought shows that �? is actually a module homo-
morphism, i.e. it is linear over C1(M). Indeed, if f 2 C1(M), s 2 �(E1), and
x 2M then

�?(fs)(x) = � � (fs)(x)
= �|E

x

(f(x)s(x))
(†)
= f(x)�|E

x

(s(x))

= (f�?(s))(x)

where (†) used the fact that �|E
x

is a linear map. The Hom-� Theorem tells us
that the converse holds: any C1(M)-linear map �(E1) ! �(E2) is induced by a
vector bundle homomorphism. This will require some preparation though, and we
begin with the following easy application of the Cuto↵ Functions Lemma 3.2.

Lemma 16.16. Let ⇡ : E ! M be a vector bundle and let s 2 �(U,E). Fix
x 2 U . Then there exists a global section ŝ 2 �(E) such that ŝ agrees with s on a
neighbourhood of x.

3Pronounced: the Hom-Gamma Theorem. NB: I made this name up. . .
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Proof. Choose a neighbourhood V of x with V ⇢ U . Choose a cuto↵ function
⌘ : M ! R such that ⌘(y) = 1 for all y 2 V and such that supp(⌘) ⇢ U . Define
ŝ : M ! E by

ŝ(y) :=

(

⌘(y)s(y), y 2 U,

0, y 2M \ U.
Then ŝ is smooth4 and agrees with s on the neighbourhood V of x.

Definition 16.17. Let ⇡1 : E1 !M and ⇡2 : E2 !M be two vector bundles over
the same manifold M . Suppose � : �(E1)! �(E2) is an R-linear operator. We say
that � is a local operator if whenever a section s 2 �(E1) vanishes on an open set
U ⇢M , �(s) 2 �(E2) also vanishes on U . We call � a point operator if whenever
a section s 2 �(E1) vanishes at a point x, �(s) also vanishes at x.

Any point operator is clearly a local operator, but the converse is not true.

Example 16.18. By part (iii) of Example 16.2, the space C1(R) can be identified
with the space of all sections of the trivial bundle R⇥ R! R. The operator

C1(R)! C1(R), f 7! f 0

is a local operator (since if f is constant on an open set its derivative is also constant
on that open set) but it is not a point operator.

More generally:

Example 16.19. Let M be a smooth manifold, and let X 2 X(M) denote a vector
field. Regard X as a derivation of C1(M) as in Proposition 7.7, or equivalently, as
a linear operator �(M ⇥ R)! �(M ⇥ R) (as in part (iii) of Example 16.1). Then
f 7! X(f) is a local operator by Corollary 3.5, but not a point operator.

Definition 16.20. Let ⇡ : E ! M be a vector bundle. An operator � : �(E) !
�(E) is said to satisfy the Leibniz rule if there exists a vector field X on M such
that for any f 2 C1(M) and s 2 �(E) one has

�(fs) = (Xf)s+ f�(s).

More generally still, we have the following result, whose proof is on Problem
Sheet I.

Proposition 16.21. If � satisfies the Leibniz rule then � is a local operator. If
X 6⌘ 0 then � is not a point operator.

We will eventually show that every C1(M)-linear map � : �(E1)! �(E2) is a
point operator.

Proposition 16.22. Let ⇡1 : E1 !M and ⇡2 : E2 !M be two vector bundles and
suppose � : �(E1) ! �(E2) is a local operator. Then for each open set U ⇢ M ,
there is a unique linear map �U : �(U,E1)! �(U,E2), called the restriction of �
to U , such that for any global section s, one has

�U(s|U) = �(s)|U . (16.6)
4Exercise: Why?
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Anticipating language that will be introduced next lecture, Proposition 16.20
tells us that local operators define presheaf morphisms.

Proof. Let s 2 �(U,E) and fix x 2 U . By Lemma 16.16 there exists a global
section ŝ of E that agrees with s in some neighbourhood V of x. We define

�U(s)(x) := �(ŝ)(x).

This is well-defined, i.e. independent of the choice of ŝ since � is a local operator.
Since �(ŝ) is smooth by assumption, it follows �U(s) is smooth at x, and since x
was arbitrary, �U(s) is smooth. Finally, if s is a global section then s is an extension
of s|U for any open U , and thus (16.6) follows.

As a first step to proving that every C1(M)-linear operator is a point operator,
let us prove the weaker statement that every such operator is a local operator.

Proposition 16.23. Let ⇡1 : E1 ! M and ⇡2 : E2 ! M be two vector bundles
and let � : �(E1)! �(E2) be a C1(M)-linear map. Then � is a local operator.

Proof. Suppose s 2 �(E1) vanishes on an open set U . Let x 2 U , and choose a
cuto↵ function ⌘ : M ! R such that ⌘(x) = 1 and supp(⌘) ⇢ U (using Lemma 3.2
again). Then ⌘ s is identically zero on M , and so �(⌘ s) is identically zero. However
evaluating at x and using C1(M)-linearity,

0 = �(⌘ s)(x) = ⌘(x)�(s)(x) = �(s)(x).

Since x was an arbitrary point of U , we have �(s)|U ⌘ 0 as required.

Proposition 16.24. Let ⇡1 : E1 ! M and ⇡2 : E2 ! M be two vector bundles
and let � : �(E1) ! �(E2) be a C1(M)-linear map. Let U ⇢ M be open. Then
the restriction operator �U : �(U,E1)! �(U,E2) is a C1(U)-linear map.

Proof. Let s 2 �(U,E1) and let f 2 C1(U). Fix x 2 U and let ŝ 2 �(E1) denote
a global section that agrees with s on a neighbourhood of x, and let f̂ be a global
smooth function that agrees with f on a neighbourhood5 of x. Then

�U(fs)(x) = �(f̂ ŝ)(x) = f̂(x)�(ŝ)(x) = f(x)�U(s)(x).

Since x was arbitrary, we see that �U(fs) = f�U(s), as required.

We can now prove:

Proposition 16.25. Let ⇡1 : E1 ! M and ⇡2 : E2 ! M be two vector bundles.
Let � : �(E1) ! �(E2) be a C1(M)-linear map. Then � is a point operator.
Conversely, if � is an R-linear point operator then � is C1(M)-linear.

5The existence of f̂ is a special case of Lemma 16.16, cf. part (iii) of Example 16.2, but it
was also proved directly in Step 2 or Proposition 3.3.
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Proof. Let s 2 �(E1). Suppose s(x) = 0. Choose an neighbourhood U of x
admitting a local frame {ei}. Then we can write

s|U = ai ei, ai 2 C1(U).

Since s(x) = 0 we have ai(x) = 0 for each i. We now compute:

�(s)(x)
(†)
= �U(s|U)(x)
= �U(a

i ei)(x)
(‡)
= ai(x)�U(ei)(x)

= 0

where (†) used Proposition 16.22 and (‡) used Proposition 16.24.
The converse is easier: fix f 2 C1(M), s 2 �(E1) and x 2 M . Let c := f(x).

Then fs � cs vanishes at x, and thus �(fs � cs)(x) = 0 as � is a point operator.
Since � is R-linear,

�(fs)(x) = �(cs)(x) = c�(s)(x) = f(x)�(s)(x).

Since x was arbitrary, �(fs) = f�(s).

As we have seen in Example 16.19, a vector field on a manifold can be thought
of an operator on the space of sections of the trivial bundle M ⇥R via f 7! X(f).
In Proposition 7.2 we proved that a map X : M ! TM satisfying the section
property (7.1) was smooth if and only if X(f) was a smooth function for every
smooth function f . The next result generalises this to arbitrary vector bundles.

Proposition 16.26. Let ⇡1 : E1 ! M and ⇡2 : E2 ! M be two vector bundles.
Suppose � : E1 ! E2 is a fibre-preserving map such that �|E

x

is linear for every
x 2M . Then � is smooth (and hence a vector bundle homomorphism) if and only
if �?(s) := � � s belongs to �(U,E2) for every s 2 �(U,E1).

Proof. If � is smooth then certainly � � s is smooth. For the converse, let x 2 M
and suppose � : U ! O is a chart on M with local coordinates xi. We may assume
that both E1 and E2 admit local frames over U ; call them {ej | j = 1, . . . , k} and
{e0i | i = 1, . . . , l} respectively. Since �? maps smooth sections to smooth sections,
there are functions f i

j 2 C1(U) such that

�?(ej) = f i
j e

0
i.

Now suppose p 2 ⇡�1
1 (U). We can write p = aj ej(x) for real numbers aj. Let ↵i

denote the corresponding vector bundle chart on Ei as in (16.4). Then (� � ⇡i,↵i)
is a manifold chart on Ei on ⇡

�1
i (U), and the local expression of � is of the form:

(� � ⇡2,↵2) � � � (� � ⇡1,↵1)
�1 =

�

id, (ajf 1
j , . . . , a

jf l
j) � ��1

�

,

which is smooth.

We need one more lemma, whose proof is analogous to Problem D.1 and is thus
left as an exercise.
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Lemma 16.27. Let ⇡ : E ! M be a vector bundle. Let x 2 M and let p 2 Ex.
Then there exists a section s 2 �(E) with s(x) = p.

The main step in the proof of the Hom-� Theorem is the next claim.

Proposition 16.28. Let ⇡1 : E1 ! M and ⇡2 : E2 ! M be two vector bundles.
Suppose � : �(E1)! �(E2) is a C1(M)-linear map. Then for each x 2M there is
a unique linear map �x : E1|x ! E2|x such that for all s 2 �(E1), one has

�x(s(x)) = �(s)(x).

Proof. Fix x 2 M and p 2 E1|x. By Lemma 16.27 there exists a section s such
that s(x) = p. Define �x(p) := �(s)(x). This definition is independent of the
choice of s, since if s1 was another such section then (s � s1)(x) = 0, and thus
�(s)(x) � �(s1)(x) = �(s � s1)(x) = 0 since � is a point operator by Proposition
16.25.

We claim that �x is a linear map. Indeed, if p1, p2 2 E1|x and a1, a2 2 R, then
if s1 and s2 are sections such that si(x) = pi then a1 s1 + a2 s2 is a section whose
value at x is a1 p1 + a2 p2 and

�x(a
1 p1 + a2 p2) = �(a1 s1 + a2 s2)(x)

= a1�(s1)(x) + a2�(s2)(x)

= a1�x(p1) + a2�x(p2).

Here is a corollary of Proposition 16.28 that will be useful in Lecture 18

Corollary 16.29. LetM be a smooth manifold. A C1(M)-linear map ! : X(M)!
C1(M) is a di↵erential 1-form on M , i.e. an element of ⌦1(M).

Proof. Apply Proposition 16.28 with E1 = TM and E2 equal to the trivial bundle
M ⇥ R. Thus if we are given a C1(M)-linear map ! : X(M) ! C1(M) then we
get for each x 2M a linear map

!x : TxM ! R.

By assumption !x(X(x)) is a smooth function on M for every x 2 M , which tells
us that x 7! !x is a smooth section of T ⇤M (use Remark 16.9 and Remark 16.11).
Since

V1(V ) = V for any vector space V , this tells us that ! is a smooth section
of
V1(T ⇤M), which is the same thing as a di↵erential 1-form.

We now move onto our main result.

Theorem 16.30 (The Hom-� Theorem). Let ⇡1 : E1 ! M and ⇡2 : E2 ! M be
two vector bundles. Then there is a one-to-one correspondence between

{vector bundle homomorphisms � : E1 ! E2}
and

{C1(M)-linear maps � : �(E1)! �(E2)}
given by

� 7! �?.
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(|) Remark 16.31. Let us explain the name “Hom-� Theorem”. This needs a
little more algebra. Let R be a commutative ring. The categoryModR of R-modules
has objects the R-modules, and morphisms

Hom(N1, N2) = {f : N1 ! N2 is an R-module homomorphism.}

If you are not familiar with modules, just think of the case R = R. Then an
R-module is a vector space, and

Hom(V,W ) = L(V,W ).

Alternatively, take R = Z: a Z-module is just an abelian group. Since a C1(M)-
linear map � : �(E1) ! �(E2) is the same thing as a C1(M)-module homomor-
phism, Theorem 16.30 tells us that

�(Hom(E1, E2)) ⇠= Hom(�(E1),�(E2)),

which can be loosely interpreted as

The functors Hom and � commute.

Proof of Theorem 16.30. We first prove surjectivity. If � : �(E1) ! �(E2) is a
C1(M)-linear map then by Proposition 16.28 there exists a linear map �x : E1|x !
E2|x such that for any s 2 �(E1), �x(s(x)) = �(s)(x). Define � : E1 ! E2 by
declaring that �|E1|x = �x. Then by Proposition 16.26, the map � is a vector
bundle homomorphism, and clearly �? = �.

To prove injectivity, suppose �? =  ?. Let x 2 M and p 2 E1|x and let
s 2 �(E1) be a section such that s(x) = p (using Lemma 16.27). Then

�(p) = �(s(x)) = �?(s)(x) =  ?(s)(x) =  (s(x)) =  (p).

Since x and p were arbitrary we conclude � =  as required.
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LECTURE 17

Sheaves and manifolds

Today’s lecture is another algebraic interlude (this will be the last such interlude of
the semester). We introduce the notion of a sheaf, and use this to unify many of
the concepts we’ve looked at during so far. Just as with the category theory from
Lecture 14, we will never actually use any genuine theorems in sheaf theory—for
us it will merely be a convenient way to concisely formulate other concepts.

Roughly speaking, a presheaf is a way to assign data locally to open subsets of
a topological space in such a way that it is compatible with restrictions. A sheaf is
a presheaf for which it is possible to go backwards and reassemble global data from
local data.

Definition 17.1. Let X denote a topological space. A presheaf F of sets on X
consists of:

(i) A set F(U) for every open set U ⇢ X.

(ii) For every pair U ⇢ V of open sets a map resVU : F(V ) ! F(U) called the
restriction map such that resUU = idF(U) for every U and such that

resWU = resVU � resWV , whenever U ⇢ V ⇢ W.

Definition 17.2. Let F and G be two presheaves onX. Amorphism of presheaves
� : F ! G is a family of maps �U : F(U)! G(U) such that for every pair of open
sets U ⇢ V the following diagram commutes:

F(V ) G(V )

F(U) G(U)

�
V

resV
U

resV
U

�
U

If � : F ! G and ⇠ : G ! H are two morphisms of presheaves over X then their
composition ⇠ � � : F ! H is defined as one would guess:

(⇠ � �)U := ⇠U � �U .

An isomorphism is a presheaf morphism such that each �U is a bijection.

This gives us the category PSh(X; Sets) of presheaves on X whose objects are
the presheaves on X and whose morphisms are presheaf morphisms.

Will J. Merry, Di↵. Geometry I, Autumn 2018, ETH Zürich. Last modified: June 28, 2019.
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Definition 17.3. Let C be an arbitrary category. A presheaf F on X with
values in C is defined in almost the same way, only now each F(U) must be an
object of C, each restriction map resVU must be a morphism in C, and morphisms
between two presheaves must also be morphisms in C.

To give a concrete example, let’s take C = Vect. A presheaf of vector spaces
is thus an assignment of a vector space F(U) for every open set U ⇢ X, and the
restriction maps resVU must be linear transformations F(V ) ! F(U). Finally if
� : F ! G is a morphism of presheaves of vector spaces then each �U must be a
linear transformation F(U) ! G(U). In particular, an isomorphism of presheaves
of vector spaces requires each �U to be a linear isomorphism.

(|) Remark 17.4. Here1 is an alternative more categorical definition of a presheaf.
Let Open(X) denote the category whose objects are the open sets of X and, for
two open sets U , V , the morphism space Hom(U, V ) consists of the inclusion map
U ,! V if U ⇢ V and is empty otherwise. Then a presheaf on X with values in C is
simply a contravariant functor Open(X)! C. A morphism � : F ! G is a natural
transformation � between the two functors.

If F is a presheaf on X and s 2 F(V ) then for U ⇢ V we normally abbreviate

s|U := resVU (s)

This fits in with the idea that we are “restricting” s to U . In fact, every single
presheaf we will care about in the course will be a presheaf of functions, which we
now define, and in this case restriction really is restriction.

Definition 17.5. LetX be a topological space and let S be a fixed set. A presheaf
of S-valued functions is a presheaf with the property that F(U) ⇢ Maps(U, S)
for all open sets U ⇢ X, where Maps(U, S) denotes the set of all functions from U
to S (i.e. the morphism set in category Sets).

Definition 17.6. Let F and G be two presheaves on X. We say that F is a
subpresheaf of G if for every open set U ⇢ X, F(U) ⇢ G(U), and for all U ⇢ V
open sets the restriction maps F(V )! F(U) are induced by the restriction maps
G(V )! G(U).

Thus if F is any presheaf of S-valued functions on X then F is a subpresheaf
of the presheaf of all S-valued functions on X.

Example 17.7. Let us see some standard examples of presheaves that will be
relevant to this course.

(i) Let X be a topological space and take S = R. Let CX denote the presheaf
that assigns to an open set U ⇢ X the set of continuous real-valued functions
on X:

CX(U) := C(U,R) = {f : U ! R continuous} .
CX is not just a presheaf of sets, but a presheaf of R-algebras (and thus also
a presheaf of rings and (infinite-dimensional) vector spaces).

1This lecture has quite a lot of (|) content—if you are not familiar with categories and
colimits, just ignore them!
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(ii) We can also consider di↵erentiable functions. Take X = R and let F(U) =
C1(U) denote the set of all smooth functions U ! R. This is a subpresheaf
of CR. We can think of di↵erentiation as a morphism D : F ! F . This is a
morphism of presheaves of vector spaces, since

D(af + bg) = af 0 + bg0 = aD(f) + bD(g)

but it is not a morphism of presheaves of algebras, since

D(fg) = fg0 + f 0g 6= D(f)D(g).

(iii) More generally, let M be a smooth manifold. Then the assignment U 7!
C1(U) is a presheaf of R-algebras on M . As before, di↵erentiation is a
morphism of presheaves of vector spaces, but not of algebras. We normally
denote this presheaf by C1

M .

(iv) Let ⇡ : E ! M be a vector bundle. Then U 7! �(U,E) is a presheaf of
(infinite-dimensional) vector spaces on M . It is not a presheaf of algebras
(unless E is an algebra bundle, cf. Remark 15.27), since in general there is
no way to multiply two sections together. We usually denote this presheaf by
EE.

(v) Let X be any topological space and let S be any set. Let F(U) denote the
set of all constant functions U ! S. Since a constant function f : U ! S can
be identified with its image s := f(U), one can simply think of F(U) as being
equal to S itself. In this case, all restriction maps are the identity map idS.
We call this the constant presheaf on X with values in S.

Let us now introduce a sheaf, which is a presheaf with an additional property.

Definition 17.8. Let F be a presheaf on X (of sets, rings, groups, etc.). We say
that F is a sheaf if the following condition is satisfied: for any open set U ⇢ X
and any open cover {Ua | a 2 A} of U , if we are given a collection sa 2 F(Ua) such
that

sa|Ua\Ub
= sb|Ua\Ub

, 8 a, b 2 A such that Ua \ Ub 6= ;, (17.1)

then there exists a unique s 2 F(U) such that s|Ua
= sa for all a 2 A.

Remark 17.9. Taking U = ; and choosing the covering with empty index set A = ;
shows that if F is a sheaf then F(;) is a set consisting of one element.

A morphism � : F ! G of sheaves is simply a morphism of the underlying
presheaves, and we denote by Sh(X;C) the category of sheaves on X with values
in C.

Remark 17.10. If we start with a presheaf of functions, as in Definition 17.5, the
condition (17.1) can be phrased in a slightly simpler fashion: if F is a presheaf of
S-valued functions on X then F is a sheaf if and only if for any open set U ⇢ X
and any open cover {Ua | a 2 A} of U , if f : U ! S is any function such that
f |Ua
2 F(Ua) for each a 2 A, then f 2 F(U).
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This reformulation makes it clear that the presheaf CX of continuous functions
on a topological space is actually a sheaf. The proof of the following result is on
Problem Sheet I.

Proposition 17.11. Let M be a smooth manifold. Then C1
M is a sheaf. More

generally, if ⇡ : E !M is any vector bundle over M then EE is a sheaf.

Not everything is a sheaf however: the presheaf of constant functions from part
(v) of Example 17.7 is not a sheaf ifX contains two disjoint non-empty open subsets
and S has more than one element2.

There is a natural way to turn a presheaf into a sheaf. This procedure is called
the sheafification of a presheaf. The definition is rather complicated, and for
our purposes unimportant (since the relevant presheaves in this course are already
sheaves thanks to Proposition 17.11). Thus we will content ourselves with giving
the definition only in the special case of a presheaf of functions.

Proposition 17.12. Let X be a topological space and let S be a set. Suppose F
is a presheaf of S-valued functions on X. Let

F̃(U) :=
n

f : U ! S |there exists an open covering {Ua | a 2 A}
of U such that f |Ua

2 F(Ua) for all a 2 A.
o

Then F̃ is a sheaf and the inclusion F(U) ,! F̃(U) induces a morphism of presheaves
ı : F ! F̃ .

Proof. This is clear from the reformulation of the sheaf condition given in Remark
17.10: we simply added in all the functions that were missing in order for F into a
sheaf.

Remark 17.13. If F already was a sheaf, then clearly F = F̃ .

Example 17.14. Let F be the presheaf of constant S-valued functions on X. As
we have remarked before, this is typically not a sheaf. However it is very easy to
describe the sheaf obtained from F via Proposition 17.12. Indeed, a little thought
shows that the sheaf F̃ is exactly the locally constant functions on S:

F̃(U) = {f : U ! S | f is locally constant} .
(|) Remark 17.15. The sheafification can be defined via a universal property
(compare Lemma 15.2): Let F be a presheaf on X. The sheafification F̃ and the
morphism ◆ : F ! F̃ of presheaves has the property that if G is any sheaf on X
and � : F ! G is any morphism of presheaves, then there exist a unique morphism
of sheaves � : F̃ ! G such that the following diagram commutes:

F F̃

G

ı

� �̃

2Exercise: Why?
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As such, via abstract nonsense3, the sheafification is unique up to isomorphism.

We now move onto discussing the stalk of a presheaf. This generalises the
notation of a germ of a function that we discussed in Lecture 2.

Definition 17.16. Let F be a presheaf on X, and let x 2 X. We define the stalk
of F at x to be:

Fx := {(U, s) | U is a neighbourhood of x, s 2 F(U)}
.

⇠

where (U, s) ⇠ (V, t) if there exists a neighbourhood W ⇢ U \ V such that s|W ⌘
t|W .

Thus for any neighbourhood U of x there exists a canonical map F(U) ! Fx

that sends s to the equivalence class of (U, s) in Fx, which we denote by s.

Lemma 17.17. Let � : F ! G be a morphism of presheaves. Then for each x 2 X
there is a well-defined map �x : Fx ! Gx defined as follows: if s 2 Fx is represented
by (U, s), then we declare that (U,�U(s)) is a representative of �x(s). Thus the
following diagram commutes:

F(U) Fx

G(U) Gx

s 7!s

�
U

�
x

t 7!t

Proof. We need only check this is well-defined. Suppose (U, s) ⇠ (V, t). Then there
exists W ⇢ U \ V such that s|W ⌘ t|W . Since � is a presheaf morphism, one has
that

�U(s)|W = �W (s|W ) = �W (t|W ) = �V (t)|W .

Thus (U,�U(s)) ⇠ (V,�V (t)).

(|) Remark 17.18. A more categorical way to define stalks is the following: given
x 2 X, let Openx(X) denote the full subcategory of Open(X) (cf. Remark 17.4)
consisting of neighbourhoods of x. Then if F is a presheaf on X, one has

Fx = colim�����!F(U)

where the filtered colimit runs over Openx(X). Similarly if � : F ! G is a morphism
of presheaves then

�x = colim�����!�U .

If F is a presheaf of groups, or rings, or modules, etc, then the stalks also
inherit that structure. We saw this in the concrete example where F = C1

M just
after Definition 2.8. As another example, suppose F is a sheaf of groups. Then Fx

is also a group, where we define the group law as follows: if s is represented by (U, s)
and t is represented by (V, t), then we declare s · t to be the element represented
by (U \ V, s|U\V · t|U\V ).

3i.e. category theory.
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(|) Remark 17.19. More generally, if C is a category in which filtered colimits
exist then for any x 2 X there is a functor PSh(X;C)! C given by F 7! Fx.

Let us now look at some operations on sheaves.

Definition 17.20. Let U be an open set of X. Then if F is any presheaf on X
then we can define a presheaf F|U on U by setting F|U(V ) := F(V ) for V ⇢ U
open. If F is a sheaf then so is F|U .
Definition 17.21. Let ' : X ! Y be a continuous map from one topological space
to another. Suppose F is a presheaf on X. We define a presheaf '?(F) on Y by
declaring that

'?(F)(U) := F('�1(U)), U ⇢ Y open.

We call '?(F) the direct image of F under '. If � : F ! G is a morphism of
presheaves on X then '?(�) : '?(F) ! '?(G) is a morphism on presheaves on Y ,
where

'?(�)U := �'�1(U) : '?(F)(U) = F('�1(U))! G('�1(U)) = '?(G)(U).

In this way we get a functor from presheaves on X to presheaves on Y . If F is
a sheaf on X then it is clear that '?(F) is a sheaf on Y .

Definition 17.22. A continuous ringed space consists of a pair (X,F) where
X is a topological space and F is a sheaf of subalgebras of the sheaf of continuous
functions on X. Explicitly, this means:

• F is a sheaf and F(U) ⇢ C(U,R) for each open set U ⇢ X.

• If f, g 2 F(U) and a, b 2 R then af + bg and fg both belong to F(U).

(|) Remark 17.23. The name “continuous ringed space” is not quite standard4.
In algebraic geometry, given a commutative ring R, one studies the more general
notion of a ringed space, which is defined to be a pair (X,F), where X is a
topological space and F is a sheaf of commutative, associative and unital R-algebras
on X. Thus what I call a “continuous ringed space” is the special case where R = R
and F is a subalgebra of the sheaf of continuous functions on X.

Algebraic geometers often restrict to a special class of ringed spaces, called lo-
cally ringed spaces, which are ringed spaces (X,F) with the additional property
that the stalk Fx is a local ring for every point x 2 X (i.e. it has a unique maximal
ideal). All continuous ringed spaces in the sense of Definition 17.22 are locally
ringed spaces; see Remark 2.9.

Definition 17.24. Let (X,F) and (Y,G) be two continuous ringed spaces. A
morphism of continuous ringed spaces is a continuous map ' : X ! Y with
the following property:

f 2 G(U) ) f � ' 2 F('�1(U)), for all open U ⇢ Y. (17.2)

4Actually, not at all standard, since I just made it up. . .
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Property (17.2) implies there is a well-defined sheaf morphism G ! '?(F) given
by

f 2 G(U) 7! f � ' 2 '?(F)(U).

An isomorphism of continuous ringed spaces is a homeomorphism ' such
that both ' and '�1 are morphisms of continuous ringed spaces.

We will now use the notion of a continuous ringed space to give an equivalent
definition of a manifold. This definition is more in the spirit of algebraic geometry,
and it has several advantages over the standard one, as we will shortly explain.

Definition 17.25. Let (M,F) be a continuous ringed space. We say (M,F) is a
smooth ringed space of dimension n if for every point x 2 M there exists a
neighbourhood U of x and a homeomorphism � : U ! O, where O is some open
subset of Rn, such that � defines an isomorphism of continuous ringed spaces

(U,F|U) ⇠= (O, C1
O ).

The next theorem tells us that this really is an alternative way to define a
manifold.

Theorem 17.26. Let M be a smooth manifold of dimension n. Then (M, C1
M ) is a

smooth ringed space of dimension n. Conversely, assume that (M,F) is a smooth
ringed space, and assume in addition that M is Hausdor↵, paracompact, and has
at most countably many components. Then there exists a unique smooth structure
on M such that F becomes the sheaf C1

M .

The proof is easy: one direction is clear from the definition of a smooth function
on a manifold (Definition 2.1), and for the other direction we (work a bit and then)
apply Proposition 1.22. I invite you to fill in the details (this is not examinable
though!)

Remark 17.27. In many ways, starting Lecture 1 by defining a manifold via Defi-
nition 17.25 would have been more e�cient. Here are some reasons why:

(i) There is no need to worry about equivalence classes of smooth atlases (cf.
Remark 1.17).

(ii) The definition of what it means for a continuous map ' : (M, C1
M )! (N, C1

N )
between two smooth manifolds to be smooth is much cleaner: it simply has
to be a morphism of continuous ringed spaces5.

(iii) The definition of a tangent vector as a derivation on the space of germs (i.e.
the stalks of the sheaf C1

M ) is far more natural.

(iv) This algebraic approach dramatically reduces the need to use local coordi-
nates, which are messy and irritating.

Nevertheless, the best part6 of di↵erential geometry is the “geometry”, and this
algebraic approach deletes most of said geometry. So we will not pursue it beyond
this lecture.

5Exercise: Check this!
6In my opinion, at least. . .
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We conclude this lecture by giving a sheaf-theoretic definition of a vector bundle.
This will also allow us to reinterpret the Hom� Theorem 16.30 from the last lecture
in a more algebraic way. First, some preliminary definitions.

Definition 17.28. Let (X,F) be a continuous ringed space. Let M be a sheaf
of abelian groups on X, and assume in addition that for every open set U ⇢ X,
the abelian group M(U) has the structure of an F(U)-module, and moreover the
restriction morphisms respect this structure, ie.

resVU (fs) = resVU (f) res
V
U (s), 8 f 2 F(V ), s 2M(V ).

Then we say that M is a sheaf of F-modules. A morphism � from one sheaf
M of F -modules to another sheaf N of F -modules is one such that each map
�U : M(U)! N (U) is F(U)-linear. We call such a � an F-morphism of sheaves.

Here is an example.

Example 17.29. Let ⇡ : E !M be a vector bundle. Then the sheaf EE of sections
of E is a sheaf of C1

M -modules. Indeed, this is just a fancy way of rephrasing Lemma
16.5.

We can also rephrase some of the results from the previous lecture.

Corollary 17.30. Let ⇡1 : E1 ! M and ⇡2 : E2 ! M , and suppose � : �(E1) !
�(E2) is an R-linear operator. Then � is a local operator in the sense of Definition
16.17 if and only if � = �M for a morphism of sheaves � : EE1 ! EE2 .

Proof. This is Proposition 16.22.

Corollary 17.31. Let ⇡1 : E1 !M and ⇡2 : E2 !M be two vector bundles over
M . Suppose � : EE1 ! EE2 is a C1

M -morphism of sheaves. Then �M : �(E1) !
�(E2) is a point operator in the sense of Definition 16.17.

Proof. This is Proposition 16.25.

Here is another more abstract example of an F -module.

Example 17.32. Let (X,F) be a continuous ringed space. Let n 2 N. Then the
sum

Fk(U) := F(U)� · · ·� F(U)
| {z }

k

is a free F -module of rank k.

More generally, if M is any F -module over X then we say that M is locally
free of rank k if for any x 2 X there exists a neighbourhood U of x and an
F|U -isomorphism of sheaves M|U ⇠= Fk. If M is locally free of rank k then with a
little work one can show that the stalk Mx is a free Fx-module of rank k.

Example 17.33. Let ⇡ : E !M be a vector bundle of rank k. Then the sheaf EE
is locally free of rank k. Indeed, this follows from the fact that for any x 2 M ,
there exists a neighbourhood U of x such that E admits a local frame {e1, . . . , ek}.
Then any s 2 �(U,E) can be written as a

s = ai ei, ai 2 C1(U),

and the correspondence s 7! (a1, . . . , ak) sets up an isomorphism EE|U with (C1
M |U)k.

8



Just as in Theorem 17.26, it is actually possible to work backwards and define
a vector bundle this way.

Theorem 17.34. Let M be a smooth manifold and let M be a sheaf of locally free
C1
M -modules of rank k. Then there exists a vector bundle ⇡ : E ! M and a C1

M -
isomorphism of sheaves from M to EE. Moreover E is unique up to vector-bundle
isomorphism.

This proof is non-examinable and is rather sketchy.

(|) Proof. The stalk FxM of C1
M is a local ring with maximal ideal mx equal to the

kernel of the evaluation map (see Remark 2.9). The stalk Mx is a free Fx-module
of rank k. Thus if we set

Ex := Mx

�

mxMx

then Ex is a vector space of dimension k. Now set E =
F

x2M Ex. If x 2 M and
U ⇢ M is a neighbourhood such that M|U ⇠= (C1

M |U)k then this gives us a basis
{e1(x), . . . , ek(x)} of Ex for every x 2 U , and thus a local frame for E. This gives
us a bundle chart via (16.4). We use this to define a fibre bundle structure on E
via Remark 13.7. The transition functions arising from a di↵erent choice of local
frame near x are linear by assumption, and thus we have built a vector bundle.

(|) Remark 17.35. Theorem 17.34 tells us that there is a one-to-one correspon-
dence (up to isomorphism) between vector bundles and locally free sheaves. From
the point of view of categories, this gives us a way to go from an object of the
category of vector bundles to an object of the category of finite rank locally free
sheaves. A souped-up version of Hom� Theorem from the previous lecture allows
us to extend this to morphisms too: i.e. a vector bundle homomorphism E1 ! E2 is
equivalent to an C1

M -morphism of sheaves. This allows us to conclude the following
result: there is an equivalence of categories between the category of vector bundles
over M and the category of finite rank locally free C1

M -modules.
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LECTURE 18

Tensor fields

In this lecture we return to tensor fields, as introduced in Definition 16.13 and
study them in more detail. Our eventual aim is to extend the Lie derivative LX as
a sheaf morphism on the tensor algebra sheaf TM , thus fulfilling the claims made
in Lecture 7 and Lecture 8.

Let M be a smooth manifold. Using Proposition 17.11, for each r, s � 0 there is
a sheaf T r,s

M over M which associates to an open set U ⇢M the infinite-dimensional
vector space of tensor fields of type (r, s) on U :

T r,s
M (U) := T r,s(U) = �(U, T r,s(TM)).

The subscript M is added as a notational hint that we are thinking of U 7! T r,s(U)
as a sheaf, and it will sometimes be omitted, particularly when we take U = M .
Thus T 0,0

M = C1
M is the sheaf of smooth functions on M and T 1,0

M is the sheaf of
vector fields on M .

If we set
TM(U) :=

M

r,s�0

T r,s
M (U) =

M

r,s�0

�(U, T r,s(TM))

then T is a sheaf of graded R-algebras over M , cf. Definition 15.18, where for
A 2 T r,s

M (U) and B 2 T r1,s1
M (U), the product A ⌦ B belongs to T r+r1,s+s1

M (U) and
is defined pointwise via Definition 15.18, see (15.3) and (15.4). We call TM the
tensor algebra sheaf on M .

Remark 18.1. As in (15.4), strictly speaking the tensor A ⌦ B needs its factors
rearranging. If for instance A = X1⌦!1 and B = X2⌦!2 for vector fields Xi and 1-
forms !i, then A⌦B should really be written asX1⌦X2⌦!1⌦!2 (so that the vector
field factors come first). In practice, this is inconvenient, and so we will often not
bother and just keep the factors unchanged, thus writing A⌦B = X1⌦!1⌦X2⌦!2.
This is harmless, since it was merely a convention to put the vector fields first (cf.
Corollary 15.14).

Remark 18.2. Warning: As explained in Remark 15.19, we cannot form a “vector
bundle”

L

r,s�0 T
r,s(TM), since we have not defined infinite-dimensional vector

bundles. Thus one cannot interpret T as a sheaf of sections of a vector bundle over
M .

The next result gives an alternative way to interpret tensors.

Theorem 18.3 (The Tensor Criterion). Let M be a smooth manifold and let
W ⇢M be a non-empty open set. Then there is a canonical identification between
T r,s(W ) and C1(W )-multilinear functions

⌦1(W )⇥ · · ·⇥ ⌦1(W )
| {z }

r

⇥
s

z }| {

X(W )⇥ · · ·⇥ X(W )! C1(W ).

Will J. Merry, Di↵. Geometry I, Autumn 2018, ETH Zürich. Last modified: June 28, 2019.

1

https://www.merry.io


The proof of Theorem 18.3 is on Problem Sheet I. We will typically suppress
this isomorphism from our notation, and thus interchangeably regard a tensor field
A over U either as an element of T r,s(U), or as an appropriate multilinear map.

(|) Remark 18.4. In Lecture 15 we defined tensor products for finite-dimensional
real vector spaces. However everything would have worked (without any changes
at all) if we worked with finite rank modules over a fixed commutative ring R. A
more interesting question is to what extent the finite rank hypothesis was needed.
Indeed, suppose V is a module over a commutative ring R. The dual module is
defined V ⇤ = HomR(V,R), and the space Multr,s(V ) is then defined be the set of
multilinear maps

V ⇥ · · ·⇥ V
| {z }

r

⇥
s

z }| {

V ⇤ ⇥ · · ·⇥ V ⇤ ! R.

One can then ask the question: is it true that T r,s(V ) andMults,r(V ) are isomorphic
modules?

T r,s(V )
?⇠= Mults,r(V ) (18.1)

The answer in general is no1. Nevertheless (18.1) it is true for some infinite-rank
modules. Rather than giving a precise theorem, let us just state the special case
we care about:

Theorem 18.5. Let ⇡ : E !M be a vector bundle. For any open set U ⇢M , the
space �(U,E) is a module over the ring C1(U) by Lemma 16.5, and in fact for this
module (18.1) is true:

T r,s(�(U,E)) ⇠= Mults,r(�(U,E)).

With Theorem 18.5 we can state the Tensor Criterion (Theorem 18.3) more
succinctly as:

T r,s(W ) ⇠= T r,s(X(W )), (18.2)

where we are using Corollary 16.29 to identify the dual module of X(W ) with
⌦1(W ). This could also be called the “Tensor-� Theorem” in analogy with the
Hom-� Theorem 16.30, since (18.2) is just compact notation for

�(W,T r,s(TM)) ⇠= T r,s(�(W,TM)),

which is (almost) saying that the functors T r,s and � “commute”.
Note also that W 7! T r,s(X(W )) does not naturally form a sheaf (in fact, not

even a presheaf). Indeed, if U ⇢ W then there is no obvious way to “restrict” a
multilinear map with arguments in the module X(W ) (and its dual) to a multilinear
map with arguments in X(U).

Remark 18.6. Every di↵erential geometer should at one point in their life compute
tensor fields in coordinates. This is soul-destroyingly boring and I really don’t want
to type it out left as a wholesome exercise for you to enjoy on Problem Sheet J.

1Exercise: Spot all the places in the proof of Proposition 15.9 that go wrong when V is allowed
to be infinite-dimensional.
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In Lecture 7 we showed how a di↵eomorphism ' : M ! N can “push forward”
a function f on M to a function on N , written '?(f) and similarly a vector field X
on M to a vector field on N , written '?(X). We will shortly generalise this to all
tensors, but first let us show how any smooth map ' : M ! N (not necessarily a
di↵eomorphism) can “pull back” a tensor field of type (0, s) on N to a tensor field
of type (0, s) on M .

Definition 18.7. Suppose now that ' : M ! N is a smooth map between two
smooth manifolds, and suppose A 2 T 0,s(N) is a (0, s) tensor field on N . We define
the pullback of A by ', written2 '?(A) to be the tensor field on T 0,s(M) defined
pointwise as follows: If s > 0 then:

'?(A)x(v1, . . . , vs) := A'(x)

�

D'(x)[v1], . . . , D'(x)[vs]
�

, 8 x 2M, vi 2 TxM.

Meanwhile for s = 0 we simply set '?(f) := f � '.
It is immediate that '? is R-linear. Moreover if f 2 C1(N) then

'?(fA) = (f � ')'?(A).

Note also that if  : L ! M then (' �  )? =  ? � '?. This definition immediately
extends to define

'? :
M

s�0

T 0,s(N)!
M

s�0

T 0,s(M),

and this is an algebra morphism, i.e.

'?(A⌦ B) = '?(A)⌦ '?(B).

Unravelling the definitions also shows that '? defines a sheaf morphism

'? : T 0,s
N ! '?(T 0,s

M )

of sheaves over3 N .
To extend this definition to tensors of arbitrary type, we need to assume that

' is a di↵eomorphism. First let us introduce the notion of a cotangent lift.

Definition 18.8. Let ' : M ! N be a di↵eomorphism. Then D'(x) : TxM !
T'(x)N is a linear isomorphism for each x, and thus we can speak of its inverse
(D'(x))�1 : T'(x)N ! TxM (this coincides with the di↵erential of '�1 at the point
'(x)). Thus there is a well-defined map

(D')† : T ⇤M ! T ⇤N,

called the cotangent lift defined for x 2M , p 2 T ⇤
xM and v 2 T'(x)N by

(D')†(x)[p][v] := p
�

(D'(x))�1[v]
�

2The upper star indicates that ' 7! '? is contravariant, i.e. it reverses the direction of the
arrows.

3Note one has to use the direct image sheaf here in order to get a sheaf morphism, since (by
definition) sheaf morphisms are only defined over the same base space!
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The cotangent lift makes the following diagram commute:

T ⇤M T ⇤N

M N

(D')†

⇡
M

⇡
N

'

where ⇡M : T ⇤M ! M and ⇡N : T ⇤N ! N are the projections. Thus (D')† is a
vector bundle morphism along '.

Definition 18.9. Now suppose ' : M ! N is a di↵eomorphism. Then we can
define the pullback tensor '?(A) 2 T r,s(M) for a tensor A 2 T r,s(N) of arbitrary
type (r, s) by setting

'?(A)x(p1, . . . , pr,v1, . . . , vs)

:= A'(x)

⇣

D'†(x)[p1], . . . , D'†(x)[pr], D'(x)[v1], . . . , D'(x)[vs]
⌘

for x 2M , p1, . . . , pr 2 T ⇤
xM and v1, . . . , vs 2 TxM .

Remark 18.10. More generally, if ' : U ⇢M ! N is a locally defined map which
is a di↵eomorphism onto its image V = '(U) then we can still use ' to pull back
tensor fields of arbitrary type from V to U .

Thus when ' is a di↵eomorphism we can construct a well-defined map '? : T (N)!
T (M) on the entire tensor algebra, and thus a sheaf morphism TN ! '?(TM) of
graded R-algebras, i.e.

'?(A⌦ B) = '?(A)⌦ '?(B). (18.3)

Finally we can invert this to obtain the desired map from Remark 7.18.

Definition 18.11. Let ' : M ! N be a di↵eomorphism. We define '? := ('�1)?,
which is therefore a map from T (M) ! T (N) (or a sheaf morphism TM !
('�1)?(TN)).

In the special case r = s = 0, the map '? sends a function f to f � '�1. In the
special case r = 1 and s = 0, one has

'?(X)(x) = D'('�1(x))[X('�1(x))],

and thus in both cases these extend the definitions from Lecture 7.
We now work towards extending the Lie derivative LX to a tensor derivation on

T (M). On T 0,0(M) we already defined LX(f) = X(f), and on T 1,0(M) we already
defined LX(Y ) = [X, Y ]. To extend the definition to higher tensors we first need a
little bit of linear algebra.

Definition 18.12. Let V be a vector space and fix r, s � 0. Choose h  r and
k  s. The (h, k)th contraction, written Ch,k is the linear operator

Ch,k : T r,s(V )! T r�1,s�1(V )
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defined on decomposable elements by feeding the hth V -factor to the kth V ⇤ factor:

Ch,k(v1 ⌦ · · ·⌦ vh ⌦ · · ·⌦ vr ⌦ p1 ⌦ · · ·⌦ pk ⌦ · · ·⌦ ps) :=

pk(vh) · v1 ⌦ · · ·⌦ vh�1 ⌦ vh+1 ⌦ · · ·⌦ vr ⌦ p1 ⌦ · · ·⌦ pk�1 ⌦ pk+1 ⌦ · · ·⌦ ps

and then extending by linearity.

Lemma 18.13. Assume dimV = n. Let A 2 T r,s(V ), and regard A as defining
an element of Mults,r(V ) as in Proposition 15.9. Let {e1, . . . , en} be a basis of V
with dual basis {e1, . . . , en} of V ⇤. Then if we regard Ch,k(A) also as an element of
Mults�1,r�1(V ), one has

Ch,k(A)(w1, . . . , ws�1, q
1, . . . , qr�1)

=
n
X

i=1

A(w1, . . . , ei
kth position

, . . . , ws�1, q
1, . . . , ei

hth position

, . . . qr�1).

Proof. It su�ces to prove the equality for decomposable elements. Let us tem-
porarily write add a tilde to denote the multilinear map corresponding to a given
tensor. For simplicity assume (r, s) = (2, 3), and assume A = v1⌦ v2⌦ p1⌦ p2⌦ p3.
Then as in Remark 15.11, the corresponding map Ã 2 Mult3,2(V ) is given by

Ã(w1, w2, w3, q
1, q2) = q1(v1) q

2(v2) p
1(w1) p

2(w2) p
3(w3).

Take (h, k) = (1, 2). Then C1,2(A) = p2(v1) · v2 ⌦ p1 ⌦ p3. We compute4

C1,2(Ã)(w1, w2, q
1)

def
=

n
X

i=1

Ã(w1, ei, w2, e
i, q1)

=
n
X

i=1

ei(v1) q
1(v2) p

1(w1) p
2(ei) p

3(w2)

=

 

n
X

i=1

ei(v1) p
2(ei)

!

q1(v2) p
1(w1) p

3(w2).

But
n
X

i=1

ei(v1) p
2(ei) = p2(v1),

and thus
C1,2(Ã) = Ĉ1,2(A)

which is what we wanted to prove.

A contraction Ch,k extends to define an operator on tensor fields in an obvious
fashion. For instance, if A 2 T 2,1(M) is a the decomposable tensor X ⌦ Y ⌦ ! for
X, Y 2 X(M) and ! 2 ⌦1(M) then C1,1(A) = !(X)Y . Thus we can think of Ch,k

as sheaf morphism T r,s
M ! T r�1,s�1

M . If ' is a (possibly local) di↵eomorphism then
for any contraction Ch,k one has

'?
�

Ch,k(A)
�

= Ch,k
�

'?(A)
�

, (18.4)

as can be easily checked.

4We include the summation signs to minimise the risk of confusion.
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Definition 18.14. A tensor derivation is a sheaf morphism D : TM ! TM that
preserves type and which in addition satisfies the following two properties:

(i) For any open set U ⇢M , DU commutes with all contractions of T (U).

(ii) For any open set U ⇢M , DU is a derivation in the sense that

DU(A⌦ B) = DU(A)⌦ B + A⌦DU(B)

for all A,B 2 T (U).

Lemma 18.15. Suppose D is a tensor derivation on M , suppose A 2 T r,s(M), and
suppose X1, . . . , Xs 2 X(U), and !1, . . . ,!r 2 ⌦1(U). Then:

DU(A)(!1, . . . ,!r, X1, . . . , Xs) =DU

�

A(!1, . . . ,!r, X1, . . . , Xs)
�

(18.5)

�
r
X

i=1

A(!1, . . . ,DU(!i), . . . ,!r, X1, . . . , Xs)

�
s
X

i=1

A(!1, . . . ,!r, X1, . . .DU(Xi), . . . Xs)

Proof. The (0, 0)-tensor A(!1, . . . ,!r, X1, . . . , Xs) can be thought of as being ob-
tained from the (r+ s, r+ s) tensor5 A⌦!1⌦ · · ·⌦!r⌦X1⌦ · · ·⌦Xs by repeated
contractions. We write this symbolically as

A(!1, . . . ,!r, X1, . . . , Xs) = C(A⌦ !1 ⌦ · · ·⌦ !r ⌦X1 ⌦ · · ·⌦Xs),

where C stands for repeated contractions. The claim now follows by repeatedly
using (i) and (ii) from the definition of a tensor derivation.

Corollary 18.16. Suppose D and D0 are two tensor derivations that agree on
functions and vector fields. Then they are identical.

Proof. Let ! be a 1-form. Then by Lemma 18.15 with A = ! we see for an arbitrary
vector field X that

D(!)(X) = D(!(X))� !(D(X))

= D0(!(X))� !(D0(X))

= D0(!)(X).

Since X was arbitrary, this shows that D(!) = D0(!), and since ! was arbitrary
this shows that D and D0 coincide on tensors of type (0, 1). Now for an arbitrary
A, observe that (18.5) expands D(A) in such a way that all the other terms are of
the form D eating a function, a vector field, or a 1-form. Thus D(A) = D0(A) for
arbitrary A.

The next result shows how one can work backwards and build a tensor derivation
if we have something defined on functions and vector fields with the appropriate
property.

5As in Remark 18.1, we don’t bother to reorder the factors in this expression.

6



Proposition 18.17. Suppose we have a sheaf morphism D on smooth functions
and vector fields which satisfies

DU(fg) = DU(f)g + fDU(g), DU(fX) = DU(f)X + fDU(X) (18.6)

for all f, g 2 C1(U) and X 2 X(U). Then D extends uniquely to a tensor deriva-
tion.

Note the two conditions in (18.6) are forced if we want D to be a tensor deriva-
tion, since f ⌦ g = fg and f ⌦X = fX (cf. (15.5)).

Proof. Uniqueness is immediate from the previous corollary, since we have pre-
scribed what D must do to vector fields and functions. The proof proceeds very
similarly to that of Corollary 18.16: the derivation property coupled with our re-
quirement that D commutes with contractions means that at every stage we have
no choice how to proceed.

Namely, we define D on 1-forms by setting

DU(!)(X) = DU(!(X))� !(DU(X)). (18.7)

The hypotheses imply that D : T 0,1
M ! T 0,1

M is a sheaf morphism. Next to define
DU on T 1,1(U) we start with a tensor of the form X ⌦ !. The derivation property
requires us define

DU(X ⌦ !) := X ⌦DU(!) +DU(X)⌦ !.
If DU commutes with the contraction C1,1 : T 1,1

M ! C1
M then we need

DU(!(X)) = C(DU(X ⌦ !))
= C(X ⌦DU(!) +DU(X)⌦ !)
= DU(!)(X) + !(DU(X)),

and this is true by (18.7). This also shows that (18.7) was forced—no other choice
would have worked. Now we use the formula from Lemma 18.15 to define D on
all higher tensors. A check similar to the one we just did shows that the resulting
object is a derivation that commutes with all contractions.

We now obtain our promised extension of the Lie derivative.

Theorem 18.18. LetX 2 X(M). There exists a unique tensor derivation LX : TM !
TM that extends the Lie derivative defined on functions and vector fields from Lec-
ture 8.

Lemma 18.15 tells us how to compute LX(A). For instance, if A 2 T 0,s(M)
then

LX(A)(Y1, . . . , Ys) = X
�

A(Y1, . . . , Ys)
��

s
X

i=1

A
�

Y1, . . . , Yi�1,LX(Yi), Yi+1, . . . , Ys

�

.

Of course this isn’t very satisfactory, since we haven’t actually given an explicit
formula for LX . We conclude this lecture by remedying this:
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Definition 18.19. Let X 2 X(M) with flow ✓t. Then for any tensor field A, define
a new tensor

L̃X(A) :=
d

dt

�

�

�

t=0
✓?t (A) = lim

t!0

✓?t (A)� A

t
(18.8)

The expression is well-defined by Remark 18.10. We now prove:

Proposition 18.20. Let X 2 X(M) with flow ✓t. Then for any tensor A, one has:

LX(A) = L̃X(A)

To prove Proposition 18.20 we use the following result, which will be useful
elsewhere.

Proposition 18.21. Let (r, s), (r0, s0) and (r00, s00) be three pairs of non-negative
integers. Suppose we are given a C1

M -bilinear sheaf homomorphism

A : T r,s
M ⇥ T r0,s0

M ! T r00,s00

M .

Assume in addition that A has the property that if ' : U ! V is a local di↵eomor-
phism between open sets of M then

'?(AV (A,B)) = AU('
?(A),'?(B)). (18.9)

Then for every vector field X on M , one has

L̃X(A(A,B)) = A(L̃X(A), B) +A(A, L̃X(B)).

The proof of Proposition 18.21 is on Problem Sheet J.

Proof of Proposition 18.20. Since ✓?t = ((✓t)�1)? = (✓�t)? it follows from the defini-
tions that L̃X = LX on functions and vector fields. Thus if we can show that L̃X

is a tensor derivation, it will follow from the uniqueness part of of Theorem 18.18
that LX = L̃X .

Thus we must show that L̃X is a derivation that commutes with contractions.
For this we use Proposition 18.21. Taking A(A,B) := A ⌦ B shows that L̃X

is a derivation (note (18.9) is satisfied by (18.3)). Similarly taking for instance
A(A,B) = C1,1(A⌦ B) shows that

X(!(Y )) = L̃X(!)(Y ) + !(L̃X(Y ))

again, (18.9) is satisfied by (18.4). More generally, taking A(A,B) = Ch,k(A⌦ B)
shows that L̃X commutes with Ch,k. This completes the proof.

From now on, we will just write LX for both the operator LX from Theorem
18.18 and the operator defined in (18.8).
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LECTURE 19

Di↵erential forms

In this lecture we study di↵erential forms in depth. Let M be a smooth manifold
of dimension n, and let 0  r  n. We denote by ⌦r(M) = �(

Vr(T ⇤M)) the
space of sections of the bundle

Vr(T ⇤M) ! M . An element of ⌦r(M) is called
a di↵erential r-form or just a r-form. Similarly if U ⇢ M is an open set then
we denote by ⌦r(U) = �(U,

Vr(T ⇤M)) the sections defined only on U . The space
⌦r(U) is a module over the ring C1(U).

The assignment U 7! ⌦r(U) is a sheaf of vector spaces on M by Proposition
17.11. We write the sheaf as ⌦r

M . (As with tensors, the subscript M is simply there
as a notational hint that we are thinking of this as a sheaf).

Thus for r = 0, a di↵erential 0-form is simply a function1, and for r = 1 a
di↵erential 1-form is the same thing as a tensor of type (0, 1). The next result is
proved in the same way as the Tensor Criterion (Theorem 18.3), and I leave the
details to you.

Theorem 19.1 (The Di↵erential Form Criterion). Let M be a smooth manifold
and let W ⇢ M be a non-empty open set. Then there is a canonical identification
between ⌦r(W ) and alternating C1(W )-multilinear functions

X(W )⇥ · · ·⇥ X(W )
| {z }

r

! C1(W ).

Since an alternating multilinear map is (in particular) a multilinear map, we
see that any di↵erential r-form may be regarded as a tensor of type (0, r). But for
r � 2, there are (many) multilinear maps that are not alternating, and thus not
every tensor of type (0, r) is a di↵erential form. We define

⌦(M) =
M

0rn

⌦r(M),

with ⌦(U) defined similarly. The sheaf U 7! ⌦(U) is denoted by ⌦M . Thus an
element of ⌦(M) is a sum

Pn
i=0 !i where !i 2 ⌦i(M).

Definition 19.2. If ! 2 ⌦r(M) and # 2 ⌦s(M) then the wedge product is the
di↵erential form ! ^ # 2 ⌦r+s(M) defined pointwise by

(! ^ #)(x) = !(x) ^ #(x)
Since

Vr(V ) = 0 if r > dimV , the wedge product ! ^ # is zero if r + s > n.
Note that by part (ii) of Proposition 15.21, one has

! ^ # = (�1)rs# ^ !, ! 2 ⌦r(M),# 2 ⌦s(M)

Will J. Merry, Di↵. Geometry I, Autumn 2018, ETH Zürich. Last modified: June 28, 2019.
1This is because (by definition)

V0(V ) = R for any vector space V .

1

https://www.merry.io


The wedge product gives ⌦(M) the structure of graded ring, and in fact, also a
C1(M)-graded skew-commutative2 algebra. Thus ⌦M is a sheaf of graded skew-
commutative algebras.

It follows from Corollary 15.25 that if � : U ! O is a chart on M then a local
frame from

Vr(T ⇤M)!M over U is given by the collection

{dxi1 ^ · · · ^ dxi
r | i1 < · · · < ir}.

Thus by Remarks 16.9 and 16.11, we can locally write a di↵erential r form as

! = !i1···irdx
i1 ^ · · · ^ dxi

r (19.1)

where !i1...ir 2 C1(U). Here is a useful piece of linear algebra, whose proof is on
Problem Sheet J. We let Sr denote the group of all permutations on r letters.

Definition 19.3. Let r, s � 0. A (r, s)-shu✏e is a permutation % 2 Sr+s such
that

%(1) < · · · < %(r) and %(r + 1) < · · · < %(r + s).

We let Shu✏e(r, s) ⇢ S(r + s) denote the set of all (r, s)-shu✏es.

Lemma 19.4. Let V be a vector space and suppose ! 2 Vr(V ⇤) and # 2 Vs(V ⇤).
Let vi 2 V for i = 1, . . . , r + s. Then if we identify ! with an element of Altr(V ),
# with an element of Alts(V ) and ! ^ # with an element of Altr+s(V ), one has:

(! ^ #)(v1, . . . , vr+s) =
1

r!s!

X

%2S
r+s

sgn(%)!
�

v%(1), . . . , v%(r)
�

#
�

v%(r+1), . . . , v%(r+s)

�

or equivalently

(! ^ #)(v1, . . . , vr+s) =
X

%2Shu✏e(r,s)

sgn(%)!
�

v%(1), . . . , v%(r)
�

#
�

v%(r+1), . . . v%(r+s)

�

.

For low values of r and s this gives an easy method to compute the wedge
product of two di↵erential forms. For instance, we have:

Corollary 19.5. Let !,# 2 ⌦1(M) denotes two 1-forms. Then

(! ^ #)x(v, w) = !x(v)#x(w)� !x(w)#x(v), 8 x 2M, 8 v, w 2 TxM.

A smooth map ' : M ! N can pull back di↵erential forms in the same way
that it pulls back tensors of type (0, r).

Definition 19.6. Let ' : M ! N denote a smooth map. Given ! 2 ⌦r(N), we
define the pullback form '?(!) 2 ⌦r(M) by

'?(!)x(v1, . . . , vr) := !'(x)(D'(x)[v1], . . . D'(x)[vr]).

This defines a map '? : ⌦r(N) ! ⌦r(M), and thus also a map '? : ⌦(N) !
⌦(M). The next lemma tells us that '? is an algebra homomorphism.

2The “skew-commutative” refers to the sign (�1)rs.
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Lemma 19.7. If ' : M ! N is a smooth map and !,# 2 ⌦(N) then

'?(! ^ #) = '?(!) ^ '?(#)

Proof. Immediate from Lemma 19.4 and the definition.

Note also that (just as with tensors), the pullback operation is functorial: if
' : M ! N and  : L!M then

(' �  )? =  ? � '? (19.2)

as maps ⌦(N)! ⌦(L).

(|) Remark 19.8. We can phrase this abstractly as the following statement: There
is a contravariant functor Man! Algebras that assigns to a manifold M the algebra
⌦(M) of di↵erential forms, and assigns to a smooth map ' : M ! N the algebra
homomorphism '? : ⌦(N)! ⌦(M).

Definition 19.9. Since any di↵erential form ! 2 ⌦r(M) can be thought of a tensor
of type (0, r), we can apply the Lie derivative LX to it to obtain another tensor
of type (0, r), denoted by LX(!). In fact, from Lemma 18.15 the tensor LX(!)
is easily seen to be alternating, and hence LX(!) is another di↵erential r-form.
Explicitly, by (18.5) one has

LX(!)(Y ) = X(!(Y ))� !([X, Y ]), ! 2 ⌦1(M), X, Y 2 X(M), (19.3)

and more generally

LX(!)(X1, . . . , Xr) = X(!(X1, . . . , Xr))�
r
X

i=1

!(X1, . . . , [X,Xi], . . . Xr) (19.4)

for ! 2 ⌦r(M) and X,X1, . . . , Xr 2 X(M). Thus the Lie derivative defines an
operator LX : ⌦r(M)! ⌦r(M), and hence also an operator LX : ⌦(M)! ⌦(M).

Here is how the Lie derivative behaves with respect to the wedge product.

Lemma 19.10. Let !,# 2 ⌦(M). Then

LX(! ^ #) = LX(!) ^ #+ ! ^ LX(#).

Proof. Apply3 Proposition 18.21 with A(!,#) = ! ^ #.
Remark 19.11. The Lie derivative LX gives us a way to “di↵erentiate” a tensor
field (or a di↵erential form) with respect to a vector field, but it does not allows
us di↵erentiate a tensor field (or di↵erential form) with respect to a single tangent
vector. Indeed, the value of LX(A) at a point x depends on the values of X
on a whole neighbourhood of x, not just on X(x). This is because X 7! LX is

3Strictly speaking, this is a slight modification of Proposition 18.21 for di↵erential forms
instead of tensors, but the proof is exactly the same.
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not C1(M)-linear. For instance, if A is a 1-form ! then for X, Y 2 X(M) and
f 2 C1(M),

LfX(!)(Y ) = (fX)!(Y )� !([fX, Y ])
(†)
= fX(!(Y ))� !(f [X, Y ]� Y (f)X)

= fLX(!)(Y ) + Y (f)!(X),

where (†) used Problem D.4. The presence of the “error term” Y (f)!(X) shows
that LfX 6= fLX .

The first topic we will cover next semester will be connections in vector bundles
and principal bundles (the latter will be defined in Lecture 24). A connection on the
tangent bundle TM induces a covariant derivative rX on tensor fields associated
to every vector field X. As we will see, a covariant derivative rX will have the nice
property that rfX = frX , and thus this will give us a notion of di↵erentiation
that works pointwise. The downside it that it requires a choice of extra structure
(namely, a connection). Meanwhile the Lie derivative is canonical.

Di↵erential forms are typically more important than tensors in geometry for
two key reasons:

• We can di↵erentiate them.

• We can integrate them.

We will discuss di↵erentiation in this lecture. Integration will be covered next
week. Let us motivate this by considering the special case of a 0-form, i.e. a
smooth function. If f 2 C1(M) and X is a vector field, then the Lie derivative
LX(f) = X(f) = df(X) can be thought of a “directional derivative” of f . However
it is not what we would actually call the “derivative” of f : that would be the
map Df : TM ! TR, or equivalently, the di↵erential4 of f , which is the 1-form
df 2 ⌦1(M). This tells us that the di↵erential of a 0-form is a 1-form. Generalising
this, we will define the di↵erential of a r-form ! to be a (r + 1)-form d!.

As with tensor derivations, we will think of the di↵erential as a sheaf morphism.
Let us start with the following general definition.

Definition 19.12. Let M be a smooth manifold and let h 2 Z. A graded deriva-
tion of degree h on M is an R-linear sheaf morphism D : ⌦M ! ⌦M which
satisfies:

• If ! 2 ⌦r(U) then DU(!) 2 ⌦r+h(U).

• If ! 2 ⌦r(U) and # 2 ⌦(U) then

DU(! ^ #) = DU(!) ^ #+ (�1)hr! ^DU(#). (19.5)

The first condition tells us that D restricts to define sheaf morphisms

D : ⌦r
M 7! ⌦r+h

M .

The second condition can be phrased as saying that D should be a sheaf morphism
of graded skew-commutative algebras.

4Recall from Remark 4.13 that the di↵erence between the derivative Df and the di↵erential
df is essentially just notation, and indeed many authors denote them both by the same letter.
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Example 19.13. The Lie derivative LX is a graded derivation of degree 0 by Lemma
19.10.

Definition 19.14. A 1-form ! 2 ⌦1(U) is called exact if ! = df for some f 2
C1(U).

Just as a tensor derivation is entirely determined by what it does to functions
and vector fields, a graded derivation is entirely determined by what it does to
functions and exact 1-forms.

Proposition 19.15. Suppose D and D0 are two graded derivations of the same
degree h. If D and D0 agree on functions and exact 1-forms then D = D0.

Proof. Since a graded derivation is a sheaf morphism, it is entirely determined by
all its restrictions DU where U ⇢ M is the domain of a chart � : U ! O. If xi are
the local coordinates of � then by (19.1), any ! 2 ⌦r(U) can we written as a sum
of elements of the form

fdxi1 ^ · · · ^ dxi
r .

Since D is R-linear, DU is determined by what it does to such a term. But by
repeatedly applying (19.5), we see that DU(fdxi1 ^ · · · ^ dxi

r) is determined by
DU(f) and DU(dxi

j). Thus if two graded derivations agree on functions and exact
1-forms then they are identical.

Remark 19.16. Suppose D and D0 are two graded derivations of degrees h and k
respectively. Then

D �D0 � (�1)hkD0 �D
is another graded derivation of degree h+ k.

Here is the main result of today’s lecture.

Theorem 19.17 (The exterior di↵erential). Let M be a smooth manifold of di-
mension n. There is a unique graded derivation d : ⌦M ! ⌦M of degree 1 such
that:

• If f 2 C1(U) then dU(f) = df 2 ⌦1(U),

• d � d = 0, i.e. dU(dU!) = 0 for any ! 2 ⌦r(U).

We call d the exterior di↵erential operator and refer to d! as the exterior
di↵erential of ! (often shortened to the just “the di↵erential of !”). Our proof
of Theorem 19.17 will construct d in coordinates. We will give a coordinate-free
expression for d in the next lecture (see Theorem 20.7).

Proof. We prove the result in three steps.
1. We first deal with uniqueness. This is immediate from Proposition 19.15,

since the first bullet point defines d on functions, and the second bullet point
defines d on exact 1-forms (namely: it’s identically zero on exact 1-forms).
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2. To construct d it su�ces to define dU : ⌦r(U)! ⌦r+1(U) for any open set U
which is the domain of a chart � : U ! O. In this step we will define an operator
dU,� : ⌦r(U) ! ⌦r+1(U) which satisfies the two bullet points but depends on the
choice of chart �. In the last step we will show that in fact dU,� does not depend
on �, which thus completes the proof.

Let xi denote the local coordinates of �. To ease the notation we adopt the
following shorthand: if I = (i1, . . . , ir) is a subset of {1, . . . , n} with ij < ij+1 for
each j = 1, . . . , r � 1 then we set:

dxI := dxi1 ^ · · · ^ dxi
r .

We also define dxI := 1 if I = ;. Thus any ! 2 ⌦(U) can be written as a sum

! =
X

I

fI dx
I .

We define
dU,�! :=

X

I

dfI ^ dxI .

If ! 2 ⌦r(U) then dU,�! 2 ⌦r+1(U). Moreover dU,� is obviously R-linear and satis-
fies the first bullet point by definition. Thus we need only check that dU,�(dU,�!) = 0
and that (19.5) holds.

To establish (19.5), we may assume ! = f dxI and # = g dxJ . If I and/or J are
empty then (19.5) follows from the Leibniz rule d(fg) = fdg + gdf . In the general
case we argue as follows. Assume ! has degree r. Then:

dU,�(! ^ #) = d(fg dxI ^ dxJ)

= d(fg) ^ dxI ^ dxJ)

= (fdg + gdf) ^ dxI ^ dxJ

=
�

df ^ dxI
� ^ (g dxJ) + (�1)r(f dxI) ^ �dg ^ dxJ

�

= dU,�! ^ #+ (�1)r! ^ dU,�#.

To see that dU,�(dU,�!) = 0 we first show that dU,�(df) = 0 for any function
f 2 C1(U). For this write df = @f

@xi

dxi (cf. Definition 7.4). Then

dU,�(df) =
@2f

@xi@xj
dxi ^ dxj,

where we abbreviate @2f
@xi@xj

= @
@xj

�

@f
@xi

�

. But by elementary calculus, @2f
@xi@xj

is
symmetric in i and j, whereas dxi ^ dxj is anti-symmetric. Thus the sum cancels.

Next, if f, g 2 C1(U) then using (19.5) we have

dU,�(df ^ dg) = dU,�(df) ^ dg � df ^ dU,�(dg) = 0,

and more generally if f, f1, . . . fr 2 C1(U) are any functions then

dU,�(df ^ df1 ^ · · · ^ dfr) = 0.

Applying this with fj = xi
j and using R-linearity shows that dU,�(dU,�(!)) = 0 for

any ! 2 ⌦r(U).
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3. We now address the dependence on �. Suppose ⌧ is another chart defined on
an open set V such that U \ V 6= ;. We must show that

dU\V,�|
U\V ⌘ dU\V,⌧ |

U\V .

By Proposition 19.15 applied to the graded derivations dU\V,�|
U\V and dU\V,⌧ |

U\V

on ⌦(U \V ), it su�ces to show they agree on functions and on exact 1-forms. But
this is clear: if f 2 C1(U \ V ) then one has

dU\V,�|
U\V (f) = dU\V,⌧ |

U\V (f) = df,

and the argument we just gave above showed that

dU\V,�|
U\V (df) = dU\V,⌧ |

U\V (df) = 0.

This completes the proof.

Definition 19.18. A di↵erential form ! is said to be closed if d! = 0. A di↵eren-
tial form ! is said to be exact if ! = d# for some # (this extends Definition 19.14
to r-forms for r > 1. Since d � d = 0, any exact form is closed, but the converse is
typically false. One denotes the quotient vector space by

Hr
dR(M) :=

{closed r-forms}
{exact r-forms} ,

where the “dR” stands for “de Rham”. An element of Hr
dR(M) is written as [!],

where ! is a closed r-form. Thus by definition

[!] = [! + d#].

We call Hr
dR(M) the rth de Rham cohomology5 group6 of M . In Lecture 23 we

will see that the de Rham groups are a topological invariant (cf. Remark 23.19). In
Lecture 27 we will strengthen this and prove that the de Rham cohomology groups
actually agree with the singular cohomology groups:

Hr
dR(M) ⇠= Hr(M ;R) (singular cohomology with coe�cients in R)

and thus in particular are a topological invariant of M . (Remark: All of Lecture
27 is non-examinable!)

Lemma 19.19. Let ' : M ! N be a smooth map and let ! 2 ⌦(N). Then

'?(d!) = d('?(!)).

that is, '? commutes with the exterior di↵erentials.

5Do not be scared by the word “cohomology” if you are not familiar with algebraic topology.
As far as this course is concerned, all that is important is that Hr

dR(M) is a quotient vector space.
6Even though the de Rham groups are actually vector spaces (and not just abelian groups),

it is still common to refer to them as the “de Rham cohomology groups”.
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Proof. We first prove the lemma for the special case of 0-forms, i.e functions. Let
f 2 C1(N) and X 2 X(M). Then

'?(df)(X) = df(D'[X]) = D'[X](f) = X(f � ') = d(f � ')(X) = d('?f)(X).

For the general case, since both sides are R-linear sheaf morphisms, it su�ces to
work in a chart domain and assume ! is of the form f dxi1 ^ · · · ^ dxi

r . Then
since we already know that '? is an algebra homomorphism (Lemma 19.7) and we
already proved the result for functions:

'?(d!) = '?
�

df ^ dxi1 ^ · · · ^ dxi
r

�

= '?(df) ^ '?(dxi1) ^ · · · ^ '?(dxi
r)

= d('?(f)) ^ d('?(xi1)) ^ · · · ^ d('?(xi
r))

= d
�

'?(f) ^ d('?(xi1)) ^ · · · ^ d('?(xi
r))
�

= d('?(!)).

Corollary 19.20. If ' : M ! N is a smooth map then '? induces a well-defined
map (also denoted by) '? : Hr

dR(N)! Hr
dR(M) via:

[!] 7! ['?(!)].

Proof. By Lemma 19.19, '? maps closed forms to closed forms and exact forms to
exact forms.

(|) Remark 19.21. We have thus created a contravariant functor Man ! Vect
that assigns to a manifold M its rth de Rham cohomology group Hr

dR(M) and
assigns to smooth map ' : M ! N the induced map '? : Hr

dR(N)! Hr
dR(M).

We conclude this lecture by relating the Lie derivative to the exterior di↵erential.

Proposition 19.22. Let M be a smooth manifold and fix X 2 X(M). Then
d � LX = LX � d.
Proof. We first prove the result for functions. For a function f and a vector field
Y , one has by (19.3) that

LX(df)(Y ) = X(Y (f))� [X, Y ](f) = Y (X(f)) = d(X(f))(Y ) = d(LX(f))(Y ).

Since Y was arbitrary, this shows that LX(df) = d(LX(f)). For the general case, by
Remark 19.16, d �LX �LX � d is a graded derivation of degree +1. By Proposition
19.15, if we can show it vanishes on functions and exact 1-forms then it is identically
zero. We just did the case for functions, and for an exact 1-form we have

d(LX(df))� LX(d(df)) = d(LX(df))� 0 = d(d(LX(f)) = 0.

This completes the proof.
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LECTURE 20

Cartan’s Magic Formula and orientability

We begin this lecture by stating and proving Cartan’s Magic Formula1. This
formula relates the Lie derivative LX , the exterior di↵erential, and a third operation,
the (as yet undefined) interior product iX . We thus begin by defining the interior
product, and, as usual, we start at the level of linear algebra.

Definition 20.1. Let V be a vector space, and fix v 2 V . Define iv :
Vr(V ⇤) !

Vr�1(V ⇤) by declaring that on decomposable elements p1 ^ · · · ^ pr that

iv(p
1 ^ · · · ^ pr) =

r
X

i=1

(�1)i+1pi(v) · p1 ^ · · · ^ pi�1 ^ pi+1 ^ · · · ^ pr,

and then extending by linearity.

Straight from the definition, we see that:

Lemma 20.2. Let ! 2 Vr(V ⇤) and # 2 Vs(V ⇤). Then

iv(! ^ #) = iv(!) ^ #+ (�1)r! ^ iv(#).

The following result is slightly less clear, and is left as an enjoyable exercise.

Lemma 20.3. Let v 2 V and let ! 2 Vr(V ⇤). If we regard both ! and iv(!) as
elements of Altr(V ) and Altr�1(V ) respectively (via Proposition 15.23), then

iv(!)(v1, . . . , vr�1) = !(v, v1, . . . , vr�1).

Note this shows that iv � iv = 0. We now transfer this to manifolds.

Proposition 20.4. Let M be a smooth manifold and let X 2 X(M). There is a
graded derivation iX : ⌦M ! ⌦M of degree �1 defined by

iX(!)(X1, . . . , Xr�1) := !(X,X1, . . . , Xr�1), ! 2 ⌦r(M), Xi 2 X(M)

if r � 1 and iX(f) := 0. One has iX � iX = 0. This is the unique graded derivation
of degree �1 such that iX(!) = !(X) for ! a 1-form and iX(f) = 0 for f a function.

The proof is immediate; uniqueness follows from Proposition 19.15.

Corollary 20.5. Let X, Y 2 X(M). Then i[X,Y ] = LX �iY �iY �LX as morphisms
on ⌦M .

Proof. Both sides are graded derivations of degree �1 by Remark 19.16. Thus it
su�ces to check on functions and exact 1-forms. For functions both sides are zero.
For an exact 1-form df this follows from (19.3) applied with ! = df .

Will J. Merry, Di↵. Geometry I, Autumn 2018, ETH Zürich. Last modified: June 28, 2019.
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Here then is the promised magical forumla:

Theorem 20.6 (Cartan’s Magic Formula). Let X 2 X(M). Then

LX = d � iX + iX � d.

Proof. Again, both sides are graded derivations of degree 0 by Remark 19.16. Thus
by Proposition 19.15 we need only check they agree on functions and exact 1-
forms. On functions this follows from Lemma 8.23 and on exact 1-forms this was
Proposition 19.22.

Let us use Cartan’s Magic Formula to give a coordinate free definition of the
exterior di↵erential d.

Theorem 20.7. Let M be a smooth manifold, ! 2 ⌦r(M) and X0, . . . Xr 2 X(M).
Then:

d!(X0, . . . , Xr) =
r
X

i=0

(�1)iXi

�

!(X0, . . . , bXi, . . . , Xr)
�

+
X

0i<jr

(�1)i+j!([Xi, Xj], X0, . . . bXi, . . . , bXj, . . . , Xr).

Here and elsewhere, the caret bXi means that the Xi term should be omitted.

Proof. One has d!(X0, . . . , Xr) = iX0(d!)(X1, . . . , Xr), which by Cartan’s Magic
Formula is equal to

LX0(!)(X1, . . . , Xr)� d(iX0(!))(X1, . . . , Xr). (20.1)

We now argue by induction on r. If r = 1 then by (19.3) this becomes

LX0(!(X1))�!([X0, X1])�d(!(X0))(X1) = X0(!(X1))�X1(!(X0))�!([X0, X1]),

which is what we want. Now assume r � 2 and that the result is true for all forms
of degree r � 1. By (19.4) the first term of (20.1) is equal to

X0(!(X1, . . . , Xr))�
r
X

i=1

!(X1, . . . , [X0, Xi], . . . , Xr).

By induction, we have that d(iX0(!))(X1, . . . , Xr) is equal to

r
X

i=1

(�1)i�1Xi

�

(iX0(!)(X1, . . . , bXi, . . . , Xr)
�

+
X

1i<jr

(�1)i+j
�

iX0(!)([Xi, Xj], X1, . . . , bXi, . . . , bXj, . . . , Xr)
�

.

Putting this into (20.1) and checking the signs carefully gives the desired result.
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We now move onto a somewhat di↵erent topic and discuss orientations of vector
bundles. This is the first of two preliminary topics we need to cover (the second is
manifolds with boundary) before we can state and prove Stokes’ Theorem, which
is about integrating di↵erential forms on oriented manifolds with boundary.

As usual, let us start at the level of linear algebra. Of course, you have all
known since kindergarten what an orientation of a vector space is, but perhaps you
haven’t seen it in the “right” language yet.

Definition 20.8. Let V be a one-dimensional vector space. Then V \ {0} has two
components. An orientation of V is a choice of one of these components, which
one then labels as “positive”. The other component is then labelled “negative”. A
positive basis of V is a choice of any non-zero vector belonging to the positive
component. A negative basis of V is a choice of any non-zero vector belonging
to the negative component.

Example 20.9. The standard orientation of R is given by declaring that the
positive numbers are (surprise!) the positive component of R \ {0}.
Definition 20.10. Let V be a vector space. We will use the notation detV to
mean

Vn(V ) where n = dimV . One calls detV the determinant of V . From
Proposition 15.25, the space detV is a one-dimensional vector space. Moreover if
{e1, . . . , en} is a basis for V then e1 ^ · · · ^ en is a basis of detV .

Definition 20.11. Let V be a vector space of positive dimension. An orientation
on V is a choice of orientation on detV . Thus there are exactly two orientations.
A basis {e1, . . . , en} of V is said to be positive if e1 ^ · · · ^ en is a positive basis
of detV . If instead e1 ^ · · · ^ en is a negative basis of detV then {e1, . . . , en} is a
negative basis of V .

Example 20.12. If ei denotes the standard ith basis vector in Rn then the stan-
dard orientation of Rn is given by declaring the e1 ^ · · · ^ en is a positive basis
of detRn (and hence {e1, . . . , en} is a positive basis of Rn.)

Remark 20.13. You are probably more used to thinking of the determinant of a
linear transformation, rather than the determinant of a vector space itself. The
motivation for this terminology goes as follows. Suppose that V and W are vector
spaces of the same dimension n. Since

Vn is a functor, if T : V ! W is a linear
map then we get a induced linear map

Vn(T ) : detV ! detW , defined explicitly
by

^n
(T )(v1 ^ · · · ^ vn) := Tv1 ^ · · · ^ Tvn.

This is a linear map between two one-dimensional vector spaces, and hence is
multiplication by a scalar. This scalar is non-zero if and only if T is an isomorphism.
In general the precise value of this scalar depends on a choice of basis of V and W ,
but the linear map

Vn(T ) itself clearly does not. If T is an isomorphism and V and
W are oriented, then we say that T is orientation-preserving if

Vn(T ) maps the
positive component of

Vn(V ) to the positive component of
Vn(W ). Otherwise T

is orientation-reversing.
If V = W and we choose the same basis for both the domain V and the target

V then the value of the scalar is independent of the basis. In this case, it is common
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to call the scalar the determinant of T . Explicitly, if {e1, . . . , en} is our chosen
basis then

Te1 ^ · · · ^ Ten = (detT ) · e1 ^ · · · ^ en. (20.2)

In any case, we can think of the determinant as a functor det : Vect>0 ! Vect1 from
positive-dimensional vector spaces to one-dimensional vector spaces that assigns to
a vector space its determinant space detV , and on morphisms if T : V ! W is a
linear map then det(T ) : detV ! detW is the linear map given by:

det(T ) =

(

Vn(T ), if dimV = dimW = n,

the zero map, if dimV 6= dimW .

Exercise: Check this new definition of determinant coincides with the one you are
used to from linear algebra. Use this to give slicker proofs of everything you learnt
in your linear algebra course. (For example: the fact that det(S �T ) = detS ·detT
is immediate from the fact that det is a functor.) Conclude that you should have
been taught Category Theory in the Basisjahr.

Remark 20.14. If V is a vector space then an orientation on V canonically deter-
mines an orientation on the dual space V ⇤ by declaring that the dual basis to a
positive basis is positive.

Now we move to vector bundles. In general a vector bundle of rank one is often
called2 a line bundle.

Definition 20.15. Let E be a vector bundle over M . The determinant line
bundle associated to E is the vector bundle detE ! M of rank one whose fibre
over x 2M is detEx.

Roughly speaking, a vector bundle ⇡ : E ! M is oriented if each fibre Ex is
given an orientation which depends smoothly on x. To make this precise, we prove
the following result. Recall the notion of the structure group of a vector bundle,
cf. Remark 13.14.

Proposition 20.16. Let ⇡ : E ! M be a vector bundle of rank k over M . The
following are equivalent:

(i) There is a smooth nowhere vanishing section µ 2 �(detE⇤).

(ii) It is possible to reduce the structure group of E from GL(k) to GL+(k).

(iii) The bundle detE⇤ !M is a trivial bundle.

Proof. We prove the result in three steps.

2
Warning: This terminology is very popular in complex geometry and algebraic geometry

too. But typically there people are working with complex vector bundles, not real vector bundles.
A complex line bundle is (in particular) a two-dimensional real vector bundle. So when taken out
of context, beware of the phrase “line bundle” since it may either be referring to a one-dimensional
real bundle or a one-dimensional complex bundle.
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1. We first prove (i) implies (ii). Let {↵a : ⇡�1(Ua) ! Rk | a 2 A} be a vector
bundle atlas for E. We may assume each Ua is connected. For each a 2 A, we
obtain a local frame {ea1, . . . , eak} for E over Ua via (16.3). Since µ is non-vanishing,
for each a 2 A the function3

µ(ea1, . . . , e
a
k) : Ua ! R (20.3)

is either everywhere positive or everywhere negative. If for a given a one has that
(20.3) is positive, we do nothing. If instead for a given a one has that (20.3) is
negative, we replace the local frame {ea1, . . . , eak} with the new one {�ea1, . . . , eak},
and then replace ↵a with the vector bundle chart corresponding to this new frame,
cf (16.4). Having done this, we may assume that (20.3) is a positive function for
every a 2 A.

We claim that our new bundle atlas (still denoted by) {↵a : ⇡�1(Ua)! Rk | a 2
A} has its structure group contained in GL+(k). Indeed, if Ua\Ub 6= ; then we can
write

ebj(x) = Ai
j(x)e

a
i (x), x 2 Ua \ Ub

for Ai
j : Ua \ Ub ! R a smooth function. In fact, unravelling the definition shows

that Ai
j(x) is the (i, j)th entry of the transition matrix ⇢↵b↵a

(x). Thus for any
x 2 Ua \ Ub, we have by (15.8) that:

µ(eb1, . . . , e
b
k)(x) =

⇣

det ⇢↵b↵a
(x)
⌘

· µ(ea1, . . . , eak)(x).

Thus det ⇢↵a↵b
(x) > 0 for all x 2 Ua \ Ub, which is what we wanted to prove.

2. Now we show that (ii) implies (i). For this we start with a vector bundle atlas
{↵a : ⇡�1(Ua)! Rk | a 2 A} with structure group in GL+(k) and we have to build
a section µ. Let {"1a, . . . , "ka} denote the dual frame to the local frame {ea1, . . . , eak}
associated to ↵a, and let {�a | a 2 A} denote a partition of unity subordinate to
the open cover {Ua | a 2 A}. We now define

µ : M ! detE⇤, µ :=
X

a2A
�a "

1
a ^ · · · ^ "ka.

We need only check that µ is nowhere vanishing. Fix x 2 M . Then there exists
b 2 A such that x 2 Ub. We evaluate µ on eb1 ^ · · · ^ ebk at x to discover

µx(e
b
1(x), . . . , e

b
k(x)) =

X

a2A

⇣

det ⇢↵b↵a
(x)
⌘

· �a(x),

which is positive as desired.
3. Finally, since detE⇤ is a one-dimensional vector bundle, it is trivial if and

only if it admits a nowhere vanishing section (this is a special case of Corollary
16.7). Thus (i) and (iii) are obviously equivalent. This completes the proof.

We now use Proposition 20.16 to define precisely what it means for a vector
bundle to be orientable.

3Explicitly, this is the function given by x 7! µ
x

(e1(x), . . . , ek(x)), where we view µ
x

2 Vk(E⇤
x

)
as an element of Alt

k

(E
x

) via Proposition 15.23.
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Definition 20.17. Let ⇡ : E ! M be a vector bundle. We say that E is ori-
entable if either of the three conditions from Proposition 20.16 is satisfied. If we
make a specific choice of nowhere vanishing section of detE⇤ then we say that E
is oriented.

Thus as with vector spaces, if a vector bundle is orientable then ifM is connected
there are exactly two orientations. If µ is a non-vanishing section of detE⇤ then f µ
is another non-vanishing section for any strictly positive function f : M ! (0,1),
and it defines the same orientation as µ. Meanwhile if h : M ! (�1, 0) is any
strictly negative smooth function then hµ defines the other orientation. We denote
by [µ] the equivalence class and often refer to [µ] as the orientation.

Definition 20.18. Suppose now ⇡ : E !M is an oriented vector bundle of rank k,
with orientation [µ]. This allows us to assign an orientation to each vector space Ex

as follows: a basis {v1, . . . , vk} of Ex is positive if and only if µx(v1, . . . , vk) > 0. This
clarifies the intuitive idea that an orientation of a vector bundle is an orientation of
each fibre that depends smoothly on x. Similarly we say a local frame {e1, . . . , ek}
is positively oriented if the function µ(e1, . . . , ek) is positive.

Specialising this to our favourite type of vector bundle tells what it means for
a manifold to be orientable.

Definition 20.19. A manifoldM of dimension n is said to be orientable if TM !
M is an orientable vector bundle.

In this case since �(detT ⇤M) = ⌦n(M) is just the top-dimensional di↵erential
forms, an orientation µ is a nowhere vanishing di↵erential n-form. This has its own
special name:

Definition 20.20. A volume form on an n-dimensional smooth manifold M is
a nowhere-vanishing di↵erential n-form.

A manifold together with a choice of orientation (i.e. volume form) [µ] is called
an oriented manifold. By a slight abuse of notation we often refer to [µ] as an
orientation of M itself (rather than TM).

Definition 20.21. Let (M, [µ]) and (N, [⌫]) be two oriented manifolds of the same
dimension n. Suppose ' : M ! N is a di↵eomorphism. Then '?(⌫) = f µ for a
smooth nowhere vanishing function f 2 C1(M) (this is because ⌦n(M) is the space
of sections of a one-dimensional bundle). We say that ' is orientation preserving
if f is everywhere positive and orientation reversing if f is everywhere negative.
Note that if M and N are not connected, it may be the case that ' is neither
orientation preserving or reversing.

Definition 20.22. As a special case of this, a chart � : U ! O on an oriented
manifold Mn is said to be positively oriented if � is an orientation preserving
di↵eomorphism between manifolds U and O (here U inherits the orientation from
M and O inherits the standard orientation from Rn).

We conclude this lecture by restating Proposition 20.16 in the special case of a
tangent bundle, since this will more convenient to refer back to in the future.
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Corollary 20.23 (Orientability of manifolds). Let M be a smooth manifold of
dimension n. The following are equivalent:

(i) M admits a volume form.

(ii) There exists a smooth atlas ⌃ := {�a : Ua ! Oa | a 2 A} for M such that
whenever Ua \ Ub 6= ;,

detD(�a � ��1
b )(�b(x)) > 0, 8 x 2 Ua \ Ub. (20.4)

We call such an atlas a positively oriented smooth atlas. Note that every
chart �a is then positively oriented.

(iii) The determinant line bundle of the cotangent bundle T ⇤M is a trivial bundle.

If either of these hold, we say M is orientable, and a specific choice thereof (i.e.
a choice of volume form, a choice of atlas, a choice of trivialisation) is called an
orientation of M .

On Problem Sheet K you will see some examples of orientable and non-orientable
manifolds.
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LECTURE 21

Manifolds with boundary

Let us now move on to defining manifolds with boundary. A serious defect of
di↵erential geometry so far (at least as we have defined it) is that many natural
and interesting compact subsets of Euclidean space fail to be manifolds, and thus
none of our results are applicable to them.

Two key examples are the closed unit ball Dn, or a closed interval [a, b] ⇢ R.
Neither of these are locally Euclidean spaces (of dimension n and 1 respectively),
since points on their boundary do not have neighbourhoods that are homeomorphic
to open subsets of Rn (or R). But note in both cases their interior is a smooth
manifold of the desired dimension. For the closed ball Dn, the interior is Bn which
is an n-dimensional manifold, and for the interval [a, b], the interior (a, b) is a
one-dimensional manifold. Moreover the boundary in both cases is an (n � 1)-
dimensional manifold: for the closed ball, @Dn = Sn�1, and @[a, b] = {a, b}.
Remark 21.1. Warning: In Lecture 1 (cf. Remark 1.23) we noted that manifold
theory had re-purposed the words “open” and “closed” and given them their own
meanings, which in many cases were not the same as the topological definitions of
open and closed. In these notes we elected not to use the “manifold” meanings,
and thus for us the words “open” and “closed” should always be taken to have their
standard topological meaning.

Unfortunately the same is true of the word “boundary”. As we will shortly see,
the “boundary” of a manifold does not necessarily coincide with the topological
definition of the word boundary. This time we will favour the manifold definition
of the word, and thus when we write @M this is always taken to mean the “manifold”
definition of the boundary (which we will shortly introduce). We will use the phrase
topological boundary to denote the boundary in the sense of point-set topology,
and use the notation @top. Thus for any subset Y of a topological space X,

@topY = Y \ int(Y ).

We will see several examples below where @M 6= @topM for a M a manifold with
boundary.

Definition 21.2. A pair of half-spaces of Rn is specified by two things: a linear
functional p 2 (Rn)⇤, and a real number a, which gives us

Rn
p�a := {x 2 Rn | p(x) � a} , and Rn

pa := {x 2 Rn | p(x)  a} .

In a similar way we have open half-spaces

Rn
p>a := {x 2 Rn | p(x) > a} , and Rn

p<a := {x 2 Rn | p(x) < a} .

Will J. Merry, Di↵. Geometry I, Autumn 2018, ETH Zürich. Last modified: June 28, 2019.
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Example 21.3. Let p : Rn ! R denote the linear functional p = u1, i.e.

p(x1, . . . , xn) = u1(x1, . . . , xn) = x1.

We define the standard half-spaces to be

Rn
u1�0 :=

�

(x1, . . . , xn) 2 Rn | x1 � 0
 

, Rn
u10 :=

�

(x1, . . . , xn) 2 Rn | x1  0
 

,

which we will typically abbreviate by Rn
+ and Rn

� respectively.

Remark 21.4. Warning: It is more common in the literature to define the “stan-
dard” half-spaces using p = un instead. For instance, Rn

un�0 is the “upper half-
plane” Hn usually used in hyperbolic geometry (which we will introduce in Lecture
49 next semester). I prefer to use the standard half-spaces from Example 21.3 for
two reasons:

(i) As we will see next lecture, using Rn
� as our “model” half-space leads to

simpler formulae when discussing integration. The reason for this is explained
in Problem K.2.

(ii) The symbol Hn is usually understood to denote the half-space Rn
un�0 which

in addition has been endowed with its standard hyperbolic metric (a topic we
will come back to extensively in Di↵erential Geometry II). Since we are not
making any statements about metrics here, to avoid confusion I prefer not to
use the symbol Hn.

Of course, at the end of the day it is essentially irrelevant which half-space we
choose as our “standard” one; they all give rise to the same notion. We could
equally as well set the entire theory up with our “standard” half space being Rn

p�⇡,
where

p(x1, . . . , xn) :=
n
X

i=1

(�1)ixi � log�(n).

(This choice would be somewhat inconvenient when it came to computations though!)

With these considerations in mind, let us now define a topological manifold with
boundary.

Definition 21.5. A topological space M is called a topological manifold with
boundary of dimension n if:

(i) Every point x 2M has a neighbourhood homeomorphic to an open subset of
the standard half-space Rn

�,

(ii) M is Hausdor↵ and has at most countably many connected components,

(iii) M is paracompact.

We refer to n as the dimension of M .
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Any topological manifold of dimension n is also a topological manifold with
boundary of dimension n. Indeed, if a space is locally Euclidean of dimension n,
then it also satisfies condition (i) above, since any open subset of Rn

� that does not
intersect the hyperplane Rn

u1=0 is also an open subset of Rn. But the new condition
(i) is more general, since an open subset of Rn

� that intersects the hyperplane Rn
u1=0

is not an open subset of Rn.
In general, if M is an n-dimensional topological manifold with boundary then

we say a point x 2 M is an1 interior point if x admits a neighbourhood that is
homeomorphic to an open subset of Rn. We denote by int(M) the set of interior
points. If x is not an interior point then we say x is a boundary point. We denote
by @M the collection of boundary points.

The fact that the dimension is well-defined again requires us to invoke Brouwer’s
Invariance of Domain Theorem (cf. Remark 1.6). In the smooth case however this
will be much easier.

Example 21.6. Here are some examples of topological manifolds with boundary:

(i) Any topological spaceM is a topological manifold of dimension n if and only if
it is a topological manifold with boundary of dimension n such that @M = ;.

(ii) Any half space Rn
p�a is a topological manifold with boundary of dimension n.

The boundary @Rn
p�a is Rn

p=a. More generally any open subset Q of Rn
p�a is a

topological manifold with boundary, with @Q = Q \ Rn
p=a.

(iii) The closed unit ball Dn is a topological manifold with boundary of dimension
n. One has @Dn = Sn�1. (Exercise: Prove this!)

(iv) The closed n-dimensional cube In = [�1, 1]n that we used in Lecture 11 is
a topological manifold with boundary of dimension n. In this case @In is
homeomorphic to Sn�1.

(v) The punctured closed unit ball Dn\{0} is a topological manifold with bound-
ary, since it is an open subset of the topological manifold with boundary Dn.
This is an example where the manifold boundary is not the same as the
topological boundary, since:

@(Dn \ {0}) = Sn�1, @top(Dn \ {0}) = Sn�1 [ {0}.

(vi) More generally, any annulus which is half-open and half-closed, eg.

AR
>r := {x 2 Rn | r < |x|  R}, or A<R

�r := {x 2 Rn | r  |x| < R}
is a topological manifold with boundary whose boundary consists of the
boundary circle for which one has the non-strict equality:

@AR
>r = {|x| = R}, @A<R

�r = {|x| = r},
meanwhile

@topAR
>r = @topA<R

�r = {|x| = r} [ {|x| = R}.
1This notion coincides with the topological one, see Proposition 21.7 below and Problem Sheet

K.
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Proposition 21.7. Let M be a topological manifold with boundary of dimension
n. Then int(M) \ @M = ;. Moreover int(M) is a topological manifold without
boundary of dimension n and @M is a topological manifold without boundary of
dimension n� 1.

Proof. The fact that int(M)\@M = ; uses Brouwer’s Theorem as mentioned above
(since Rn is not homeomorphic to Rn�1). The rest is clear, since an open subset Q
of Rn

p�a that does not intersect Rn
p=a is also open in Rn, and if Q is open in Rn

p�a

then Q \ Rn
p=a is open in Rn

p=a
⇠= Rn�1.

Corollary 21.8. If M is a topological manifold with boundary and W ⇢ M is
an open set then W is a topological manifold with boundary, and @W = W \ @M .

We now define smooth manifolds with boundary. We begin by extending by
the definition of a di↵eomorphism between open subsets of half-spaces. We already
know (Definition 6.15) how to define what it means for a map to be smooth whose
domain is not open, so it remains to extend this to the case when the range is also
not open.

Definition 21.9. Let Q ⇢ Rn
p�a denote an open set and f : Q! Rk

q�b a continuous
map. We say that f is smooth if the composition ı � f : Q! Rk is smooth in the
sense of Definition 6.15, where ı : Rk

q�b ,! Rk is the inclusion. If both f : Q! f(Q)
and f�1 : f(Q) ! Q are homeomorphisms between open sets of half-spaces that
are smooth in this sense then we say that f is a di↵eomorphism.

The next result is standard calculus, and I will leave the proof to you.

Proposition 21.10. Here are some properties of smooth maps between open sets
of half-spaces:

(i) Let O be an open subset of Rn with non-empty intersection with Rn
p�a. Sup-

pose f, g : O ! Rk are smooth maps in the usual sense (Definition 1.13). If
f = g on O \ Rn

p�a then Df(x) = Dg(x) for all x 2 O \ Rn
p�a.

(ii) Let O ⇢ Rn be open and f : O ! Rn
q�b be smooth in the sense of Definition

21.9. If f(x) 2 Rn
q=b for all x 2 O then Df(x) has image in Rn

q=0 for all x 2 O.

(iii) Suppose Q1 ⇢ Rn
p�a and Q2 ⇢ Rk

q�b are open sets, and suppose f : Q1 ! Q2

is a di↵eomorphism in the sense of Definition 21.9. Assume @Q1 = Q1 \Rn
p=a

and @Q2 = Q2 \ Rk
q=b are both non-empty. Then f induces di↵eomorphisms

@Q1 ! @Q2 and int(Q1)! int(Q2) in the sense of Definition 1.13, where we
think of @Q1 and @Q2 as open subsets of Rn�1 and Rk�1 respectively.

We then have:

Definition 21.11. Let M be a topological manifold with boundary of dimen-
sion n. A smooth atlas on M is a collection ⌃ = {�a : Ua ! Qa | a 2 A} where
{Ua | a 2 A} is an open cover ofM , each Qa is an open subset of some n-dimensional
half-space Rn

pa�aa (the precise half-space may depend on a), and each �a : Ua ! Qa

is a homeomorphism such that the usual compatibility condition is satisfied: if
a, b 2 A are such that Ua \ Ub 6= ; then the composition

�b � ��1
a : �a(Ua \ Ub)! �b(Ua \ Ub)

should be a di↵eomorphism in the sense of Definition 21.9.
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We call each such �a a half-space chart. One then defines a smooth structure
in exactly the same way as in Definition 1.16, and this gives us the definition of a
smooth manifold with boundary.

Definition 21.12. A smooth manifold with boundary of dimension n is a
pair (M,⌃) where M is a topological manifold with boundary of dimension n, and
⌃ is a smooth structure on M in the sense of Definition 21.11.

Just as with Proposition 21.7 we have:

Proposition 21.13. Let M be a smooth manifold with boundary of dimension
n. Then int(M) \ @M = ;. Moreover int(M) naturally inherits the structure of a
smooth manifold without boundary of dimension n, and @M naturally inherits the
structure of a smooth manifold without boundary of dimension n� 1.

Proof. This follows from part (iii) of Proposition 21.10.

Example 21.14. All the examples from Example 21.6 are naturally smooth man-
ifolds with boundary, except for the unit cube In, which is not a smooth manifold
with boundary when n � 2. (See Problem Sheet K.)

Although the definition of a smooth atlas does not require all the half-space
charts to take values in the same half-space, it is often convenient to assume they
do.

Definition 21.15. A good smooth atlas on a smooth manifold with boundary
M is a smooth atlas as in Definition 21.11 with the additional property that Qa is
an open subset of our preferred standard half-space Rn

� from Example 21.3.

It is easy to see that we may always assume this:

Lemma 21.16. Every smooth manifold with boundary admits a good smooth atlas.

Remark 21.17. You might therefore ask what the point was in the more general
definition. This is two-fold: firstly it is convenient when proving certain stan-
dard spaces are topological (resp. smooth) manifolds with boundary to be allowed
more flexibility. Secondly, the distinction between good smooth atlases and normal
smooth atlases is meaningful in dimension n = 1 when one in addition insists on
orientability, as we will see in Proposition 21.23 below.

Many of the concepts we have covered so far in this course make sense for
manifolds with boundary, and we don’t have the time (or energy) to fill in the
details, so let us just briefly summarise some of the important points:

• Partitions of unity still make sense for smooth manifolds with boundary, and
they always exist.

• If M is a smooth manifold with boundary of dimension n then TxM is still
an n-dimensional vector space for all x 2M . This is clear for x 2 int(M), so
suppose x 2 @M . Let � : U ! Q denote a half-space chart about x, where Q
is an open set in some half-space Rn

p�a and �(x) lies in the hyperplane Rn
p=a.

As before, a function f defined near x on M is smooth at x if and only if
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f ���1 is smooth near z := �(x). Now recall by definition a function is smooth
if and only if it admits a smooth extension to some open neighbourhood of z
in Rn. If g and h are any two such extensions of f � ��1 then by part (i) of
Proposition 21.10 the derivatives of g and h coincide on Rn

p=a. It follows that
a derivation on the space of germs of smooth functions at x can be defined
in exactly the same way as before, and thus the arguments from Lectures 2
and 3 go through without change to show that the tangent space TxM at x
is again an n-dimensional vector space.

• On the other hand, the tangent space to @M at x 2 @M can be identified
with an (n� 1)-dimensional subspace of TxM . Indeed, if we let ı : @M ,!M
denote the inclusion then with the notation as above, � � ı|U\@M is a chart on
@M and thus

Dı(x)[Tx(@M)] = D�(x)�1[TzRn
p=a], (21.1)

(note that TzRn
p=a
⇠= Rn

p=a
⇠= Rn�1 via Problem B.3.) We usually suppress

the Dı(x) map and thus think of Tx(@M) as an actual subspace of TxM .
Exercise: Prove that the right-hand side of (21.1) does not depend on the
choice of half-space chart �.

• If N is a smooth manifold (with or without boundary) and M ⇢ N is a subset
endowed with a topology and a smooth structure making it into a smooth
manifold with boundary such that the inclusion M ,! N is an embedding
then M is said to be an embedded submanifold with boundary. Im-
mersed submanifolds with boundary are defined similarly. If M is a smooth
manifold with boundary then @M is an embedded submanifold ofM—this fol-
lows immediately from the definition. Exercise: Investigate how the Implicit
Function Theorem 5.13 behaves with respect to manifolds with boundary.
What is the correct notion of a slice chart in this setting?

• Both the Whitney Embedding Theorem 6.1 and the Whitney Approximation
Theorem 6.14 still work for manifolds with boundary.

• A vector fieldX on a smooth manifold with boundaryM is said to be tangent
to @M if X(x) 2 Tx(@M) for each x 2 @M . For vector fields that are tangent
to M , Theorem 8.10 still works.

• The notion of a fibre bundle still makes sense if the base space is allowed to
have boundary. In particular, vector bundles over manifolds with boundary
are defined entirely analogously. Things go wrong however if the fibre is
allowed to have boundary. Exercise: Why?

• Tensors and di↵erential forms are defined in exactly the same way.

We will however go through one aspect in detail, since this will be important in our
treatment of the global Stokes’ Theorem in Lecture 23. Suppose M is a manifold
with boundary and ⇡ : E ! M is a vector bundle over M . If [µ] is an orientation
for E (so µ 2 �(detE⇤)) then [µ|@M ] is an orientation on the bundle E|@M !
@M , where E|@M = ⇡�1(@M) (this is a subbundle of E since @M is an embedded
submanifold of M). For the special case E = TM , this gives us an orientation of
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the bundle TM |@M ! @M . This however is not the same thing as an orientation
of T (@M)! @M (i.e. an orientation of @M as a manifold).

Definition 21.18. Let M be a smooth manifold with boundary of dimension n,
and let x 2 @M . A tangent vector v 2 TxM is said to be outward pointing if
for some half-space chart � : U ! Q about x, with Q ⇢ Rn

p�a an open set and
z := �(x) 2 Rn

p=a, one has

p
�J �1

z (D�(x)[v])
�

< 0.

To unwrap this: D�(x) is a linear map TxM ! TzRn
p�a = TzRn. Applying the map

Jz : Rn ! TzRn from Problem B.3, we obtain a vector J �1
z (D�(x)[v]) 2 Rn, which

p can then eat to produce a real number. It follows from part (iii) of Proposition
21.10 that the property of being outward pointing is independent of the choice of
half-space chart �.

The definition is rather clearer if we take our preferred half-space Rn
�. Then the

condition that v 2 TxM is outward pointing is simply that

dx1|x(v) > 0,

where (xi) are the local coordinates of �. See Figure 21.1.
Similarly an inward-pointing vector is one for which dx1|x(v) < 0. This allows

us to decompose TxM as:

TxM = {outward pointing vectors} t {inward pointing vectors} t Tx(@M),

since in such a chart �, Tx(@M) = {v 2 TxM | dx1|x(v) = 0}.

Figure 21.1: An outward pointing vector v

Similarly a section X of TM |@M is said to be outward pointing if X(x) is
outward pointing for every x.

Example 21.19. Let M be a manifold with boundary and let x 2M . Let x 2 @M
and let � : U ! Q denote a half space chart where Q ⇢ Rn

� is open. Then @
@x1 is

an outward pointing section of TM |@M over U \ @M .

In fact, via a standard partition of unity argument, one can produce outward
pointing sections defined on the entire boundary.

Lemma 21.20. Let M be a smooth manifold with boundary. Then there exists a
section X 2 �(TM |@M) of the bundle TM |@M ! @M which is outward pointing at
every x 2 @M .
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Proof. We may assume M has a good smooth atlas {�a : Ua ! Qa | a 2 A}. Let
{�a | a 2 A} denote a partition of unity subordinate to {Ua | a 2 A}. Let xi

a denote
the local coordinates of �a and set

X :=
X

a

�a
@

@x1
a

.

This is outward pointing by Example 21.19.

Let us now use this to define the induced orientation.

Definition 21.21. Let M be an smooth manifold with boundary of dimension n,
and let µ 2 ⌦n(M) be a volume form. Let X be an outward pointing section.
Then we can view iX(µ) as an element of ⌦n�1(@M). Since X is outward pointing,
iX(µ) is nowhere vanishing on @M , and hence this gives an orientation of @M . We
call the orientation [iX(µ)] of @M the induced orientation from the orientation
[µ] of M . Exercise: Check this is well-defined, i.e. independent of X and of the
representative µ of [µ].

Thus if (X1, . . . , Xn) is a positively oriented frame for TM (i.e. µ(X1, . . . , Xn) >
0 over U) such that U\@M is non-empty, then (X2, . . . , Xn) is a positively oriented
local frame for TM |@M over U \ @M with respect to the induced orientation if
X1|U\@M is outward pointing.

Remark 21.22. In the case n = 1, the boundary @M is a discrete set of points.
We only defined orientations for vector spaces of positive dimension, but this can
still be made sense of if we simply think of a boundary point x being positively
oriented if µ(X)(x) > 0 (note in this case µ(X) is simply a function) and negatively
oriented otherwise.

Here is an extension of Corollary 20.23 for manifolds with boundary. This is
where it is important to make the distinction between a good atlas and a normal
one.

Proposition 21.23. Let M be an oriented smooth manifold with boundary of
dimension n. Then M admits a positively oriented smooth atlas (that is, one such
that (20.4) holds). If n � 2 then M admits a positively oriented good smooth atlas.

Proof. If � is a chart with local coordinates (x1, . . . , xn) that is not positively
oriented then we replace it with a new chart (x1,�x2, . . . , xn). For n = 1 this
changes a chart from being a Rn

� half-space chart to a Rn
+ half-space chart.

For the rest of these notes, all manifolds (topological or smooth) should be
assumed not to have boundary, unless it is explicitly said that they do.
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LECTURE 22

Singular cubes and Stokes’ Theorem

In this lecture we discuss integration on manifolds, and prove a local version of one
of the fundamental theorems in di↵erential calculus, known as Stokes’ Theorem.
Next lecture we will globalise this. There are several ways to approach integration;
we will choose one that makes the proof of the de Rham Theorem (coming in the
non-examinable Lecture 27) relatively painless.

Definition 22.1. Let us abbreviate by Ck the closed cube1 [0, 1]k, thought of as
sitting inside Rk. For k = 0, C0 = {0} is a point. A smooth singular k-cube
(often shorted to: a “singular k-cube” or just a “k-cube”) in a smooth manifold M
is a smooth map c : Ck !M . Thus a singular 0-cube is simply a point c(0) in M .

Recall that (by Definition 6.15) a map c : Ck ! M is smooth if there exists a
neighbourhood U of Ck in Rk and a smooth map c̃ : U ! M such that c̃|Ck = c.
Of course the extension c̃ is not unique. (For k = 0, we declare that any map
c : C0 !M is smooth).

Remark 22.2. The adjective “singular” is meant to draw your attention to the
fact that c need not be injective or an immersion. Indeed, a valid smooth singular
k-cube would be a constant map! Moreover if k > dimM then no singular k-cube
can be an immersion.

The next example is more important than you would first guess.

Example 22.3. We let Ik : Ck ! Rk denote the inclusion and call Ik the standard
smooth singular k-cube.

Remark 22.4. We will often regard Ik as taking values in Ck. This is harmless,
since it does—it simply means we are viewing Ik as the identity map on Ck. Strictly
speaking however in this case Ik is not a smooth singular cube, since the range space
Ck is not a smooth manifold. For the most part we shall ignore this pedantry.

(|) Remark 22.5. You might hope that the machinery of smooth manifolds with
boundary that we developed last lecture would allow us to forego the tedious ex-
tension business.

This works fine for k = 1: C1 = [0, 1] is a smooth manifold with boundary, and
a singular 1-cube is simply a smooth map C1 ! M between manifolds. However
for k = 2 this goes wrong: C2 is not a manifold with boundary (see Problem K.4).
It is however a smooth manifold with corners, which is defined as you might
expect: instead of a half space atlas one works with a quarter space atlas. If M is
a smooth manifold with corners then its boundary @M is a smooth manifold with

Will J. Merry, Di↵. Geometry I, Autumn 2018, ETH Zürich. Last modified: June 28, 2019.
1In the past we used Ik for the open cube (�1, 1)k; here it is more convenient to work on [0, 1]

itself, so we choose di↵erent notation.
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boundary, and the boundary of the boundary is then a smooth manifold without
boundary. (For C2, one has @C2 equal to the union of the edges, and @(@C2) equal
to the four vertices).

Sadly however this still isn’t enough, since for n � 3 the space Ck is not a smooth
manifold with corners either. The correct notion is that of a stratified manifold,
which, roughly speaking is a manifold which is allowed to “boundary-like” pieces
of arbitrarily high codimension. A manifold with boundary is a stratified mani-
fold with only codimension one strata, and a manifold with corners is a stratified
manifold with only codimension one and two strata. In general, Ck is a stratified
manifold with k di↵erent stratas.

That said, developing the entire theory of stratified manifolds just to dispense
with the need to talk about extensions is somewhat ine�cient, even by my stan-
dards, so we will stick with the extensions. This will therefore be a minor annoyance
throughout the lecture.

Definition 22.6. Let k > 0, and let ! 2 ⌦k(Ck) denote a k-form on Ck (you can
think of this as meaning: ! is a k-form on some neighbourhood U of Ck in Rk).
We can write ! = h dx1 ^ · · · ^ dxk for some h 2 C1(Ck). We define the integral
of ! to be the Riemann integral of h:

Z

Ck

! :=

Z

Ck

h

We emphasise the right-hand side is the normal Riemann integral of the function
h.

We now transfer this to manifolds:

Definition 22.7. Let k > 0 and let c be a smooth singular k-cube in M and let
! 2 ⌦k(M) denote a k-form. Then c?(!) is a k-form on Ck. We define the integral
of ! over c to be the real number

Z

c

! :=

Z

Ck

c?(!).

It would be su�cient if ! was only defined on some neighbourhood of the image of
c for this to make sense. For k = 0, the definition is simpler; in this case ! is just
a function f , and

Z

c

f := f(c(0)).

Remark 22.8. If we write c?(!) = h dx1 ^ · · · ^ dxk then the function h is given
explicitly by

h = c?(!)

✓

@

@x1
, . . . ,

@

@xk

◆

(this expression is well-defined since c?(!) is really defined on some open neigh-
bourhood of Ck). Thus an alternative formula is

Z

c

! =

Z

Ck

c?(!)

✓

@

@x1
, . . . ,

@

@xk

◆

,

where again the right-hand side is just a normal Riemann integral.
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Remark 22.9. Since for any singular k-cube c we have c = c � Ik, we have using
(19.2) that

Z

c

! =

Z

c�Ik
! =

Z

Ck

(c � Ik)?(!) =
Z

Ck

(Ik)?(c?(!)) =

Z

Ik
c?(!).

Definition 22.10. A singular k-cube c : Ck ! M is said to be degenerate if
there exists 1  i  k such that c does not depend on xi. Otherwise c is said to be
non-degenerate. Thus a 0-cube is never degenerate, and a 1-cube is degenerate
if and only if it is a constant map.

On Problem Sheet L you will prove.

Lemma 22.11. If c : Ck !M is a degenerate singular k-cube then
R

c ! = 0 for any
! 2 ⌦k(M).

The next result is also on Problem Sheet L. You should think of it as a version
of the usual change of variables formula from multivariable calculus:

Proposition 22.12 (Change of Variables). Let c : Ck ! M be a smooth singular
k-cube in M and let ' : Ck ! Ck be an orientation preserving di↵eomorphism2.
Let c̃ := c � '. Then

Z

c

! =

Z

c̃

!.

Let us now consider formal sums of singular cubes.

Definition 22.13. Let Qk(M) denote3 the (infinite-dimensional) free vector space
generated by the collection of all the smooth singular k-cubes in M . Thus an
element of Qk(M) is a formal finite sum q =

P

i ai ci where ai 2 R and the ci
are smooth singular k-cubes. We call an element q 2 Qk(M) a smooth singular
k-chain, or (sometimes just a k-chain). A k-chain q =

P

i ai ci is said to be non-
degenerate if each cube ci is non-degenerate.

Example 22.14. Since a 0-cube in M is just a point in M , the space Q0(M) can
be thought as the infinite-dimensional vector space with basis the points of M .
In particular, if x, y 2 M then the expression x � y makes sense in Q0(M), even
though it does not in M .

Remark 22.15. Warning: The spaceQ0(M) is a vector space with basis the points
in M . Thus (by definition) there are no relations between di↵erent elements. This
can be confusing, particularly if the manifold M happens to be a submanifold of
Euclidean space where it does make sense to add points together. As an example,
let us take M = Rn. Let v, w 2 Rn be two vectors. Then in Rn, we can add v and
w together to get a new vector v+w. However in Q0(Rn), the three elements v, w
and v + w are linearly independent and thus it is not true that v + w = (v + w)!
A similar issue occurs with scalar multiplication. If this confuses you, consider

2As usual, think of this as meaning that ' is the restriction to Ck of an orientation preserving
di↵eomorphism of some neighbourhood.

3To explain the notation: “cube” sounds like it begins with a “Q”.
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writing the addition and multiplication operations in Q0 with a di↵erent colour, for
instance red. Thus if v, w 2 Rn and a 2 R then

v + w 6= v + w, a v 6= 1(av).

Luckily most of the time this shouldn’t be confusing, since typically on manifolds
one cannot add points together, and thus the notation is unambiguous already.

Definition 22.16. We define the integral of a k-form over a k-chain in M by
linearity: if q =

P

i ai ci then

Z

q

! :=
X

i

ai

Z

c
i

!.

We will also need the concept of the boundary of a chain.

Definition 22.17. Fix 1  i  k and let c : Ck ! M denote a singular k-cube.
The ith front face of c, written Fic, is the singular (k � 1)-cube defined by

Fic(x
1, . . . , xk�1) := c(x1, . . . , xi�1, 0, xi, . . . , xk�1).

Similarly the ith back face is the singular (k � 1)-cube defined by

Bic(x
1, . . . , xk�1) := c(x1, . . . , xi�1, 1, xi, . . . , xk�1).

Let us note the following result

Lemma 22.18. Let c : Ck ! M be a smooth singular k-cube. Let 1  i < j  k.
Then:

Fi(Fjc) = Fj�1(Fic),

Bi(Bjc) = Bj�1(Bic),

Fi(Bjc) = Bj�1(Fic),

Bi(Fjc) = Fj�1(Bic).

(22.1)

Moreover one has
Fic = c � FiI

k, Bic = c �BiI
k. (22.2)

The proof is a trivial computation which I leave to you.

Definition 22.19. Let c : Ck ! M be a smooth singular k-cube for k > 0. We
define the boundary of c, written @c, to be the element of Qk�1(M) given by

@c :=
k
X

i=1

(�1)i(Fic� Bic).

We define the boundary of a 0-cube to be the real number 1. Note that if a cube c is
non-degenerate then so is @c. We then extend @ to arbitrary k-chains by linearity.
Thus we may think of @ as a linear map Qk(M) ! Qk�1(M) for all k � 1 (this
works for k = 0 too if we define Q�1(M) := R).
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Remark 22.20. Thus this is yet another meaning of the symbol @. This one is not
as confusing as the topological boundary and the manifold boundary (cf. Remark
21.1), since c is a function, and thus there can be no ambiguity about what is
meant.

Example 22.21. Let c : [0, 1] ! M be a 1-cube. Then F1c is the 0-cube c(0) and
B1c is the 0-cube c(1). Thus @c = c(1)� c(0). Remember the subtraction is taking
place in Q0(M), not M itself!

Let us now state and prove the one-dimensional version of Stokes’ Theorem,
also known as the Fundamental Theorem of Calculus, in the language of chains.

Theorem 22.22 (The Fundamental Theorem of Calculus for Singular 1-Chains).
Let f : R! R be di↵erentiable and let q be a singular 1-chain in R. Then

Z

q

df =

Z

@q

f

Proof. By linearity of the integral, we may assume that q is a single singular 1-cube
c. Then we compute

Z

c

df =

Z 1

0

c?(df)



@

@t

�

dt

=

Z 1

0

(f � c)0(t)dt
(†)
= f(c(1))� f(c(0))

=

Z

c(1)

f �
Z

c(0)

f

=

Z

@c

f,

where (†) used the usual Fundamental Theorem of Calculus that you have known
since kindergarten.

Proposition 22.23. The boundary operator squares to zero: @2 = 0.

Proof. Since @ is linear, it su�ces to show that @(@c) = 0 for any cube c.

@(@c) = @

 

k
X

i=1

(�1)i(Fic� Bic)

!

=
k
X

i=1

k�1
X

j=1

(�1)i+j
⇣

Fj(Fic)� Fj(Bic)� Bj(Fic) + Bj(Bic)
⌘

Using the face relations (22.1), we see that the first and fourth terms cancel in
pairs, and the second and third terms cancel each other.
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Definition 22.24. It follows that we can play a similar game to the definition
(Definition 19.18) of the de Rham cohomology groups. Let us say a chain q is
closed if @q = 0 and a chain q is exact if q = @p for some (k + 1)-chain p. Then
every exact chain is also closed (as @2 = 0), and thus we can form the quotient
vector space:

Hcube
k (M ;R) :=

{closed non-degenerate k-chains}
{exact non-degenerate k-chains} .

If q is a closed k-chain, we denote by [q] its equivalence class in Hcube
k (M ;R).

The reason for insisting on non-degeneracy will not be important until Lecture 27.
Unlike the groups Hk

dR(M), which are certainly zero for k > dimM , a priori the
groups Hcube

k (M ;R) could be non-zero for arbitrarily high k. However this is not
the case. In fact, as we will explain in Lecture 27, there is an isomorphism

Hcube
k (M ;R) ⇠= Hn�k

dR (M), 8k � 0. (22.3)

We can now state and prove the local version of Stokes’ Theorem.

Theorem 22.25 (The Local Stokes’ Theorem). Let M be a smooth manifold. Let
q 2 Qk(M) and ! 2 ⌦k�1(M). Then

Z

q

d! =

Z

@q

!.

Note Theorem 22.22 is the special case M = R and k = 1. This proof is
non-examinable.

(|) Proof. We prove the result in three steps.
1. Let us first consider the case where M = Rk and c = Ik is the standard cube

from Example 22.3. This actually represents most of the work. By linearity we
may assume that ! is of the form

! = f dx1 ^ · · · ^ cdxj ^ · · · ^ dxk,

where the carat indicates we skip the term dxj. In this first step, we come up with
a nice formula for the right-hand side

R

@Ik !.
We have by definition that

Z

@Ik
! =

k
X

i=1

(�1)i
✓

Z

F
i

Ik
! �

Z

B
i

Ik
!

◆

. (22.4)

We now claim that:
Z

F
i

Ik
! =

(

R

Ck�1 f � FiIk, i = j,

0, i 6= j.
(22.5)

The proof of (22.5) is a little fiddly. One way to argue this is as follows: from
Remark 22.8 and (15.8) we have that

Z

F
i

Ik
! =

Z

Ck�1

(f � FiI
k) · detA,
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where A = (Ap
l ) is the (k � 1)⇥ (k � 1) matrix whose entries are given by

Ap
l = Dl(u

p � FiI
k), for 1  l  k � 1 and 1  p  k, p 6= j.

The function up � FiIk is given by

up � FiI
k(x1, . . . , xk�1) = up(x1, . . . , xi�1, 0, xk, . . . xk�1).

Thus if i = j then Ap
l = �pl and thus detA = 1. However if i 6= j then the entire

ith row (Ai
l) is zero (since ui � FiIk is the zero function), and thus detA = 0. This

proves (22.5). Together with a similar formula for the back face, we see that (22.4)
reduces to

Z

@Ik
! = (�1)j

Z

Ck�1

f � FjI
k � f �BjI

k. (22.6)

By Fubini’s Theorem and the Fundamental Theorem of Calculus:
Z

Ck�1

f �BjI
k � f � FjI

k

=

Z 1

0

· · ·
Z 1

0

⇣

f(x1, . . . , 1, . . . , xk)� f(x1, . . . , 0, . . . , xk)
⌘

dx1 · · · cdxj · · · dxk

=

Z

Ck

@f

@xj
.

Thus we conclude from (22.6) that

Z

@Ik
! = (�1)j�1

Z

Ck

@f

@xj
. (22.7)

2. We now consider the term
R

Ik d!. Since df = @f
@xj

dxj we have (writing the
summation signs for clarity)

Z

Ik
d! =

Z

Ik
df ^ dx1 ^ · · · ^ cdxj ^ · · · ^ dxk

=

Z

Ik

k
X

i=1

@f

@xi
dxi ^ dx1 ^ · · · ^ cdxj ^ · · · ^ dxk)

= (�1)j�1

Z

Ik

@f

@xj
dx1 ^ · · · ^ dxk

= (�1)j�1

Z

Ck

@f

@xj

This completes the proof for M = Rk and c = Ik.
3. In the general case, again by linearity we may assume q = c is a singular
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k-cube. Then using (22.2) one has

Z

@c

! =
k
X

i=1

(�1)i
✓

Z

F
i

c

! �
Z

B
i

c

!

◆

=
k
X

i=1

(�1)i
✓

Z

c�F
i

Ik
! �

Z

c�B
i

Ik
!

◆

=
k
X

i=1

✓

Z

Ck�1

(c � FiI
k)?(!)�

Z

Ck�1

(c �BiI
k)?(!)

◆

=
k
X

i=1

✓

Z

Ck�1

(FiI
k)?(c?(!))�

Z

Ck�1

(FiI
k)?(c?(!))

◆

=
k
X

i=1

✓

Z

F
i

Ik
c?(!)�

Z

B
i

Ik
c?(!)

◆

=

Z

@Ik
c?(!)

=

Z

Ik
d(c?(!))

by the previous step. But since c? � d = d � c? by Lemma 19.19, we have
Z

Ik
d(c?(!)) =

Z

Ik
c?(d!) =

Z

c

d!,

where we used Remark 22.9 at the end. This completes the proof.

Next lecture we shall globalise Theorem 22.25. For now, let us note the following
consequence, which will be useful in the last lecture of the semester.

Definition 22.26. Let M be a smooth manifold of dimension n. Then for 0 
k  n we can think of integration as defining a bilinear map

Z

: Qk(M)⇥ ⌦k(M)! R, (q,!) 7!
Z

q

!.

Corollary 22.27. The bilinear form
R

is also well-defined on the (co)homology
level, that is, the map

Z

: Hcube
k (M ;R)⇥Hk

dR(M)! R, ([q], [!]) 7!
Z

q

!

is well-defined.

Proof. We already know that
R

q ! vanishes whenever q is degenerate (Lemma
22.11). Thus we need only show that if q is a closed non-degenerate k-chain and !
is a closed k-form, then for any non-degenerate (k+1)-chain p and any (k�1)-form
#, one has

Z

q+@p

(! + d#) =

Z

q

!.

8



For this we expand by linearity on both sides:
Z

q+@p

(! + d#) =

Z

q

! +

Z

@p

! +

Z

q

d#+

Z

@p

d#

=

Z

q

! +

Z

p

d! +

Z

@q

#+

Z

p

(d2(#))

=

Z

q

! + 0,

where the second equality used Stokes’ Theorem and the last used the assumption
that q and ! are closed.

Do not be fooled by the apparent similarity of (22.3) and Corollary 22.27. The
former is much deeper. We shall come back to this at the end of the course.
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LECTURE 23

The Poincaré Lemma

In this lecture we give a global version of Stokes’ Theorem. We begin by explaining
how to make sense of the expression

R

M !. Unlike the local version in the last
lecture, this will only work when M is oriented, and ! is a compactly supported
di↵erential form of top degree (i.e. of degree n = dimM).

Remark 23.1. In general we will start omitting explicit mention of the orientation
in our notation for an oriented manifold, and thus just write M instead of (M, [µ]).
We will also adopt the shorthand notation that if M is an oriented manifold then
�M denotes the same manifold, but with the opposite orientation.

Definition 23.2. Let Mn be an oriented manifold. A singular cube c : Cn !M is
said to be an orientation preserving if there exists a neighbourhood U of Cn in
Rn and an orientation preserving1 embedding c̃ : U !M such that c̃|Cn = c. Note
that c̃ is thus a di↵eomorphism onto its image.

Remark 23.3. Note that if Mn is an oriented manifold, we can always find an open
cover of M such that each open set U in that cover is contained in the interior of the
image of an orientation preserving singular cube c : Cn !M . Indeed if � : U ! O
is a positively oriented chart (cf. Definition 20.22) then one can apply an a�ne
transformation of Rn so that Cn ⇢ O, and then c := ��1|Cn works.

Definition 23.4. Let M be a smooth manifold, and let ! 2 ⌦(M). The support
of ! is defined in the same way as normal:

supp(!) := {x 2M | !x 6= 0}
A di↵erential form ! is said to have compact support if supp(!) is compact. We
denote by ⌦c(M) ⇢ ⌦(M) the subset of di↵erential forms with compact support,
and ⌦r

c(M) the di↵erential r-forms with compact support. Note that by definition
of the exterior di↵erential, we have

supp(d!) ✓ supp(!). (23.1)

We begin with the following lemma, which explains why for global integration
we need our manifold to be oriented. In the following, we will always assume the
cube Ck carries the standard orientation inherited from Rk.

Lemma 23.5. Let Mn be an orientated manifold and ! 2 ⌦n(M). Let c1, c2 : Cn !
M be two orientation preserving singular cubes, and assume that

supp(!) ⇢ int(im c1) \ int(im c2)

Then
Z

c1

! =

Z

c2

!.

Will J. Merry, Di↵. Geometry I, Autumn 2018, ETH Zürich. Last modified: June 28, 2019.
1Here we always explicitly assume Rn carries its standard orientation.
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Proof. This almost follows from Proposition 22.12, since c�1
2 � c1 is almost an ori-

entation preserving di↵eomorphism of Cn. The only issue is that c�1
2 � c1 may not

be defined on all of Cn. However, since supp(!) ⇢ int(im c1)\ int(im c2), the proof
of Proposition 22.12 goes through without change to give

Z

c2

! =

Z

c2�c�1
2 �c1

! =

Z

c1

!.

Thus we can unambiguously make the following definition.

Definition 23.6. Let Mn be an oriented manifold and ! 2 ⌦n(M). Assume that
! has support in the interior of the image of some orientation preserving singular
cube c. Then we define

Z

M

! :=

Z

c

!.

The following lemma is immediate from the definitions.

Lemma 23.7. If c is an orientation reversing singular cube and ! has support in
im c then

Z

M

! = �
Z

c

!.

Thus (using the convention from Remark 23.1) one has

Z

M

! = �
Z

�M

!.

We can use a partition of unity to extend this to an arbitrary ! 2 ⌦n
c (M). We

first give the definition, and then prove it is well defined.

Definition 23.8. Let Mn be an oriented manifold and let ! 2 ⌦n
c (M). Let {Ua |

a 2 A} be an open cover with the property that each Ua is contained in the interior
of the image of some orientation preserving singular cube (cf. Remark 23.3). Let
{�a | a 2 A} be a partition of unity subordinate to this cover. We define

Z

M

! :=
X

a2A

Z

M

�a !.

Note this is a finite sum since ! has compact support and supp(�a) is locally
infinite.

Lemma 23.9. The sum in Definition 23.8 is well defined: if {Vb | b 2 B} is another
open cover with the property that each Vb is contained in the interior of the image
of some orientation preserving singular cube and {⌫b | b 2 B} is a partition of unity
subordinate to that cover then for any ! 2 ⌦n

c (M) one has:

X

a2A

Z

M

�a ! =
X

b2B

Z

M

⌫b !

2



Proof. Since
X

a2A
�a(x) =

X

b2B
⌫b(x) = 1, 8 x 2M,

we have using linearity of the integral that

X

a2A

Z

M

�a ! =
X

a2A

Z

M

 

X

b2B
⌫b

!

�a !

=
X

a2A

X

b2B

Z

M

⌫b �a !

=
X

b2B

Z

M

 

X

a2A
�a

!

⌫b !

=
X

b2B

Z

M

⌫b !

where the rearrangement of the sums is justified as everything is a finite sum.

We now know how to integrate a top-dimensional di↵erential form with compact
support on an oriented manifold. Let us extend this to oriented manifolds with
boundary. For this we use the following trick:

Definition 23.10. Let Mn be an oriented smooth manifold with boundary. An
orientation preserving singular cube c : Cn !M is called special2 if either im c ⇢
int(M) or

@M \ im c = im(F1c),

where as usual F1c : Cn�1 !M is the first front face.

Lemma 23.11. Let Mn be an oriented smooth manifold with boundary, and endow
@M with the induced orientation. If c : Cn ! M is a special singular cube such
that im c \ @M 6= ; then F1c is an orientation reversing singular cube for @M .

This is not a typo—we really do want F1c to reverse orientation! As we shall
see, the minus sign will eventually cancel, since the coe�cient of F1c in @c is �1.
Proof. We need only check that F1c is orientation reversing with respect to the
induced orientation. Let xi denote the standard coordinates on Cn. Since c is a
di↵eomorphism, we may take c�1 as a Rn

+ half-space chart on M (remember c is
really defined on an open neighbourhood of Cn). Let yi := xi � c�1 denote the

local coordinates of this chart. Since c is orientation preserving,
n

@
@y1 , . . . ,

@
@yn

o

is a positive oriented local frame of TM . Note that @
@y1 is an inward pointing

2It would be slightly more logical to call such a cube “bad” rather than “special”, as I will
now explain. Indeed, we defined a “good” half-space chart to be one where the half-space in
question was Rn

�. Thus one could quite logically declare a “bad” half-space chart to be one where
the half-space was the opposite half-space Rn

+. As we will shortly see, a “special” orientation
preserving cube can be thought of as the inverse of an (appropriately restricted) bad chart in this
sense. Thus the adjective “bad” makes perfect sense for such a cube. However, I prefer the label
“special”, since otherwise it would seem rather strange that we defined integration on manifolds
with boundary using “bad” cubes. . .
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section (compare Example 21.19—the reason we get inward pointing not outward
pointing is that this is a Rn

+ chart not a Rn
� chart!), and thus (cf. the paragraph

after Definition 21.21) the frame
n

@
@y2 , . . . ,

@
@yn

o

is a negatively oriented frame for

T (@M). Thus F1c is orientation reversing as required.

Just as in Remark 23.3, if M is a smooth manifold with boundary then we can
always find an open cover of M with the property that each open set is contained
in the interior of the image of a special orientating preserving singular cube. We
use this to extend the definition of integration to manifolds with boundary.

Definition 23.12. Let Mn be an oriented smooth manifold with boundary, and
let ! 2 ⌦n

c (M). Let {Ua | a 2 A} be an open cover with the property that each Ua

is contained in the image of some special orientation preserving singular cube (cf.
Remark 23.3). Let {�a | a 2 A} be a partition of unity subordinate to this cover.
We define

Z

M

! :=
X

a2A

Z

M

�a !.

The same proof as Lemma 23.9 shows this is well-defined. We now state and
prove the Global Stokes’ Theorem.

Theorem 23.13 (The Global Stokes’ Theorem). Let Mn be an oriented smooth
manifold with boundary, and endow @M with the induced orientation. Let ! 2
⌦n�1

c (M). Then
Z

M

d! =

Z

@M

!.

Proof. We prove the result in two steps. Let {Ua | a 2 A} be an open cover with
the property that each Ua is contained in the image of some special cube.

1. First assume that supp(!) is contained in one of the sets Ua, which itself is
contained in the image of some special cube c. If im c \ @M = ; then the result is
immediate from the Local Stokes’ Theorem 22.25, since

Z

M

d! =

Z

c

d! =

Z

@c

! = 0,

since supp(!) does not intersect the image of @c. But also clearly
R

@M ! = 0 since
supp(!) does not intersect @M .

Now assume that im c \ @M 6= ;. Then we have:
Z

M

d! =

Z

c

d!

=

Z

@c

!

=
n
X

i=1

(�1)i
✓

Z

F
i

c

! �
Z

B
i

c

!

◆

= �
Z

F1c

!,

4



since supp(!) misses all faces apart from F1c by definition of a special cube. Thus
by Lemma 23.7 and Lemma 23.11 we have

Z

M

d! = �
Z

F1c

! = (�1)2
Z

@M

! =

Z

@M

!.

2. Now we prove the general case. Let {�a | a 2 A} be a partition of unity
subordinate to the open cover {Ua | a 2 A}. Then by definition,

Z

@M

! =
X

a2A

Z

@M

�a !

(†)
=
X

a2A

Z

M

d(�a !)

=
X

a2A

Z

M

d�a ^ ! + �a d!

(‡)
=

Z

M

d! +
X

a2A

Z

M

d�a ^ !

=

Z

M

d! +

Z

M

d

 

X

a2A
�a

!

^ !

(‡)
=

Z

M

d! + 0,

where (†) used Step 1, both (‡) used the fact that
P

a2A �a ⌘ 1, and the interchange
of summation and integral is always justified as these are always finite sums as
supp(!) is compact. This completes the proof.

Corollary 23.14. Let M be a smooth manifold3, and let ! 2 ⌦n�1
c (M). Then

R

M d! = 0.

Proof. M is also a smooth manifold with boundary whose boundary is empty.

Corollary 23.15. Let Mn be an oriented connected compact smooth manifold.
Then Hn

dR(M) 6= 0.

Proof. Let µ be a volume form. Then for any orientation preserving cube, we have
R

c µ > 0. Thus
R

M µ > 0. The form µ is closed (as dµ = 0 for dimension reasons).
If µ was exact then

R

M µ = 0 by Corollary 23.14. Thus µ is a closed non-exact
form, and hence defines a non-zero element in Hn

dR(M).

We will eventually improve Corollary 23.15 and show that for an oriented con-
nected compact smooth manifold Mn, one has

Hn
dR(M) ⇠= R.

To prove this we will first establish the homotopy invariance property of de
Rham cohomology. The key to this is the following innocuous looking statement.

3Remember, all manifolds are assumed not to have boundary unless explicitly stated!
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Proposition 23.16. Let M be a smooth manifold. Define for t 2 [0, 1] a smooth
map

|t : M !M ⇥ [0, 1], |t(x) := (x, t),

(here we view M ⇥ [0, 1] as a smooth manifold with boundary). There is a map

h : ⌦r(M ⇥ [0, 1])! ⌦r�1(M)

such that for every di↵erential r-form ! 2 ⌦r(M ⇥ [0, 1]), one has

h(d!) + d(h(!)) = |?1(!)� |?0(!)

as elements of ⌦r(M). Thus the induced maps on de Rham cohomology

|?0, |
?
1 : H

r
dR(M ⇥ [0, 1])! Hr

dR(M)

coincide.

Proof. Let Y denote the vector field on M ⇥ [0, 1] whose value at (x, t) is

Y (x, t) =

✓

0,
@

@t

�

�

�

t

◆

. (23.2)

(Compare (8.3) in Lecture 8—we are using slightly di↵erent notation to simplify
the formulae to come). The desired map h is then given by

h(!) :=

Z 1

0

|?t (iY (!)) dt,

for ! 2 ⌦r(M ⇥ I). That is, for any x 2M ,

h(!)x =

Z 1

0

|?t (iY (!)(x,t)) dt,

where the integrand is thought of as a function of t on the vector space
Vr�1(T ⇤

xM).
We emphasise that this is just a normal integral, not an integral on a manifold! By
choosing local coordinates, we see that the integral defines a smooth (r � 1)-form
on M . To compute d(h(!)) it su�ces to work locally. In local coordinates (xi) we
can’t express h(!) as a sum of terms of the form

✓

Z 1

0

f(x, t) dt

◆

dxI ,

using the notation introduced in the proof of Theorem 19.17. Applying d to such
a term and di↵erentiating under the integral sign4 gives

X

j

@

@xj

✓

Z 1

0

f(x, t) dt

◆

dxj ^ dxI =

 

Z 1

0

X

j

@f

@xj
(x, t) dt

!

dxj ^ dxI

4This is sometimes referred to as the Leibniz integral rule.
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Putting this together shows us that

d(h(!)) =

Z 1

0

d (|?t (iY (!))) dt.

Thus using Lemma 19.19 and Cartan’s Magic Formula (Theorem 20.6) we see that

h(d!) + d(h(!)) =

Z 1

0

(|?t (iY (d!)) + d (|?t (iY (!)))) dt

=

Z 1

0

(|?t (iY (d!)) + |?t (d(iY (!)))) dt

=

Z 1

0

|?t (LY (!)) dt.

Let ✓t denote the flow of Y . Then ✓t(x, s) = (x, t+ s), and thus |t = ✓t � |0 and we
can compute the Lie derivative as

|?t (LY (!)) = |?0(✓
?
t (LY (!)))

(†)
= |?0

✓

d

dt
✓?t (!)

◆

=
d

dt
|?0(✓

?
t (!))

=
d

dt
|?t (!).

where (†) used Problem L.5. Thus by the (normal) Fundamental Theorem of Cal-
culus we obtain

h(d!) + d(h(!)) =

Z 1

0

d

dt
|?t (!) dt = |?1(!)� |?0(!).

To see the last statement, we take a closed r-form on M ⇥ I. Then

|?1[!]� |?0[!] = [h(d!) + d(h(!))] = 0.

This completes the proof.

We can now prove the following key result.

Theorem 23.17. Let M and N be two smooth manifolds and suppose ' and  
are two homotopic smooth maps from M to N . Then the induced maps '? and  ?

on the de Rham cohomology groups are the same.

Proof. To say that ' and  are homotopic means there is a continuous mapH : M⇥
[0, 1] ! N such that H(·, 0) = ' and H(·, 1) =  . In fact, by the Whitney
Approximation Theorem, we may assume H is a smooth map (see Remark 6.17).
We conclude with

'? = (H � |0)? = |?0 �H? = |?1 �H? = (H � |1)? =  ?.

This completes the proof.
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Recall in general two topological spaces X and Y are said to be homotopy
equivalent if there exists continuous maps f : X ! Y and g : Y ! X such that
both f � g and g � f are homotopic to the respective identity maps.

Corollary 23.18 (Homotopy invariance of de Rham cohomology). Let M and N
be smooth manifolds that are homotopy equivalent. Then M and N have isomor-
phic de Rham cohomology groups.

Proof. Let f : M ! N and g : N ! M be continuous maps such that f � g and
g�f are homotopic to the identity maps. By the Whitney Approximation Theorem
we may approximate f and g by smooth maps ' and  . Then ' �  and  � ' are
homotopic to the identity maps. By Theorem 23.17, (' � )? and ( �')? coincide
with the maps induced by the identity. Since id? is clearly the identity, we see that
'? is an inverse to  ?. The claim follows.

Remark 23.19. A particular case of Corollary 23.18 tells us that the de Rham
cohomology cannot see the smooth structure on a topological manifold M . This is
surprising, since the data that defined it (the di↵erential forms) very much depend
on the choice of smooth structure.

A topological space is contractible if it is homotopy equivalent to a point.

Corollary 23.20. Let M be contractible. Then Hr
dR(M) = 0 for all r � 1.

Proof. It is clear this is true for M equal to a point. Now apply Corollary 23.18.

Remark 23.21. This shows that de Rham cohomology cannot distinguish Eu-
clidean spaces: Hr

dR(Rn) is independent of n (since all Euclidean spaces are con-
tractible). Thus a lot of information is lost when passing to de Rham cohomology.

Perhaps the most useful corollary of this is the following statement, which is
classically called the Poincaré Lemma.

Corollary 23.22 (The Poincaré Lemma). Let M be a smooth manifold and let
! 2 ⌦r(M) be a closed di↵erential form. For any point x 2 M there exists a
neighbourhood U of x such that !|U is an exact form in ⌦r(U).

Proof. Every point in a manifold admits a contractible neighbourhood.
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LECTURE 24

Principal bundles

In Lecture 13 we defined fibre bundles, and then for much of the course we focused
on the special case where the fibre was a vector space, and the structure group was
a matrix Lie group. In this lecture we will switch to another special case, where the
fibre is a Lie group which acts freely on the total space. These are called principal
bundles. Although principal bundles are not quite as ubiquitous in di↵erential
geometry as vector bundles, we will see that they are equally fundamental. Next
semester in Di↵erential Geometry II it will be convenient to switch back and forth
from vector bundles to principal bundles as the mood so takes us, especially when
it comes to defining connections.

The starting point for a principal bundle is a Lie group acting on a manifold on
the right. The following definition is identical to Definition 10.17, except for the
action is now a right action not a left action.

Definition 24.1. Let G be a Lie group and let P be a manifold. A smooth map
µ : P ⇥G! P satisfying

µ(p, ab) = µ(µ(p, a), b), µ(p, e) = p

for all a, b 2 G and p 2 P is called a right action of G on P . The action is free
if µ(p, a) = p for some p 2 P and a 2 G implies a = e.

Remark 24.2. The di↵erence between right actions and left actions is mainly for
notational convenience, since we can always convert one into the other. Indeed, if
µ : G⇥ P ! P is a left action then we can define a right action µ̃ : P ⇥G! P by
µ̃(p, a) := µ(a�1, p), and conversely.

To keep the notation under control, for all principal bundles we will typically
suppress the map µ and just write the action as (p, a) 7! p · a. This should not be
confusing, since there is no danger of overlap: points in G are always written with
a, b etc and points in P are always written with p, q etc, and the multiplication in
G itself is simply written as juxtaposition. This will become particularly important
when there are multiple actions in play at the same time (see Theorem 25.3 in the
next lecture).

Definition 24.3. Let ⇡ : P ! M be a fibre bundle with fibre a Lie group G.
Assume moreover that there exists a free fibre-preserving right action of G on P
and a bundle atlas for P with the property that each bundle chart ↵ : ⇡�1(U)! G
is G-equivariant in the sense that

↵(p · a) = ↵(p)a, 8 p 2 ⇡�1(U), 8 a 2 G.

Then we say that P is a principal bundle overM with group G (or a G-principal
bundle), and we refer to the bundle atlas as a principal bundle atlas, and its
charts as principal bundle charts.

Will J. Merry, Di↵. Geometry I, Autumn 2018, ETH Zürich. Last modified: June 28, 2019.
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Example 24.4. The simplest example of a principal is the trivial bundle pr1 : M ⇥
G!M , where the action is given by (x, a) · b := (x, ab).

Here are two basic properties of principal bundles.

Lemma 24.5. Let ⇡ : P ! M be a G-principal bundle. Then the structure group
of P is G itself, where we let G act on itself via left translations.

Proof. Suppose ↵ : ⇡�1(U) ! G and � : ⇡�1(V ) ! G are two principal bundle
charts such that U \ V 6= ;. Fix a 2 G and suppose p 2 Px is the unique point
such that �|P

x

(p) = a. Let b := ↵|P
x

(p). Then

⇢↵�(x)(a)
def
= ↵|P

x

� �|�1
P
x

(a) = b.

Set c := ba�1. We claim that ⇢↵�(x) = lc. For this take an arbitrary element
a1 2 G. Then we can write a1 = aa2 for a unique a2 (namely, a2 := aa�1

1 ). Then
by G-equivariance, �(p · a2) = �(p)a2 = aa2 = a1. Moreover ↵(p · a2) = ↵(p)a2 =
ba2 = ba�1a1 = ca1 = lc(a1). Thus

⇢↵�(x)(a1) = ↵|P
x

� �|�1
P
x

(a1) = ↵(p · a2) = lc(a1).

The group G acts on itself via left translation, and thus we can regard G as a
subgroup of Di↵(G) via a 7! la. We have thus shown that ⇢↵�(x) belongs to this
subgroup for each x 2 U \ V , which shows that we may take the structure group
of P to be G (cf. Definition 13.9). This completes the proof.

Lemma 24.6. Let ⇡ : P !M be a G-principal bundle. Then the fibres are exactly
the orbits of the G-action (this means that G acts transitively on the fibres), and
hence (as topological spaces) M is the quotient space P/G.

Proof. Fix x 2 M and suppose p, q 2 Px. Let ↵ : ⇡�1(U) ! G denote a principal
bundle chart over a neighbourhood U of x. Let a := ↵(p) and b := ↵(q). Then
since (⇡,↵) is a di↵eomorphism, we have

(⇡,↵)(p · a�1b) = (x,↵(p)a�1b) = (x, b) = (⇡,↵)(q).

Thus q = p ·a�1b. Conversely it is immediate that p ·a 2 Px for all a 2 G, and thus
Px is in bijection with G, as was to be proved.

The converse to Lemma 24.5 is also true. This requires the following auxiliary
result. Recall the notion of a local smooth section from Corollary 12.5: if ' : M !
N is a smooth map then a local smooth section is a map  defined on an open set
V of N such that ' �  is the identity on V .

Lemma 24.7. Let ' : Mn ! Nk be a surjective submersion. Then every point
x 2M is in the image of a local smooth section, and ' is a quotient map.

Proof. Let x 2 M . From the Implicit Function Theorem 5.3, we may choose a
chart � : U ! O on M about x and a chart ⌧ : V ! ⌦ on N about '(x) such that
⌧ � ' � ��1 is of the form

(x1, . . . , xn) 7! (x1, . . . , xk). (24.1)
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By shrinking the domains if necessary we may assume O = O1 ⇥ O2 ⇢ Rk ⇥ Rn�k

and ⌦ = O1. Let z := ⇡2 � �(x), where ⇡2 : O1⇥O2 ! O2 is the second projection.
Then let iz : O1 ! O1⇥O2 denote the map iz(w) = (w, z). A local smooth section
for ' at x is given by  := ��1 � iz � ⌧ .

The fact that ' is an open map is clear from the representation (24.1), since
a small open cube {|xi| < " | i = 1, . . . , n} is mapped onto the small open cube
{|xi| < ", | i = 1, . . . , k}. Finally, an surjective open map is necessarily a quotient
map.

Here is the promised converse to Lemma 24.5.

Proposition 24.8. Let ⇡ : P ! M denote a surjective submersion and let G
denote a Lie group. Assume G acts freely on P in such a way that the orbit of a
point p 2 P is exactly the fibre ⇡�1(⇡(p)). Then ⇡ : P !M is a principal G-bundle.

Proof. Firstly, we may assume that G acts on P on the right, since if the action
is a left action then we can convert it into a right action via Remark 24.2. Next,
for each x 2 M , there is a local smooth section  : U ! P of ⇡ defined on a
neighbourhood U of x. Consider the map

 : U ⇥G! ⇡�1(U),  (y, a) :=  (y) · a. (24.2)

By hypothesis the map  is a smooth bijection. In fact,  is a di↵eomorphism
by the Inverse Function Theorem 5.2, since its derivative is invertible (see Problem
Sheet M). Thus we can write  �1 = (⇡,↵) for a uniquely determined smooth
function ↵ : ⇡�1(U) ! G. This will form our desired principal bundle chart once
we check G-equivariance. Let p 2 ⇡�1(U) and assume that ⇡(p) = y 2 U . Then
for a 2 G we compute:

 (y,↵(p)a) =  (y) · ↵(p)a
=  

�

y,↵(p)
� · a

=  � (⇡,↵)(p) · a
(†)
= p · a
=  

�

y,↵(p · a)�,
where (†) used that  �1 = (⇡,↵). Since  is a di↵eomorphism this shows that
↵(pa) = ↵(p)a.

Thus the results of Lecture 12 tell us:

Corollary 24.9. Let H be a closed Lie subgroup of a Lie group G. Then ⇡ : G!
G/H is a principal H-bundle. More generally, if M ⇠= G/H is a homogeneous space
then G!M is a principal H-bundle.

We will now state a more general version of Theorem 12.4 that applies in other
situations.

Definition 24.10. A right action of a Lie group G on a manifold P is called
proper if the map P ⇥G! P ⇥G given by (p, a) 7! (p · a, a) is a proper map (in
the usual sense).
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Theorem 24.11. Let P be a manifold and let G be a Lie group acting freely and
properly. Then P/G admits a unique smooth structure such that the projection
⇡ : P ! P/G is a surjective submersion, where P/G is given the quotient topology.

We won’t prove Theorem 24.11, as the proof is technical and long and most
of the interesting details were already contained in the proof of Theorem 12.4.
However let us note that combining Theorem 24.11 and Proposition 24.8 gives us
more examples of principal bundles:

Corollary 24.12. Let P be a manifold and let G be a Lie group acting freely
and properly. Then ⇡ : P ! P/G is a principal G-bundle (after making the action
a right action if necessary, cf Remark 24.2).

We have introduced four di↵erent types of actions of Lie groups on manifolds:

• free actions (Definition 24.1),

• e↵ective actions (Definition 13.8),

• transitive actions (Definition 12.9),

• proper actions (Definition 24.10).

Make sure you are aware of the di↵erence in meaning of all of these words! A
free action is necessarily e↵ective, but other than that there are no relations
between the four concepts.
Warning: In addition, be aware that the terminology is not entirely stan-
dard, and some texts define them di↵erently.

We now move onto an extremely important example of a principal bundle,
which will illustrate the deep link between principal bundles and vector bundles.
For this let ⇡ : E ! M be a vector bundle of rank k over M . Fix x 2 M , and
let Fr(Ex) denote the set of isomorphisms T : Rk ! Ex. Any two isomorphisms
T, T1 : Rk ! Ex di↵er by element of GL(k), i.e. T1 = T � A. In fact, if we fix our
favourite isomorphism T then the map GL(k) ! Fr(Ex) given by A 7! T � A is a
bijection.

One can equivalently regard Fr(Ex) as the set of bases of the vector space Ex,
since for any T 2 Fr(Ex) the vectors (Tei) form a basis of Ex, where ei are the
standard basis vectors in Rk, and conversely given a basis (vi) there is a uniquely
determined linear isomorphism T : Rk ! Ex such that Tei = vi for each i.

Definition 24.13. We now form the total space

Fr(E) :=
G

x2M
Fr(Ex),

and let ⇡̂ : Fr(E)! M denote the map that sends Fr(Ex) to x. We call Fr(E) the
frame bundle of E.

Proposition 24.14. Let ⇡ : E ! M be a vector bundle of rank k over M . Then
⇡̂ : Fr(E)!M is a principal GL(k)-bundle over M .
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Proof. Let ↵ : ⇡�1(U) ! Rk denote a vector bundle chart on E over U . Then
↵|�1

E
x

: Rk ! Ex is a linear isomorphism, and thus ↵|�1
E

x

2 Fr(Ex) for each x 2 U .
Define a map

↵̂ : ⇡̂�1(U)! GL(k),

by declaring that
↵̂(↵|�1

E
x

� A) = A.

We will show that ↵̂ is a principal bundle chart on Fr(E). For this, suppose
� : ⇡�1(V ) ! Rk is another vector bundle chart on E such that U \ V 6= ;.
Let �̂ denote the corresponding bundle chart on Fr(E). We compute the transition
function ⇢↵̂�̂ as follows:

⇢↵̂�̂(x)(A) = ↵̂|Fr(E
x

) � �̂|�1
Fr(E

x

)(A)

= ↵̂|Fr(E
x

)

�

�|�1
E

x

� A�

= ⇢↵�(x) � A
Thus the transition functions of Fr(E) is just left composition by the transition
functions of E. In particular, the transition function ⇢↵̂�̂ is smooth, and thus (⇡̂, ↵̂)

and (⇡̂, �̂) defined the same smooth structure on ⇡̂�1(U \ V ). Thus we can use
Remark 13.7 to endow Fr(E) with the structure of a smooth manifold such that
that ↵̂ become bundle charts. We have thus proved that Fr(E) is a fibre bundle
over M with fibre GL(k).

It remains to show that this is a principal bundle. For this first note that the
map Fr(E) ⇥ GL(k) ! Fr(E) given by (T,A) 7! T � A is a smooth free action (it
is free as we have already observed it is free on each fibre). It remains to check
GL(k)-invariance of the bundle charts. If ↵̂ is a chart and A 2 Fr(Ex) then write
A = ↵|�1

E
x

� A1. Then for B 2 GL(k) one has

↵̂(A �B) = ↵̂(↵|�1
E

x

� A1 �B) = A1 �B = ↵̂(A) �B.

Let us now address what it means for two principal bundles to be isomorphic.
Note we only discussed isomorphisms of vector bundles (cf Definition 14.3), not
for general fibre bundles, and thus the following definition is not a special case of
another one. Nevertheless, it is fairly easy to “guess”—one just replaces “linear”
with “equivariant” wherever appropriate.

Definition 24.15. Let ⇡i : Pi ! Mi be two G-principal bundles. Suppose we
are given two smooth maps � : P1 ! P2 and ' : M1 ! M2. We say that � is a
principal bundle morphism along ' if the restriction of � to each fibre P1|x is
a map P1|x ! P2|'(x). Thus the following commutes:

P1 P2

M1 M2

�

⇡1 ⇡2

'
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Moreover � should be equivariant with respect to the two G-actions in the sense
that

�(p · a) = �(p) · a, 8p 2 P1, 8 a 2 G. (24.3)

Here the · on the left-hand side is the G-action in P1, and the · on the right-hand
side is theG-action in P2. If � is a di↵eomorphism then we say that � is a principal
bundle isomorphism along '.

The following lemma illustrates a key di↵erence between vector bundle mor-
phisms and principal bundle morphisms.

Lemma 24.16. Let ⇡i : Pi !Mi be two G-principal bundles. Suppose � : P1 ! P2

is a principal bundle morphism along a di↵eomorphism ' : M1 ! M2. Then � is
also a di↵eomorphism.

Warning: this is not true for vector bundle morphisms! The proof of Lemma
24.16 is also on Problem Sheet M.

If M1 = M2 and ' = id then we just call � a principal bundle isomor-
phism. Note there is no point introducing a “principal bundle homomorphism”
and then declaring a principal bundle isomorphism to be one which is in addition
a di↵eomorphism, because any principal bundle homomorphism is necessarily then
an isomorphism as the identity map is a di↵eomorphism.

Definition 24.17. If ⇡ : P !M is a principal bundle and � : P ! P is a principal
bundle isomorphism from P to itself then we call � a gauge transformation. We
will come back to the study of gauge transformations extensively next semester.

One can also extend the notion of a principal bundle morphism for di↵erent Lie
groups.

Definition 24.18. Suppose G and H are two Lie groups. Let ⇡1 : P1 ! M1 be
a principal G-bundle and let ⇡2 : P2 ! M2 be a principal H-bundle. Suppose
 : G! H is a Lie group homomorphism. A principal bundle morphism from
P1 to P2 with respect to  consists of a pair of smooth maps ' : M1 !M2 and
� : P1 ! P2 such that the diagram from Definition 24.15 commutes, and with the
equivariance condition (24.3) replaced by

�(p · a) = �(p) ·  (a), 8 p 2 P1, a 2 G.

If M1 = M2 and ' = id then we call � a principal bundle homomorphism
with respect to  . In this case the analogue of Lemma 24.16 is not true, and so
� does not need to be a principal bundle isomorphism with respect to  .

A special case of this gives rise to the notion of a principal subbundle.

Definition 24.19. Let G be a Lie group and suppose H ⇢ G is a Lie subgroup.
Suppose ⇡1 : Q ! M is a principal H-bundle and ⇡2 : P ! M is a principal G-
bundle such that Q ⇢ P . We say that Q is a principal H-subbundle of P if the
inclusion Q ,! P is a principal bundle homomorphism with respect to the inclusion
H ,! G.
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Here is a useful criterion for constructing principal subbundles.

Proposition 24.20. Let ⇡ : P !M be a principal G-bundle. Let H ⇢ G be a Lie
subgroup, and let Q ⇢ P be a subset such that:

(i) The restriction ⇡|Q : Q!M is surjective.

(ii) If q 2 Q and a 2 H then q · a 2 Q.

(iii) For all x 2M , the action of H on Q \ Px is transitive.

(iv) For all x 2 M , there exists a neighbourhood U of x and a local section
s : U ! P such that s(y) 2 Q for all y 2 U .

Then ⇡|Q : Q ! M is a principal H-bundle, and moreover Q is a principal H-
subbundle of P .

Proof. The proof is a variation on the proof of Proposition 24.8. Fix x 2 M and
let U ⇢M be a neighbourhood of x such that there exists a section s : U ! P such
that s(y) 2 Q for all y 2 U . For every point q 2 Q \ ⇡�1(U), there exists a unique
a 2 H such that

q = s(⇡(q)) · a.
Define ↵ : Q \ ⇡�1(U)! H by

↵(⇡(q) · a) = a.

Then (⇡|Q,↵) is a bijection from Q \ ⇡�1(U)! U ⇥H. We define a topology and
smooth structure on Q by declaring this to be a di↵eomorphism. The rest of the
proof is now analogous to that of Proposition 24.8.

Let us also state explicitly the following result, whose proof is a special case of
Theorem 14.1.

Theorem 24.21. Let {Ua | a 2 A} be an open covering of a manifold M . Let G be
a Lie group. Suppose for each a, b 2 A such that Ua\Ub 6= ;, we are given a smooth
map ⇢ab : Ua \ Ub ! G such that the following cocycle condition is satisfied:

(

⇢ac(x) = ⇢ab(x)⇢bc(x), 8x 2 Ua \ Ub \ Uc, if Ua \ Ub \ Uc 6= ;,
⇢aa(x) = e, 8 x 2 Ua, 8 a 2 A.

(24.4)

Then there exists a G-principal bundle ⇡ : P ! M . Moreover there is a principal
bundle atlas {↵a : ⇡�1(Ua)! G | a 2 A} such that the transition function ⇢↵a↵b

are
given by ⇢ab.

Proof. Apply Theorem 14.1 with F = G and the action given by left translations.
This gives a fibre bundle ⇡ : P ! M with fibre G and the transition functions
as stated. It thus remains to check that the corresponding bundle charts are G-
equivariant, but this is immediate from the proof of Theorem 14.1.

Just as with vector bundles, principal bundles are determined up to isomorphism
by their transition functions.
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Proposition 24.22. Let M be a smooth manifold and suppose ⇡i : Pi ! M are
principal G-bundles over M . Let {Ua | a 2 A} be an open cover of M such that
both1 P1 and P2 admit principal bundle atlases over the Ua. Let

⇢1ab : Ua \ Ub ! G, and ⇢2ab : Ua \ Ub ! G

denote the transition functions of P1 and P2 with respect to these bundle atlases.
Then P1 and P2 are isomorphic principal bundles if and only if there exists a smooth
family ⌫a : Ua ! G of functions such that

⌫a(x) · ⇢1ab(x) = ⇢2ab(x) · ⌫b(x), 8 x 2 Ua \ Ub, 8 a, b 2 A.

The proof of Proposition 24.22 is on Problem Sheet M.

Corollary 24.23. The principal bundle constructed in Theorem 24.21 is unique
up to isomorphism.

Definition 24.24. Suppose now we are in the setting of Theorem 14.1, where in
addition we are given an e↵ective action µ of G on another manifold F , we can
construct two bundles: a fibre bundle E !M with fibre F , and a principal bundle
P ! M with fibre G, such that the transition functions of P are given by (24.4)
and the transition functions of E are given by ⇢̃ab(x)(v) := µ(⇢ab(x), v) (compare
(13.3)). Since we normally suppress the action µ when talking about transition
functions, informally this is saying that both bundles have the same transition
functions. In this case we call P the principal bundle associated to E and we
call E an associated bundle of P .

Here is the key example of this process.

Example 24.25. Let E be a vector bundle. Then the principal bundle associated
to E is the frame bundle Fr(E). Indeed, the proof of Proposition 24.14 showed that
the transition functions of Fr(E) are the same as those of E.

Note the di↵erence between “the” and “an”! A fibre bundle E with structure
group G has exactly one principal bundle (up to isomorphism) associated to it
by Corollary 24.23. However as we will see next lecture, if we start with the
principal bundle then any e↵ective action of G on another manifold F gives rise to
an associated bundle.

1This can always be achieved by taking intersections.
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LECTURE 25

Associated bundles

We begin this lecture by explaining how to build associated fibre bundles from a
principal bundle.

Definition 25.1. Let ⇡ : P !M be a principal G-bundle, and assume G acts ef-
fectively on another manifold F on the left via µ : G⇥F ! F . Define an equivalence
relation ⇠ on P ⇥ F by setting:

(p · a, v) ⇠ (p, µ(a, v)), p 2 P, a 2 G, v 2 F, (25.1)

Define P⇥GF to be the quotient space (P⇥F )/ ⇠. Writing [p, v] for the equivalence
class of (p, v), we define a map } : P ⇥G F !M by setting }[p, v] := ⇡(p).

Remark 25.2. The notation “P ⇥G F” is somewhat ambiguous, since we really
should specify the action we are using. When confusion is possible, we will occa-
sionally write P ⇥G,µ F or P ⇥µ F instead.

The next result is the main one of today’s lecture. It covers everything we could
ever want to know about associated bundles, and the proof will take some time.

Theorem 25.3. Let ⇡ : P ! M be a principal G-bundle, and assume G acts
e↵ectively on another manifold F on the left. Then:

(i) P ⇥G F is a smooth manifold.

(ii) } : P ⇥G F !M is a fibre bundle with fibre F and structure group G.

(iii) P is the principal bundle associated to P ⇥G F .

(iv) The quotient map ⇧ : P ⇥ F ! P ⇥G F given by ⇧(p, v) := [p, v] is also a
principal G-bundle.

(v) The first projection pr1 : P ⇥F ! P is a principal bundle morphism along }:

P ⇥ F P

P ⇥G F M

pr1

⇧ ⇡

}

(vi) For each p 2 P , the map Lp : F ! P ⇥G F given by v 7! [p, v] is a di↵eomor-
phism over the fibre ⇡(p).

Will J. Merry, Di↵. Geometry I, Autumn 2018, ETH Zürich. Last modified: June 28, 2019.
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(vii) If F is a vector space and G acts linearly on F (so that µ can be thought of
as a representation G! GL(F ), cf. Definition 10.19) then P ⇥GF is a vector
bundle over M and the map Lp from part (vi) is a linear isomorphism.

Proof. We will prove the result in three steps.
1. In this first step, we will prove (i), (ii) and (iii). This is actually most of

the work. Suppose ↵ : ⇡�1(U) ! G is a principal bundle chart over an open set
U ⇢M . We define a map ↵̃ : }�1(U)! F by

↵̃[p, v] := µ(↵(p), v), (p, v) 2 ⇡�1(U)⇥ F.

Our aim is to show that the collection of maps ↵̃, as ↵ runs over a principal bundle
atlas for P , defines a bundle atlas for P ⇥G F . Thus as a first step we must show
that (}, ↵̃) : }�1(U)! U ⇥ F is bijective.

For each x 2 U , let qx 2 Px denote the unique element such that ↵(qx) = e (this
is well defined as (⇡,↵) is a di↵eomorphism). Now define  : U ⇥ F ! }�1(U) by
 (x, v) := [qx, v]. We claim that  is an inverse to (}, ↵̃). Indeed,

(}, ↵̃) �  (x, v) = (}, ↵̃)[qx, v] = (x, µ(↵(qx), v)) = (x, v).

Going the other way round, if x 2 U and p 2 Px then

(⇡,↵)(qx · ↵(p)) = (x,↵(qx)↵(p)) = (x,↵(p)) = (⇡,↵)(p)

and thus qx · ↵(p) = p. We therefore have for p 2 Px that

 � (}, ↵̃)[p, v] =  (x, µ(↵(p), v))

= [qx, µ(↵(p), v)]
(†)
= [qx · ↵(p), v]
= [p, v],

where (†) used the defining relationship (25.1) for ⇠. Thus (}, ↵̃) is bijective. Now
let us investigate the transition function. If ↵ and � are two principal bundle
charts on P over open sets U and V respectively such that U \ V 6= ;, then for
(x, v) 2 (U \ V )⇥ F , the transition function ⇢↵̃�̃ satisfies

⇢↵̃�̃(x)(v) = ↵̃ � (}, �̃)�1(x, v)

= ↵̃[(⇡, �)�1(x, e), v]

= µ(↵ � (⇡, �)�1(x, e), v)

= µ(⇢↵�(x)(e), v),

which under the convention from Definition 13.9 that we suppress the µ from the
transition functions, we see that

⇢↵̃�̃ = ⇢↵�,

that is, the transition functions of P ⇥G F are the same as the transition functions
from P , and thus in particular are smooth. Thus as in Remark 13.7, we can
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endow P ⇥G F with a smooth structure by declaring all the maps (}, ↵̃) to be
di↵eomorphisms—this gives a well-defined smooth structure as we just checked the
transition functions are smooth. Then the collection {↵̃} form a bundle atlas, and
P ⇥G F is a fibre bundle. That the structure group is G is immediate from the fact
that the transition functions coincide with those of P .

Since P ⇥GF and P have the same transition functions, it is clear that P is the
principal bundle associated to P ⇥G F in the sense of Definition 24.24.

2. We now prove (iv) and (v). With respect to the charts on P ⇥G F , if
⇧(p, v) = [p, v] then the expression

(}, ↵̃) � ⇧(p, v) = (⇡(p), µ(↵(p), v)),

shows that locally ⇧ is smooth. The right action of G on P ⇥ F is given by

(p, v) · a = (p · a, µ(a�1, v)).

This right action preserves the fibres of ⇧, since

⇧((p, v) · a) = ⇧(p · a, µ(a�1, v)) =
⇥

p · a, µ(a�1, v)
⇤

= [p, v] = ⇧(p, v)

by the defining relationship (25.1). It now follows from Proposition 24.8 that P ⇥
F ! P ⇥G F is another principal G bundle. This proves (iv). The identity

pr1(p · a, µ(a�1, v)) = p · a = pr1(p, v) · a

shows that pr1 is a principal G-bundle morphism along }, which proves (v).
3. We now prove (vi) and (vii). Fix x 2 M and p 2 Px. The map F ! }�1(x)

given by v 7! [p, v] is smooth because ⇧ is. Its inverse with respect to principal
bundle charts ↵ and ↵̃ as given in Step 1 is given by [p, w] 7! µ(↵(p)�1, ↵̃[p, w]).
This proves (vi).

Finally, suppose F is a vector space and µ is a linear action. Given p 2 P , let
[p, v] and [p, w] be two points in }�1(⇡(p)). Given c 2 R, we define

[p, v] + c[p, w] := [p, v + vc].

This is well defined, i.e. independent of the choice of p, since if a 2 G then
[p, v] = [p · a, µ(a�1, v)] and [p, w] = [p · a, µ(a�1, w)] and then since µ is linear

[p · a, µ(a�1, v) + cµ(a�1, w)] = [p · a, µ(a�1, v + cw)] = [p, v + cw].

The charts ↵̃ on P⇥GF are now vector bundle charts. This completes the proof.

As an application of Theorem 25.3, we give (yet) another way to view the
di↵erent vector bundles we can build from one another. (Compare the Metatheorem
from Lecture 14).

Corollary 25.4. Let ⇡ : E !M be a vector bundle with standard fibre1 V . Let
⇡̂ : Fr(E)!M denote the frame bundle of E. Then:

1Of course, we could write V = Rk, but as you will see from the statement of the corollary,
writing the fibre as an abstract vector space makes it clearer what is going on.
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(i) The group GL(V ) acts on the dual space V ⇤ by µ(A, p) = p �A�1. This gives
an associated vector bundle Fr(E)⇥GL(V )V ⇤, which is exactly the dual bundle
E⇤.

(ii) The group GL(V ) acts on the tensored space V ⌦V by µ(A, v⌦w) = Av⌦Aw.
This gives an associated vector bundle Fr(E)⇥GL(V ) (V ⌦V ), which is exactly
the tensor bundle E ⌦ E.

(iii) The group GL(V ) acts on the exterior algebra
V

(V ) by µ(A, v1 ^ · · · ^ vk) =
Av1 ^ · · · ^ Avk. This gives an associated vector bundle Fr(E)⇥GL(V )

V

(V ),
which is exactly the exterior bundle

V

(E).

The proof of Corollary 25.4 is immediate from the proof of Theorem 25.3 since
in all cases we know what the transition functions are. Fun Exercise: Formulate
an appropriate categorical statement and use this to recover Theorem 14.41 in full
generality. Here is another application, this time to homogeneous spaces.

Proposition 25.5. Let G be a Lie group and let µ be a transitive and e↵ective2

left action on a connected smooth manifold M . Fix x 2 M and let H denote the
isotropy group at x, so that M is the homogeneous space G/H (cf. Theorem 12.11).
Assume also that H acts e↵ectively on TxM via the map

' : H ⇥ TxM ! TxM, '(c, v) := Dµc(x)[v]

(cf. Definition 12.10). Then with this action, the tangent bundle TM is isomorphic
as a vector bundle to the associated bundle G⇥H TxM .

Proof. Define a map � : G⇥H TxM ! TM by �[a, v] :=
�

µa(x), Dµa(x)[v]
�

. This
map is visibly smooth and linear on each fibre, so we need only build an inverse.
For this suppose w 2 TyM . Since the action of G is transitive, there exists a 2 G
such that µa(x) = µ(a, x) = y. Define  : TM ! G ⇥H TxM by  (y, w) :=
[a,Dµa(x)�1[w]]. This is well defined, since if b is another element of G such that
µ(b, x) = y then c := a�1b 2 H, and hence

[a,Dµa(x)
�1[w]] = [ac,'(c�1, Dµa(x)

�1[w])]

= [ac,Dµc�1(x) �Dµa(x)
�1[w]]

= [ac,Dµc(x)
�1 �Dµa(x)

�1[w]]

= [ac,Dµac(x)
�1[w]]

= [b,Dµb(x)
�1[w]],

where the first equality used the definition of the equivalence relation (25.1) in the
associated bundle G⇥H TxM .

In fact, any homogeneous space can be realised as one arising from an e↵ective
action, as the following lemma shows. The proof is on Problem Sheet M.

2This really is an extra assumption, a homogeneous space only requires the action to be
transitive. However see Lemma 25.6 below.
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Lemma 25.6. Suppose G is a Lie group acting transitively on a smooth manifold
M , so that M is the homogeneous space G/H for an appropriate subgroup H
of G. The subgroup of G acting trivially on M is the largest normal subgroup
N(H) of G contained in H. If Ḡ and H̄ denote the quotient groups G/N(H) and
H/N(H) respectively then Ḡ acts e↵ectively and transitively on M , and M is the
homogeneous space Ḡ/H̄.

Here is another di↵erence between vector bundles and principal bundles.

Proposition 25.7. Let ⇡ : P !M be a principal G-bundle. Then P has a section
if and only if P is trivial.

Proof. If P = M⇥G is the trivial bundle, then for any a 2 G the map s(x) := (x, a)
is a section. Conversely, if s : M ! P is a section then since p and s(⇡(p)) belong
to the same fibre for each p 2 P , there is a well-defined equivariant map ↵ : P ! G
such that

p = s(⇡(p)) · ↵(p), 8 p 2 P.

We claim that ↵ is a principal bundle chart, whence P is a trivial bundle. For this
we need to prove that (⇡,↵) : P ! M ⇥ G is a di↵eomorphism. But this follows
from Lemma 24.16, since (⇡,↵) is a principal bundle morphism along the identity
map on M .

So far we have not made any use of the Lie group structure other than it being
a group. But as we extensively studied earlier in the course, a Lie group G comes
with a Lie algebra g. An element v 2 g determines a left-invariant vector field Xv

on G (cf. Theorem 9.19) via Xv(a) := Dla(e)[v]. A similar thing works whenever a
Lie group acts on a manifold, as we now explain.

Remark 25.8. For the rest of this lecture, all the results we prove are valid for
an arbitrary right action of a Lie group on a manifold (i.e. we do not require a
principal bundle action). Thus we will formulate the statements to come in this
more general setting. Nevertheless, our only application of this material (which
won’t come until Lecture 39 next semester) will immediately restrict to a principal
bundle.

Definition 25.9. Let G be a Lie group with Lie algebra g, and suppose G acts
on a manifold P on the right, which we write as (p, a) 7! p · a. Given v 2 g, we
associate a vector field ⇠v on P via

⇠v(p) :=
d

dt

�

�

�

t=0
p · exp(tv) 2 TpP.

Let us unpack this a bit. Fix p 2 P . Then the curve �p(t) := p · exp(tv) is a
curve in P with initial point �p(0) = p · e = p. Thus �0p(0) belongs to TpP , and this
is the value of the vector field ⇠v:

⇠v(p) = �0p(0).

If f 2 C1(P ) then (thought of a derivation), one has

⇠v(f)(p) =
d

dt

�

�

�

t=0
f � �p(t) = d

dt

�

�

�

t=0
f(p · exp(tv)).

Of course, calling something a “vector field” does not make it one. Certainly ⇠v is
a section of TP , but it isn’t immediate why it is smooth.
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Lemma 25.10. The fundamental vector field ⇠v is smooth (and hence a vector field
on P ).

Proof. It su�ces to show by Proposition 7.2 that ⇠v(f) is a smooth function for
each f 2 C1(P ). But this is clear from the formula above. To make it more
transparent, let us write µ for the action. Then

⇠v(f)(p) =
d

dt

�

�

�

t=0
(f � µ)(p, exp(tv))

is the composition of smooth functions in both p and t.

Proposition 25.11. The flow of ⇠v is given by ✓t(p) := p · exp(tv). Thus ⇠v is
always complete.

Proof. With �p as above, we need only show that �p is the integral curve of ⇠v
through p. This follows from:

�0p(t) =
d

ds

�

�

�

s=0
�p(t+ s) =

d

ds

�

�

�

s=0
p · exp(tv) exp(sv) = ⇠v(p · exp(tv)) = ⇠v(�p(t)).

An alternative way to define the fundamental vector field ⇠v is to consider the
map

⌘p : G! P, ⌘p(a) := p · a.
Then with �p as above,

D⌘p(e)[v] =
d

dt

�

�

�

t=0
⌘p(exp(tv)) =

d

dt

�

�

�

t=0
p · exp(tv) = ⇠v(p). (25.2)

Example 25.12. Let G act on itself via right multiplication. Then by Proposition
10.9 the fundamental vector field associated to v 2 g is exactly the left-invariant
vector field Xv.

On Problem Sheet M you will show:

Proposition 25.13. Let G be a Lie group with Lie algebra g, and suppose G acts
on a manifold P on the right. Then the map v 7! ⇠v is a Lie algebra homomorphism
g! X(P ).

Our last result makes contact with the adjoint representation from Lecture 10.
For this, let us write

ra : P ! P, ra(p) = p · a
so that ra 2 Di↵(P ).

Proposition 25.14. Let G be a Lie group with Lie algebra g, and suppose G
acts on a manifold P on the right. Then for v 2 g the following “infinitesimal”
equivariance property holds:

Dra(p)[⇠v(p)] = ⇠Ad
a

�1 (v)(ra(p)).
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Proof. For any b 2 G, one has

ra � ⌘p(b) = p · ba = ⌘p·a(a�1ba).

Di↵erentiating this identity at b = e and using the fact that Ad is the di↵erential
of the conjugation action b 7! aba�1 at b = e, the claim follows from the chain rule
and (25.2).

We will use this material again in Lecture 39 when discussing the connection
form of a connection on a principal bundle (see Theorem 39.3 in particular).
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LECTURE 26

Bundle-valued forms

In this lecture we will push our treatment of di↵erential forms a little further and
allow them to take values in an arbitrary vector space, or later, a vector bundle.

Unfortunately we will have to wait until Di↵erential Geometry II next semester
in order to understand the motivation behind this construction—for now let us just
say that this material will be crucial to make sense of connections and curvature
on vector and principal bundles, as well as to understand the relation between the
two.

Let us start at the level of linear algebra. If V is a vector space, we have studied
extensively the exterior wedge

Vr(V ⇤), and its identification with the space Altr(V )
of alternating multilinear maps

A :

r
z }| {

V ⇥ · · ·⇥ V ! R.

Now suppose W is another vector space. In Definition 15.22 we actually originally
introduced the space Altr(V,W ) of alternating multilinear maps

A :

r
z }| {

V ⇥ · · ·⇥ V ! W.

Moreover Lemma 15.24 and Corollary 15.4 show that

Altr(V,W ) ⇠= L
⇣

^r
(V ),W

⌘ ⇠=
⇣

^r
(V )
⌘⇤
⌦W ⇠=

^r
(V ⇤)⌦W.

This gives:

Lemma 26.1. Let V and W be two vector spaces. For r � 0 there is a canonical
isomorphism between Altr(V,W ) and

Vr(V ⇤)⌦W .

We now generalise this idea. If E is a vector bundle over M and W is a vector
space, we denote by E⌦W the bundle over M whose fibre is (E⌦W )x := Ex⌦W
(equivalently, this is the bundle obtained by tensoring E with the trivial bundle
M ⇥W !M).

Definition 26.2. Let M be a smooth manifold and let W be a vector space. A
di↵erential r-form on M with values in W (also called a vector-valued form)
is a section of the bundle

Vr(T ⇤M)⌦W !M . We denote the space of sections by

⌦r(M,W ) := �
⇣

^r
(T ⇤M)⌦W

⌘

.
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This is not as scary as it looks (and reduces to the normal definition if W = R).
For instance, a W -valued one-form ! associates to every x 2 M a linear map
!x : TxM ! W . Thus if we feed !x a tangent vector v we get an element of W ,
rather than an element of R. If X is a vector field on M and f : M ! W is a
smooth function then

X(f) : M ! W, X(f)(x) := J �1
f(x) (Df(x)[X(x)]) (26.1)

is another smooth function, where Jf(x) : W ! Tf(x)W is the map from Problem
B.3. Thus the analogue of Proposition 7.2 holds for vector-valued functions as well.
In fact, almost all of our earlier work on di↵erential forms goes through without
any changes (just insert W in appropriate places), and I will leave you to fill in the
details, stating only a few pertinent results.

Theorem 26.3 (The Vector-valued Di↵erential Form Criterion). LetM be a smooth
manifold and let W be a vector space. Then there is a canonical identification be-
tween ⌦r(M,W ) and alternating C1(M)-multilinear functions

X(M)⇥ · · ·⇥ X(M)
| {z }

r

! C1(M,W ).

One can also define for an open subset U ⇢M the sections over U :

⌦r(U,W ) := �
⇣

U,
^r

(T ⇤M)⌦W
⌘

,

and this gives us a sheaf in the same way as before.

Remark 26.4. Warning: Unfortunately we tend to use the same letters U, V,W
etc to denote both open sets in manifolds and arbitrary vector spaces. This means
expressions like ⌦r(U,W ) can be somewhat confusing. . . Oh well.

Assume now that W has dimension k, and let (e1, . . . , ek) be a basis. If ! 2
⌦r(M,W ) and x 2M , then for any tangent vectors v1, . . . , vr 2 TxM , we can write
!x(v1, . . . , vr) as a linear combination of the ei. If we denote the coe�cient of ei by
!i
x(v1, . . . , vr), we can thus write

!x(v1, . . . , vr) = !i
x(v1, . . . , vr) ei.

Since !x is an alternating multilinear map, so is each !i
x. It follows that !i is a

normal di↵erential r-form on M , and we can write

! = !i ⌦ ei.

This is of course, consistent with thinking of ! as a section of the tensored bundle
Vr(T ⇤M)⌦W . This allows us to extend the exterior di↵erential to a sheaf morphism
d : ⌦r(M,W )! ⌦r+1(M,W ) by declaring that

d
�

!i ⌦ ei
�

:= d!i ⌦ ei.

Exercise: Why is this independent of the choice of basis of W?
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The wedge product requires a little more thought to define, since this requires us
to multiply vectors together. This isn’t possible in an arbitrary vector space (only
in algebras, cf. Definition 15.17). Thus in general we need to specify a bilinear
map. This works as follows: suppose V,W1,W2 and Z are four vector spaces, and
assume we are given a bilinear map � : W1 ⇥W2 ! Z (equivalently, a linear map
W1 ⌦W2 ! Z, cf. Lemma 15.2). Then motivated by Lemma 19.4, we make the
following definition:

Definition 26.5. Let ! 2 Altr(V,W1) and # 2 Alts(V,W2). We define ! ^� # 2
Altr+s(V, Z) by

(!^�#)(v1, . . . , vr+s) =
1

r!s!

X

%2S
r+s

sgn(%)�
�

!
�

v%(1), . . . , v%(r)
�

,#
�

v%(r+1), . . . , v%(r+s)

��

.

Equivalently we can think of ^� as defining a map

⇣

^r
(V ⇤)⌦W1

⌘

⇥
⇣

^s
(V ⇤)⌦W2

⌘

!
⇣

^r+s
(V ⇤)⌦ Z

⌘

If for instance W = W1 = W2 is an algebra (and thus there is natural algebra
multiplication W ⌦W ! W ) we can regard the wedge product as a map

⇣

^r
(V ⇤)⌦W

⌘

⇥
⇣

^s
(V ⇤)⌦W

⌘

!
⇣

^r+s
(V ⇤)⌦W

⌘

,

and in this case we typically omit reference of the map �. Moreover if we have no
convenient map �, we can always take Z = W1 ⌦W2 and have � be induced from
the identity map W1 ⇥W2 ! W1 ⇥W2. Thus we always have a wedge product

⇣

^r
(V ⇤)⌦W1

⌘

⇥
⇣

^s
(V ⇤)⌦W2

⌘

!
⇣

^r+s
(V ⇤)⌦W1 ⌦W2

⌘

,

We can apply this to manifolds: if � : W1 ⇥ W2 ! Z is a bilinear map then we
obtain a map

⌦r(M,W1)⇥ ⌦s(M,W2)
^
��! ⌦r+s(M,Z)

by applying the above construction pointwise:

(! ^� #)x = !x ^� #x, x 2M.

Let (e1, . . . , ek) be a basis of W1 and (e01, . . . , e
0
l) be a basis of W2. If we write

! = !i ⌦ ei and # = #j ⌦ e0j then from the definition it follows that

! ^� # = !i ^ #j�(ei, e
0
j).

If (f1, . . . , fm) is a basis of Z then we can write �(ei, e0j) = ahijfh for real numbers
ahij, and thus

! ^� # = ahij !
i ^ #j fh,

which also proves that ! ^� # is smooth (if you were worried). The following
result, whose proof is on Problem Sheet M, shows that the exterior di↵erential on
vector-valued forms is still skew-commutative.

3



Proposition 26.6. Let M be a smooth manifold, and let W1,W2 and Z be vector
spaces. Let ! 2 ⌦r(M,W1) and let # 2 ⌦s(M,W2), and let � : W1 ⇥W2 ! Z be a
bilinear map. Then

d(! ^� #) = d! ^� #+ (�1)r! ^� d#.

Let us give an example of how this is useful.

Example 26.7. Let g be a Lie algebra. Then g is in particular a vector space,
and the Lie bracket (v, w) 7! [v, w] is a bilinear map g ⇥ g ! g. Suppose M is a
manifold. Given ! 2 ⌦r(M, g) and # 2 ⌦s(M, g), we typically use the notation

[!,#] := ! ^�=[·,·] #.

We claim that this wedge product satisfies the following version of skew-commutativity:

[!,#] = (�1)rs+1[#,!]. (26.2)

To see this, let (e1, . . . , ek) be a basis for g. Write ! = !i ⌦ ei and # = #j ⌦ ej.
Then

[!,#] = !i ^ #j[ei, ej] = (�1)rs+1#j ^ !i[ej, ei] = (�1)rs+1[#,!],

where the (�1)rs came from swapping !i ^ #j to #j ^ !i and the other �1 came
from [ei, ej] = �[ej, ei]. In particular, this shows that if r = s = 1 then [!,#] is
symmetric in ! and #. (This should surprise you, since the normal Lie bracket
is anti-symmetric). In particular, it is not (!) necessarily true that [!,!] = 0
for ! 2 ⌦1(M, g). This will be important in Lecture 39 (see Theorem 39.10 in
particular).

Let us also note the analogue of Theorem 20.7 holds.

Theorem 26.8. Let M be a smooth manifold, ! 2 ⌦r(M,V ) and X0, . . . Xr 2
X(M). Then:

d!(X0, . . . , Xr) =
r
X

i=0

(�1)iXi

�

!(X0, . . . , bXi, . . . , Xr)
�

+
X

0i<jr

(�1)i+j!([Xi, Xj], X0, . . . bXi, . . . , bXj, . . . , Xr).

Proof. The proof is identical to the proof of Theorem 20.7—the only di↵erence is
that both sides are functions M ! V rather than functions M ! R.

Similarly the proof of Lemma 19.19 goes through without any changes to give:

Lemma 26.9. Let ' : M ! N be a smooth map and let ! 2 ⌦(N, V ). Then

'?(d!) = d('?(!)).

Let us now take this one step further and look at di↵erential forms with values
in a vector bundle, rather than just a vector space.
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Definition 26.10. Let M be a smooth manifold and ⇡ : E ! M a vector bundle
over M . A di↵erential r form with values in E (or a bundle-valued form)
is a section of

Vr(T ⇤M)⌦ E. As usual, we denote by ⌦r(M,E) the space of such
sections.

Thus an element ! 2 ⌦r(M,E) defines for each x 2M an alternating multilinear
map

!x :

r
z }| {

TxM ⇥ · · ·⇥ TxM ! Ex.

Again, this may seem confusing, but in reality is no more complicated than the
case of a vector-valued form; the only di↵erence is that the target vector space Ex

now also depends on x. If (e1, . . . , ek) is a local frame for E over an open set U
then any element ! 2 ⌦r(U,E) can be written as a sum

! = !i ⌦ ei

where !i is a normal di↵erential r-form on U .

Remark 26.11. Warning: Do not confuse ⌦r(U,E) and �(U,
Vr(E))!

Theorem 26.12 (The Bundle-valued Di↵erential Form Criterion). There is a natu-
ral C1(M)-module isomorphism between ⌦r(M,E) and alternating C1(M)-multilinear
functions

X(M)⇥ · · ·⇥ X(M)
| {z }

r

! �(E).

This follows in the same way as Theorem 19.1 and Theorem 26.3, but since this
is arguably the hardest of these sort of results, let us recap the details.

Proof. We use the Hom-Gamma Theorem 16.30:

⌦r(M,E) = �
⇣

^r
(T ⇤M)⌦ E

⌘

= �
⇣

Hom
⇣

^r
(TM), E

⌘⌘

= Hom
⇣

�
⇣

^r
(TM)

⌘

,�(E)
⌘

.

Now the argument used in the proof of Theorem 18.3 (which was proved as Prob-
lem I.3) shows that this latter space can be identified with alternating C1(M)-
multilinear functions

X(M)⇥ · · ·⇥ X(M)
| {z }

r

! �(E).

Alternatively, one could use the alternating version of Theorem 18.5 to show that

Hom
⇣

�
⇣

^r
(TM)

⌘

,�(E)
⌘ ⇠= Altr(X(M),�(E))

(this is more e�cient, but harder, since X(M) and �(E) are infinite-dimensional
vector spaces).
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Thus we can think of an element of ⌦r(M,E) as a alternating map that eats
vector fields and produces a section of E:

!(X1, . . . , Xr) 2 �(E).

Here is an example.

Example 26.13. Let ' : M ! N be a smooth map. Then D' can be thought of
as an element of ⌦1(M,'?(TN)).

We now return to associated bundles of principal bundles. We will only for-
mulate this in the special case that will be of relevance to our considerations next
semester. Let ⇡ : P ! M denote a principal G-bundle, and let µ : G ! GL(V )
denote a e↵ective linear representation on a vector space V , and let E := P ⇥G V
denote the associated vector bundle1. We are interested in the relation between the
spaces

⌦r(P, V ) and ⌦r(M,E).

We will construct a subspace ⌦r
G(P, V ) ⇢ ⌦r(P, V ) which will consist of horizontal

equivariant forms. Then we will prove that ⌦r
G(P, V ) ⇠= ⌦r(M,E).

We begin with the following very general definition.

Definition 26.14. Recall from Problem I.5 that the vertical bundle V P ⇢ TP
is the vector subbundle of the tangent bundle of P whose fibre over p 2 P is
kerD⇡(p) : TpP ! T⇡(p)M . A tangent vector ⇣ 2 TpP is said to be vertical if
⇣ 2 VpP , i.e. if D⇡(p)[⇣] = 0. A di↵erential form ! 2 ⌦r(P, V ) is said to be
horizontal if ! vanishes whenever any of its variables is a vertical vector. If r = 0,
we declare all forms to be horizontal.

Remark 26.15. The vertical bundle is defined for an arbitrary fibre bundle, and
thus we can define horizontal di↵erential forms on arbitrary bundles (either real-
valued, vector-valued, or bundle-valued) in the same way.

We write ra : P ! P for the map p 7! p · a and we write µa : V ! V for the
map v 7! µ(a, v).

Definition 26.16. Let ! 2 ⌦r(P, V ) denote an V -valued form. We say that ! is
equivariant if

r?a(!) = µa�1(!), 8 a 2 G.

Explicitly, this means that for any p 2 P and ⇣1, . . . , ⇣r 2 TpP ,

r?a(!)p(⇣1, . . . , ⇣r) = µa�1(!p(⇣1, . . . , ⇣r)).

We set:

⌦r
G(P, V ) := {! 2 ⌦r(P, V ) | ! is horizontal and equivariant} .

Let us now explain how an element ! 2 ⌦r
G(P, V ) gives rise to an element ![ 2

⌦r(M,E). Fix x 2 M and v1, . . . , vr 2 TxM . Choose any point p 2 Px, and

1Actually the “e↵ective” hypothesis is not needed here, for all the relevant bits of Theorem
25.3 go through without this assumption.
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choose any vectors ⇣i 2 TpP such that D⇡(p)[⇣i] = vi (such vectors exist as ⇡ is a
submersion). Then !p(⇣1, . . . , ⇣r) belongs to V . By part (vii) of Theorem 25.3, the
map v 7! [p, v] defines an linear isomorphism from V to Ex, which we write as

Lp : V ! E⇡(p), Lp(v) := [p, v].

We apply Lp to !p(⇣1, . . . , ⇣r) to get an element of Ex, and then define ![x(v1, . . . , vr)
to be this element:

![x(v1, . . . , vr) := Lp

�

!p(⇣1, . . . , ⇣r)
�

.

Of course, it requires proof that ![ is well defined. The next result is the main one
of this lecture.

Theorem 26.17. If ! 2 ⌦r
G(P, V ) then ![ is well defined. Moreover the map

⌦r
G(P, V ) 7! ⌦r(M,E), ! 7! ![

is a linear isomorphism.

Proof. We prove the result in four steps.
1. To show that ![ is well defined we must check the value Lp(!p(⇣1, . . . , ⇣r))

does not depend on the choice of p 2 Px and the choice of ⇣i 2 TpP such that
D⇡(p)[⇣i] = vi. In this step we deal with the ⇣i. If ⇠i was another tangent vector
such that D⇡(p)[⇠i] = vi then ⇠i � ⇣i is a vertical vector. Since ! is horizontal and
r-linear we have

!p(⇣1, . . . , ⇣r) = !p(⇣1 � ⇠1 + ⇠1, . . . , ⇣r � ⇠r + ⇠r)

= !p(⇠1 + vertical, . . . , ⇠r + vertical)

= !p(⇠1, . . . , ⇠r).

2. Now let us deal with the choice of p. Suppose instead we choose p ·a = ra(p).
Since ⇡ � ra = ⇡, we have

D⇡(ra(p)) �Dra(p)[⇣i] = D⇡(p)[⇣i] = vi, (26.3)

so that Dra(p)[⇣i] 2 Tr
a

(p)P is a tangent vector that maps onto vi. Thus it su�ces
to show that

Lp

⇣

!p

�

⇣1, . . . , ⇣r
�

⌘

= Lp·a
⇣

!p·a
�

Dra(p)[⇣1], . . . , Dra(p)[⇣r]
�

⌘

. (26.4)

But

!p·a(Dra(p)[⇣1], . . . , Dra(p)[⇣r]) = r?a(!)p(⇣1, . . . , ⇣r) = µa�1(!p(⇣1, . . . , ⇣r),

by equivariance. To complete the proof of (26.4) we need only observe that:

Lp·a = Lp � µa (26.5)

This is immediate from the definition: Lp·a(v) = [p · a, v] = [p, µa(v)] = Lp(µa(v)).
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3. We now know that ![ is well defined. To complete the proof, we build an
inverse. Suppose # 2 ⌦r(M,E). Define #] 2 ⌦r(P, V ) by

#]p(⇣1, . . . , ⇣r) := L�1
p

⇣

#⇡(p)
�

D⇡(p)[⇣1], . . . , D⇡(p)[⇣r]
�

⌘

.

It is obvious that #] is horizontal, so let us check that #] is equivariant. To see this
we argue as follows:

(r?a(#
]))p(⇣1, . . . , ⇣r) = #]p·a

�

Dra(p)[⇣1], . . . , Dra(p)[⇣r]
�

= L�1
p·a
⇣

#x

�

D⇡(ra(p)) �Dra(p)[⇣1], . . . , D⇡(ra(p)) �Dra(p)[⇣r]
�

⌘

(†)
= µa�1 � L�1

p

⇣

#x

�

D⇡(p)[⇣1], . . . , D⇡(p)[⇣r]
�

⌘

= µa�1(#]p(⇣1, . . . , ⇣r)).

where (†) used (26.3) and (26.5).
4. It is clear that (#])[ = # and (![)] = !. This completes the proof.

We conclude this lecture by studying the special case r = 0. Every zero-form is
horizontal, and the equivariance condition for a function f : P ! V becomes

f(p · a) = µ(a�1, f(p)), 8 p 2 P, a 2 G. (26.6)

Meanwhile ⌦0(M,E) = �(E). This proves:

Corollary 26.18. Let P be a principal G bundle over M and let E = P ⇥G V
denote an associated bundle. Then there is a one-to-one correspondence between
�(E) and functions f : P ! V satisfying (26.6). Explicitly, given f satisfying (26.6)
we define s : M ! E via s(x) := Lp(f(p)), where p is any point in Px. Conversely,
given a section s, we define f : P ! V by f(p) = L�1

p (s(x)).

Remark 26.19. Since any vector bundle can be seen as an associated bundle of a
principal bundle (the frame bundle), this shows that any section of a vector bundle
can be identified with an equivariant function on its frame bundle.

As explained at the start of the lecture, we will use Theorem 26.17 in Lecture
38 when discussing connections on principal bundles.
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LECTURE 27

A proof of the de Rham Theorem

This entire lecture is completely non-examinable. Unlike the rest of the
course, this lecture assumes you are familiar with singular (co)homology and
some basic homological algebra.

The goal of this lecture is to prove that de Rham cohomology agrees with
singular cohomology—this is usually referred to as the de Rham Theorem. There
are many di↵erent ways to prove this result. Perhaps the neatest is via sheaf
cohomology, but this is a little bit too far afield.

Remark 27.1. All our homology and cohomology groups should be understood to
have coe�cients in R in this lecture. We will not comment on this further.

Let X be a topological space. You are hopefully familiar with the singular chain
complex of X. This is normally defined by taking looking at singular simplices (i.e.
continuous maps�k ! X, where�k is the kth standard simplex). However one can
equally well carry out the construction using singular cubes instead. The resulting
algebraic invariant is the same (more on this later). Let us recall the definitions in
the continuous category.

Definition 27.2. Let X be a topological space. A singular k-cube in X is a
continuous map c : Ck ! X. We let Qk(X) denote the (infinite-dimensional) vector
space with basis all the singular k-cubes in X.

Remark 27.3. Note in the continuous category there is no need to require c to
extend to a map on an open neighbourhood.

Definition 27.4. A singular k-cube c : Ck ! X is said to be degenerate if there
exists 1  i  k such that c does not depend on xi. Otherwise c is said to be
non-degenerate. We let Dk(X) denote the subspace of Qk(X) generated by the
degenerate cubes, and we let

Qk(X) := Qk(X)
.

Dk(X)

denote the quotient space.

Thus for instance

c : C3 ! R, c(x1, x2, x3) := x1 + x3

is a degenerate singular 3-cube in R.

Will J. Merry, Di↵. Geometry I, Autumn 2018, ETH Zürich. Last modified: June 28, 2019.

1

https://www.merry.io


Definition 27.5. Fix 1  i  k and let c : Ck ! X denote a singular k-cube. The
ith front face of c, written Fic, is the singular (k � 1)-cube defined by

Fic(x
1, . . . , xk�1) := c(x1, . . . , xi�1, 0, xi, . . . , xk�1).

Similarly the ith back face is the singular (k � 1)-cube defined by

Bic(x
1, . . . , xk�1) := c(x1, . . . , xi�1, 1, xi, . . . , xk�1).

Definition 27.6. Let c : Ck ! X be a singular k-cube for k > 0. We define the
boundary of c, written @c, to be the element of Qk�1(X) given by

@c :=
k
X

i=1

(�1)i(Fic� Bic).

We define the boundary of a 0-cube to be the real number 1. We then extend
@ to arbitrary k-chains by linearity. Thus we may think of @ as a linear map
Qk(X)! Qk�1(X) for all k � 1 (this works for k = 0 too if we defineQ�1(X) := R).

Note that if a cube c is non-degenerate then so is @c. Thus we can also regard
@ as a linear map

@ : Qk(X)! Qk�1(X), k � 0.

Proposition 27.7. The boundary operator squares to zero: @2 = 0. Thus (Q•(X), @)
is a chain complex of vector spaces.

Definition 27.8. The cubical singular homology groups Hcube
k (X;R) are de-

fined to be the homology of this chain complex.

Remark 27.9. Why bother with quotienting out by the degenerate cubes? After
all, (Q•(X), @) is also a chain complex, so we could just take its homology instead.
To see this why this quotienting out the degenerate cubes is superior, consider the
case where X is a one point space {⇤}. It is easy to see that Hcube

k ({?}) = 0 for
k > 0 and Hcube

0 ({⇤}) = R, as one would hope (this is a necessary requirement
in order for Hcube

• to be “a homology theory” in the sense of Eilenberg-Steenrod).
However if one does not quotient out by degenerate cubes, this ceases to be the
case. Exercise: Why?

All the properties of the singular chain complex (built with singular simplices)
continue to hold without change (homotopy invariance, long exact sequence, exci-
sion. Mayer-Vietoris, etc).

Remark 27.10. In fact, sometimes the proof gets easier for singular cubes. For
instance, one of the key steps in establishing excision for singular simplices is the
concept of barycentric subdivision, which allows one to chop up a singular
simplex into smaller ones whose diameter can be made arbitrarily small. This is
quite involved, and rather unpleasant. On the other hand, it is not very hard to
work out how to chop up a singular cube into smaller ones!

Remark 27.11. For us the main reason we preferred cubes on simplices in Lecture
22 is that it is much easier to define an integral over a cube (it is just a nested
sequence of integrals

R 1

0
· · · R 1

0
), whereas this is messier for simplices.
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Remark 27.12. At a much more advanced level, there are compelling reasons both
to prefer using simplices and to prefer using cubes. This concerns cubical sets
and simplicial sets in homotopy theory. However this all goes way beyond the
course, so we won’t discuss it.

It is not completely obvious why the resulting cubical singular homology groups
agree with the normal singular homology groups. This can be proved directly using
the1 Acyclic Models Theorem, or it can deduced from the uniqueness result for
Eilenberg-Steenrod homology theories.

Let us now return to manifolds. If M is a smooth manifold then the vector
spaces Qk(M) defined today do not coincide with the vector spaces Qk(M) defined
in Lecture 22. This is because in Lecture 22 we insisted on smooth maps. Let us
temporarily write Q1

k (M) for the smooth singular k-cubes, and Hcube,1
k (M) for the

homology of the chain complex (Q
1
k (M), @). It is not obvious that the two groups

coincide, but luckily they do:

Theorem 27.13. Let M be a smooth manifold. Then

Hcube
k (M ;R) ⇠= Hcube,1

k (M ;R), 8 k � 0.

Proof (Sketch). The proof proceeds in six steps.
1. Suppose M is a single point. This is trivial.
2. Suppose M is an open contractible subspace of Rn. This follows from Step

1 and the Whitney Approximation Theorem 6.14, which allows us to assume the
contraction of M is smooth.

3. Suppose M = U [ V , where U and V are open in M and the theorem is
assumed to be true for U, V and U \ V . We apply naturality of the Mayer-Vietoris
sequence to see that the following diagram commutes, where we omit the coe�cient
group R so that the diagram fits on the page:

Hcube
k (U \ V ) Hcube

k (U)�Hcube
k (V ) Hcube

k (M) Hcube
k�1 (U \ V )

Hcube,1
k (U \ V ) Hcube,1

k (U)�Hcube,1
k (V ) Hcube,1

k (M) Hcube,1
k�1 (U \ V )

The Five Lemma then completes the proof.
4. Now assume M =

S

i Ui, where Ui ⇢ Ui+1 is an open set, and the theorem is
true for each Ui. Then the theorem follows for M via an abstract argument using
filtered colimits2:

Hcube
k (M ;R) ⇠= colim�����!Hcube

k (Ui;R) = colim�����!Hcube,1
k (Ui;R) ⇠= Hcube,1

k (M ;R)

5. Now assume M is an arbitrary open subset of Rn. Then we can write M as
a countable union of convex open subsets. For any finite union, the theorem holds
by applying Step 3 and induction, and then Step 4 gives the result for M itself.

1I covered this my algebraic topology course here.
2I covered this my algebraic topology course here.
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6. The general case: since we can cover M by charts, it follows from Step 5
and Zorn’s Lemma that there exists a maximal open subset U ⇢ M for which the
theorem is true. If U 6= M , then we an find a chart domain V such that V is not
contained in U . Then by Step 3 and Step 5, the theorem is true for U [ V . This
contradicts maximality of U .

With this out of the way, we shall drop the 1 from the notation and just write
Qk(M) for the groups defined in Lecture 22. Let us now recall how one constructs
the cohomology groups from the homology groups.

Definition 27.14. Let X be a topological space. Set

Qk(X) := Hom(Qk(X);R)

and define d : Qk(X)! Qk+1(X) by

d(↵)(q) := ↵(@q), ↵ 2 Qk(X), q 2 Qk+1(X).

Then d2 = 0, and hence (Q•(X), d) is cochain complex. Its homology is denoted
by Hk

cube(X;R) and referred to as the cubical singular cohomology of X.

The next lemma is just a restatement of Corollary 22.27 (which itself was es-
sentially a restatement of the Local Stokes’ Theorem 22.25).

Lemma 27.15. Let M be a smooth manifold. Then integration induces a cochain
map

� : ⌦•(M)! Q•(M), �[!][q] :=

Z

q

!.

We can now state the main result of the lecture.

Theorem 27.16 (The de Rham Theorem). The integration cochain map � induces
a natural isomorphism Hk

dR(M)! Hk
cube(M ;R).

Proof (Sketch). The proof proceeds in the same fashion as Theorem 27.13.
1. Suppose M is an open convex subset of Rn. Then the theorem follows from

Corollary 23.20 and standard properties of singular cohomology.
2. Suppose M = U [ V , where U and V are open in M and the theorem is

assumed to be true for U, V and U \ V . The theorem will gain follow for M via a
standard argument using the Mayer-Vietoris sequences and the Five Lemma, apart
from the fact that we have not constructed the Mayer-Vietoris sequence in de Rham
cohomology. Let us rectify this. We denote by

ıU : U \ V ,! U, ıV : U \ V ,! V

and
|U : U ,!M, |V : V ,!M

the inclusions. One then defines

↵ : ⌦•(M)! ⌦•(U)� ⌦•(V ), ↵(!) := (|?U(!), |
?
V (!))
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and

� : ⌦•(U)� ⌦•(V )! ⌦•(U \ V ), �(!1,!2) := ı?U(!1)� ı?V (!2).

Then we claim that

0! ⌦•(M)
↵�! ⌦•(U)� ⌦•(V )

��! ⌦•(U \ V )! 0

is exact. The only claim that isn’t clear is why � should be surjective. To see this,
let {�U ,�V } be a partition of unity subordinate to the open cover {U, V }. Then if
! is an r-form on U \ V , we can think of �U ! and �V ! as r-forms on U and V
respectively, and �(�U !,��V !) = !.

3. Now assume M =
S

i Ui, where Ui ⇢ Ui+1 is an open set such that U i is
compact for each i, and assume the theorem is true for each Ui. Then the theorem
is also true for M . The proof of this is considerably harder than the proof of Step
4 of Theorem 27.13, since now we are working with cohomology, and thus instead
of filtered colimits we have filtered limits. It is a sad fact of life that limits are
less well behaved than colimits, and are not exact functors from diagrams of vector
spaces to diagrams of vector spaces. Consequently we needs to worry about the
first right derived functors R1 lim ���. But this is not too bad: since U i is compact3

one has R1 lim ���⌦
k(Ui) = 0 for all k and i, and thus we have a natural short exact

sequence
0! R1 lim ���H

k�1
dR (Ui))! Hk

dR(M)! lim ���H
k
dR(Ui)! 0.

A similar sequence holds for Hk
cube(M), and naturality of the two sequences allow

us to conclude this step.
4. Now assume M is an arbitrary open subset of Rn. Then we can write M as

a countable union of convex open subsets. For any finite union, the theorem holds
by applying Step 2 and induction, and then Step 3 gives the result for M itself.

5. The general case: this follows from the previous step, sinceM has a countable
basis of open sets di↵eomorphic to open sets of Euclidean space.

We conclude this lecture with a brief discussion of Poincaré duality. This
states that for a compact connected orientable manifold M of dimension n, one has

Hk
cube(M ;R) ⇠= Hcube

n�k (M ;R),

and hence there is a non-degenerate pairing

Hk
cube(M ;R)⇥Hn�k

cube(M ;R)! R.

For de Rham cohomology, this pairing is particularly easy to understand: it is
induced from the pairing

⌦k(M)⇥ ⌦n�k(M)! R, (!,#) 7!
Z

M

! ^ #

(this is well-defined since M is assumed to be compact and oriented). I will leave
it to you to investigate how to prove this.

Enjoy your winter vacation, and see you next semester!

3I am skipping some details here, but the underlying arguments are not that hard.
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LECTURE 28

Connections on vector bundles

Welcome to Di↵erential Geometry II!

Hopefully you all had an enjoyable winter vacation and are now refreshed and
ready to study again1. Our first major topic this semester is connections. To
motivate the notion of a connection, let consider the following rather simple idea.

Let M be a smooth manifold. Suppose f 2 C1(M) is a smooth function and
X 2 X(M) is a vector field. We can feed f to X to get another smooth function
X(f) = df(X). Now consider the trivial one-dimensional vector bundleM⇥R!M
over M . There is an obvious bijective correspondence between smooth functions f
on M and sections s 2 �(M ⇥R). Explicitly, any section s can be uniquely written
as s(x) = sf (x) = (x, f(x)) for a smooth function f .

Thus the operation f 7! X(f) can also be thought of as an operator on the
space of sections of the trivial bundle. We write this operator as rX :

rX : �(M ⇥ R)! �(M ⇥ R),
rX(sf )(x) := sX(f)(x) =

�

x,X(f)(x)
�

.

The operator rX is local operator in the sense of Definition 16.17 but—provided
X is not identically zero—it is not a point operator. (Exercise: Prove this!)

Next, note that the value of rX(s) at a point x depends on X only via the
tangent vector X(x). Indeed, if � : (�", ")!M is any smooth curve with �(0) = x
and �0(0) = X(x) then (up to identifying sf with s) we have

rX(sf )(x) = df |x(X(x)) =
d

dt

�

�

�

t=0
f(�(t)) = lim

t!0

f(�(t))� f(�(0))

t
. (28.1)

This shows that we can think of rX(s) as “di↵erentiating s in the direction of X”.

Let us now see what goes wrong with extending this idea to an arbitrary vector
bundle. Let ⇡ : E ! M be a vector bundle. As before, let X be a vector field on
M and let s 2 �(E). Fix a point x 2 M and let � denote a smooth curve with
�(0) = x and �0(0) = X(x). We can again attempt to “define” a new section via
(28.1)

“rX(s)”(x) = lim
t!0

s(�(t))� s(�(0))

t
. (28.2)

A moment’s thought reveals that (28.2) is nonsense: the vector s(�(t)) belongs to
the vector space E�(t), and for di↵erent values of t these are di↵erent vector spaces.
Thus is simply does not make sense to add or subtract them from one another.

Will J. Merry, Di↵. Geometry II, Spring 2019, ETH Zürich. Last modified: June 28, 2019.
1After all, it’s been nearly 72 hours since the last Di↵erential Geometry I exam finished. . . ugh.

More holiday please.
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Compare this to our original problem right at the beginning of Lecture 1 when
we motivated manifolds: on an arbitrary topological space one cannot simply “add”
points together. On a vector bundle whilst each fibre has a linear structure, in
general each fibre is a di↵erent vector space, and thus we cannot add points.

The reason this worked on the trivial bundle M ⇥ R ! M was that in this
case each fibre {x}⇥R was canonically isomorphic to R via the second projection.
Equivalently, the identification s = sf of sections of M ⇥R with smooth functions
on M was canonical—no choices were needed. This is also reflected in the fact that
on the trivial bundle rX can be identified with the Lie derivative LX .

More generally, the process we described at the start of the lecture works on
any trivial bundle, and this leads us to the first definition of the course.

Definition 28.1. Let M be a smooth manifold and let E = M ⇥ Rk denote the
trivial bundle over M . The trivial connection on E associates to every vector
field X on M the operator

rX : �(E)! �(E)

given by

rX(sf )(x) := lim
t!0

f(�(t))� f(�(0))

t
,

where we identify each section s = sf with a smooth function f : M ! Rk.

Thus (by definition) any trivial vector bundle admits a trivial connection. In
fact, the converse is true: if E admits a trivial connection then E is necessarily
a trivial bundle, although this will take us some time to prove (see Proposition
32.14), and will require us to give an alternative definition of a connection that
does not explicitly reference the trivialisation.

We first define the weaker notion of a preconnection, which will work in an
arbitrary fibre bundle. As with many of the concepts we’ve seen in Di↵erential
Geometry, the relation between the formal definition of a connection and Definition
28.1 will at first sight not be so obvious. We will rectify this in Lecture 32.

Definition 28.2. Let ⇡ : E ! M be a fibre bundle over a smooth manifold M
with fibre F . A preconnection2 on E is a distribution H on E (i.e. a vector
subbundle of the tangent bundle TE) with the additional property that for every
p 2 E the map D⇡(p)|H

p

: Hp ! T⇡(p)M is a linear isomorphism.

Let us unpack this a bit. Requiring that D⇡(p)|H
p

: Hp ! T⇡(p)M is a linear
isomorphism for every p 2 E is the same thing as saying that the restriction of
D⇡ : TE ! TM to H is a vector bundle isomorphism along ⇡ : E ! M in the
sense of Definition 14.3. Equivalently, a preconnection is a vector subbundle of TE
such that

H ⇠= ⇡?(TM). (28.3)

Here ⇡?(TM) is the pullback of the bundle3 ⇡TM : TM ! M along ⇡ : E ! M .
Explicitly:

⇡?(TM) = {(p, v) 2 E ⇥ TM | ⇡(p) = ⇡TM(v)}
2This terminology is not standard. Some authors call what we call a preconnection an Ehres-

mann connection. However this won’t matter, since we will shortly upgrade a preconnection to a
genuine connection, and then will never have cause to speak about preconnections anymore.

3When there are multiple bundles in play, we will label the various footpoint maps where
needed.
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This is a vector bundle over E (even if E is not itself a vector bundle over M !)
Here is another way to express this condition. Recall we denote by V E = kerD⇡

the vertical bundle of E (cf. Problem I.5). Then a preconnection is a distribution
on E which is complementary to V E, i.e.

TE = H� V E. (28.4)

as vector bundles over E.

So much for preconnections. If we instead start with a vector bundle, we can
impose an additional condition on a preconnection, which gives rise to a connection.

Definition 28.3. Let ⇡ : E !M be a vector bundle and let a 2 R. We denote by
µa : E ! E scalar multiplication by a:

µa : E ! E, µa(p) = ap.

Since µ is fibre preserving, the map µa is a vector bundle homomorphism from E
to itself (cf. Definition 14.5) for every a 2 R. For a 6= 0, µa is a di↵eomorphism
with inverse µ1/a.

Definition 28.4. Let ⇡ : E ! M be a vector bundle over a smooth manifold M .
A connection H on E is a preconnection with the additional property that for
every p 2 E and every a 2 R, one has

Dµa(p)[Hp] = Hap. (28.5)

The true significance of this condition won’t become apparent until we discuss
connections on principal bundles in Lecture 38 (see Proposition 38.6 in particular),
although see Problem N.1 for one key consequence of (28.5).

For now, let us now prove that (pre)connections always exist.

Theorem 28.5. Every fibre bundle admits a preconnection. Every vector bundle
admits a connection.

Proof. We prove the result in two steps.
1. We first prove the result when E = M⇥F is the trivial bundle. Let ıv : M !

M ⇥ F denote the map x 7! (x, v), and set

H(x,v) := Dıv(x)[TxM ].

This is a preconnection. If in addition F = Rk is a vector space then this is a
connection, since µa � ıv = ıav and thus

Dµa(x, v)[H(x,v)] = Dµa(x, v) �Dıv(x)[TxM ] = Dıav(x)[TxM ] = H(x,av).

2. For the general case, we use a partition of unity argument. Let {Ua | a 2 A}
denote an open cover of M such that E is trivial over each Ua, and let {�a |
a 2 A} denote a partition of unity subordinate to this cover. Let Ha denote a
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(pre)connection on ⇡�1(Ua), whose existence is guaranteed by Step 1. Given x 2M
and p 2 Ex, define

Hp : TxM ! TpE, Hp(v) :=
X

{a2A|x2Ua}
�a(x) va,

where va is the unique vector in Ha
p such that D⇡(p)[va] = v. Then Hp is a linear

map such that D⇡(p) �Hp = idT
x

M . We then define

Hp := Hp[TxM ].

This is a (pre)connection.

We can use (pre)connections to lift vectors from TM to TE.

Definition 28.6. Let ⇡ : E !M be a fibre bundle, and let H be a preconnection
on E. The splitting TE = H�V E allows us to uniquely express any vector ⇣ 2 TE
as

⇣ = ⇣H + ⇣V

where if ⇣ 2 TpE then ⇣H 2 Hp and ⇣V 2 VpE. We call ⇣H the horizontal compo-
nent of ⇣ and ⇣V the vertical component of ⇣. A vector is horizontal if ⇣V = 0
and vertical if ⇣H = 0.

This is consistent with Definition 26.14. The property of being horizontal de-
pends on the specific choice of preconnection, but the property of being vertical
does not.

Definition 28.7. Let ⇡ : E !M be a fibre bundle, and let H be a preconnection
on E. Let x 2 M , p 2 Ex and v 2 TxM . The horizontal lift of v at p is the
unique vector v 2 Hp such that D⇡(p)[v] = v.

Since p 7! Hp is smooth (this is true of any distribution) we can also lift vector
fields.

Definition 28.8. Let ⇡ : E !M be a fibre bundle, and let H be a preconnection
on E. If X 2 X(M) is a vector field then the horizontal lift of X is the unique
vector field X 2 X(E) such that X(p) is the horizontal lift of X(⇡(p)) at p for each
p 2 E.

The following result is almost immediate.

Lemma 28.9. Let ⇡ : E ! M be a fibre bundle and let H be a preconnection on
E. Given X, Y 2 X(M) and f 2 C1(M), we have:

(i) X + Y = X + Y ,

(ii) fX = (f � ⇡)X,

(iii) [X, Y ] = [X, Y ]H.

Proof. The first two statements are obvious. For the third we observe that

D⇡[X, Y ] = [X, Y ] = D⇡[X, Y ],

and thus [X, Y ] = [X, Y ]H by definition of a preconnection.
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We next show that (pre)connections behave nicely under pullbacks. Suppose
⇡ : E ! N is a fibre bundle and ' : M ! N is a smooth map. The pullback bundle
'?E !M fits into the following commutative diagram.

'?E E

M N

pr2

pr1 ⇡

'

(28.6)

Recall from part (ii) of Problem G.7 that

T(x,p)('
?E) =

n

(v, ⇣) 2 TxM ⇥ TpE | D'(x)[v] = D⇡(p)[⇣]
o

. (28.7)

Suppose H is a (pre)connection on E. We define

'?H := (D pr2)
�1[H]

that is,

('?H)(x,p) :=
�

(v, ⇣) 2 T(x,p)('
?E) | D pr2(x, p)[v, ⇣] 2 Hp

 

.

Proposition 28.10. '?H is a preconnection on '?E. If E is a vector bundle and
H is a connection on E then '?H is a connection on the vector bundle '?E.

Proof. It follows from (28.7) that V ('?E) = {0}⇥ V E and that '?H is given by

('?H)(x,p) := {(v, ⇣) 2 TxM ⇥Hp | D'(x)[v] = D⇡(p)[⇣]} .

Since any ⇣ 2 TE decomposes uniquely as ⇣H + ⇣V 2 H� V E, any (v, ⇣) 2 T ('?E)
decomposes uniquely as

(v, ⇣) = (v, ⇣H) + (0, ⇣V) 2 '?(H)� V ('?E).

This shows that '?H is complementary to V ('?E), and thus '?H is a preconnection
on '?E. If E is a vector bundle and H is a connection then so is '?H, since if
(v, ⇣) 2 '?H we have

Dµa(x, p)[v, ⇣] = (v,Dµa(p)[⇣]).

This completes the proof.
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LECTURE 29

Parallel transport

In this lecture we define parallel transport axiomatically. Next week we will prove
that the existence of a parallel transport system is equivalent to the existence of
a connection, and thus, going forward we will view the two interchangeably. We
begin with some more terminology. In the last lecture we defined what it meant
for a tangent vector (or a vector field) to be horizontal. Now we explain what it
means for a section to be horizontal.

Definition 29.1. Let ⇡ : E ! M be a fibre bundle with preconnection H. A
section s 2 �(E) is said to be horizontal if

Ds(x)[TxM ] = Hs(x), 8 x 2M.

Similarly a local section s 2 �(U,E) is horizontal if the above holds for all x 2 U .

Next, we introduce the idea of a section along a map.

Definition 29.2. Suppose ⇡ : E ! N is a fibre bundle over a smooth manifold
and ' : M ! N is a smooth map. A section of E along ' is a smooth map
s : M ! E such that s(x) 2 E'(x). We denote by �'(E) the space of such sections.
If U ⇢ M is an open set then we can also speak of the space �'(U,E) of smooth
maps s : M ! E such that s(x) 2 E'(x) for all x 2 U—we refer to these as local
sections along '.

Lemma 29.3. Suppose ⇡ : E ! N is a fibre bundle over a smooth manifold and
' : M ! N is a smooth map. There is a bijective correspondence between sections
of the pullback bundle '?E !M and sections of E along '. Thus:

�'(E) ⇠= �('?E).

The same is true for local sections.

Proof. Let pr2 : '
?E ! E denote the second projection (cf. (28.6) from the last

lecture). If s̃ 2 �('?E) then
s = pr2 �s̃

is a section of E along '. Conversely a section s of E along ' uniquely determines
a section s̃ 2 �('?E) by the same equation.

As a result of Lemma 29.3, we will often simply identify elements of �'(E) and
�('?E), and write them both with the same letter.

Will J. Merry, Di↵. Geometry II, Spring 2019, ETH Zürich. Last modified: June 28, 2019.
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Definition 29.4. Let ⇡ : E ! N be a fibre bundle and let H be a preconnection
on E. Suppose ' : M ! N is a smooth map and s 2 �'(E) is a section of E along
'. We say that s is horizontal along ' if the corresponding section of '?E is
horizontal with respect to the pullback connection '?H. Explicitly, this just means
that

Ds(x)[TxM ] ⇢ Hs(x), 8x 2M.

Here are two examples to illustrate the versatility of this definition.

Example 29.5. Take M = N and let ' be the identity. Then a section of E along
' is the same thing as a section of E, and a section s is horizontal along ' if and
only s is horizontal in the sense of Definition 29.1.

Example 29.6. Take M to be an interval (a, b) and ' = � : (a, b) ! N to be a
smooth curve1 in N . We will usually use the special letter c (instead of s) to denote
a section along a curve. Thus a section c 2 ��(E) is simply a smooth curve in E
such that c(t) 2 E�(t) for all t 2 (a, b). Moreover c is horizontal along � if

c0(t) 2 Hc(t), 8 t 2 (a, b).

Proposition 29.7. Let ⇡ : E !M be a fibre bundle, and let H be a preconnection
on E. Let � : [a, b] ! M be a smooth curve and let t0 2 [a, b]. Then for any
p 2 E�(t0), there exists a unique horizontal section c of E along � such that c(t0) = p.

Proof. Abbreviate by T the vector field @
@t on [a, b], and let T denote the horizontal

lift of T to �?E with respect to the pullback connection �?H. Let � denote the
integral curve of T in �?E such that �(t0) = (t0, p). Consider the diagram (28.6)
again, specialised to the case in hand:

�?E E

[a, b] M

pr2

pr1 ⇡

�

We claim that pr1 �� is an integral curve of T . To see this we compute

d

dt

�

pr1 ��
�

(t) = D pr1(�(t))[�
0(t)]

= D pr1(�(t))[T (�(t))]

= T (pr1(�(t)).

Since pr ��(t0) = t0 and pr1 �� is an integral curve of T , we must have pr1 ��(t) = t
for all t 2 [a, b]. Thus � is actually a section of �?E. Moreover it follows from the
definition of � and T that � is a horizontal section of �?E. Thus by Lemma 29.3,
c := pr2 �� is a horizontal section of E along � with c(t0) = p. Finally, uniqueness
is immediate from the uniqueness of integral curves.

1It will often be convenient to work with smooth curves defined on a closed interval [a, b].
Here “smooth” can be interpreted as either requiring that there exists a smooth extension to
some interval (a�", b+"), or just by considering [a, b] as a smooth manifold with boundary. Note
also that if � : [a, b] ! N is a smooth curve then �?E ! [a, b] is a vector bundle over a smooth
manifold with boundary.
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Here is main definition of today’s lecture.

Definition 29.8. Let ⇡ : E ! M be a vector bundle over a smooth manifold.
A parallel transport system P on E assigns to every point p 2 E and every
curve � : [a, b]! M with �(a) = ⇡(p), a unique section P�(p) 2 ��(E) with initial
condition p, i.e. such that P�(p)(a) = p. One calls P�(p) the parallel lift of �
starting at p. This association should satisfy the following four axioms:

(i) (Linear isomorphism): For every smooth curve � : [a, b]!M the map

bP� : E�(a) ! E�(b), bP�(p) := P�(p)(b)

is a linear isomorphism. Moreover

bP�1
� = bP��

where �� : [a, b]!M is the reverse curve t 7! �(a� t+ b).

(ii) (Independence of parametrisation): If � : [a, b] ! M is a smooth curve
and h : [a1, b1]! [a, b] is a di↵eomorphism such that h(a1) = a and h(b1) = b
then for every point p 2 E�(a) and every t 2 [a1, b1], we have

P��h(p)(t) = P�(p)(h(t)).

(iii) (Smooth dependence on initial conditions): The section P�(p) depends
smoothly2 on both � and p.

(iv) (Initial uniqueness): Suppose �, � : [a, b] ! M are two curves such that
�(a) = �(a) and �0(a) = �0(a). Then for each p 2 E�(a), the two curves
t 7! P�(p)(t) and t 7! P�(p)(t) have the same initial tangent vector:

d

dt

�

�

�

t=a
P�(p)(t) =

d

dt

�

�

�

t=a
P�(p)(t)

Remark 29.9. In general if � : [a, b]!M is a smooth curve on M and c 2 ��(E)
is any section along � then we say c is parallel along � if c = P�(p) for some
p 2 E�(a).

Remark 29.10. It follows from Axiom (i) that p 7! P�(p) is also linear (where now
addition and scalar multiplication take place in the vector space of sections ��(E)).
Thus in particular p 7! P�(p) is smooth. Therefore the only content of Axiom (iii)
is the smooth dependence on �.

2This condition is a little tedious to state precisely, and it is not too important to get hung
up on this detail, but here is one way to formulate it rigorously: For every open set U ⇢ M and
every smooth map  : TM |

U

! M such that  (x, 0
x

) = x for every x 2 U , where 0
x

is the zero
vector in T

x

M , the map

TM |
U

� ⇡�1(U)! E, (v, p) 7! bP
�

(p), where �(t) :=  (tv)

is smooth.
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Example 29.11. Let E = M ⇥ Rk be a trivial bundle. We define the trivial
parallel transport system on E by declaring that constant sections are parallel.
Explicitly, if � : [a, b]!M is any smooth curve with �(a) = x then we define

P�(x, v)(t) := (�(t), v), v 2 Rk.

We will see in Lecture 32 that this is consistent with Definition 28.1.

Remark 29.12. We will explore this further in Lecture 32, but for now note that
a parallel transport system gives us a way to identify two di↵erent fibres Ex and
Ey of a vector bundle over M : simply take a curve � from x to y and consider

the linear isomorphism bP� : Ex ! Ey. This will allow us to make sense of (28.2)
from the last lecture, and thus let us di↵erentiate sections along vector fields for
non-trivial vector bundles.

Next lecture we will prove that a parallel transport system P determines and is
uniquely determined by a connection H. We conclude this lecture with a prelimi-
nary lemma needed in for the proof (and which will also be useful later on in the
course). To ease the notation given a subset Z ⇢M we write

TM |Z := ⇡�1
TM(Z) =

G

x2Z
TxM.

If Z is open in M then TM |Z ⇠= TZ.

Lemma 29.13. Let M be a smooth manifold and let x 2M . Then there is an open
set U containing x and a smooth map

 : TM |U !M

such that
d

dt

�

�

�

t=0
 (x, tv) = v, 8 v 2 TxM. (29.1)

This proof is non-examinable.

(|) Proof. Let � : U ! O be a chart about x. Without loss of generality we may
assume 0 2 O and �(x) = 0. Let �̃ : TM |U ! O ⇥ Rn denote the associated chart
on the tangent bundle TM over U (cf. the proof of Theorem 4.16), given explicitly
by

�̃(y, v) =
�

�(y), dxi|y(v) ei
�

Abbreviate ↵(y, v) := dxi|y(v) ei so that �̃ = (�,↵) and ↵ is a vector bundle chart
on TM (cf. Example 13.15). Let us also write

� : TM |U ! TxM, �(y, v) := ↵|�1
T
x

M(↵(y, v)), (29.2)

so that �|T
x

M = idT
x

M .
Next, up to shrinking O, we may assume that Vx := ↵|�1

T
x

M(O) is a starshaped
open set in TxM containing 0x. Set

 : Vx !M,  (v) := ��1(↵|T
x

M(v)).
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Note that  (0x) = x. We claim moreover that under the canonical isomorphism
T0

x

Vx
⇠= TxM (Problem B.3) we have

D (0x) = idT
x

M : TxM ! TxM. (29.3)

To see this we observe that if w = wi @
@xi

�

�

x
then

D (0x)[J0
x

(w)] =
d

dt

�

�

�

t=0
 (0x + tw)

=
d

dt

�

�

�

t=0
��1(tdxi|x(w)ei)

= D��1(0)[wiei]

= w.

This proves (29.3). By the Inverse Function Theorem 5.2, up to shrinking Vx we
may assume that  is a di↵eomorphism onto its image. We now wish to extend
 to a map defined on all of TM |U ; this map will be called  . We require our
extension to satisfy

 ( (v), w) =  
�

v + � �D (v)�1[w]
�

, (29.4)

whenever v 2 Vx is su�ciently close to 0x and w 2 T (v)M is su�ciently close to
0 (v). Equation 29.4 really is an extension of  , since if we take v = 0x and choose
w 2 Vx then  (v) = x and the defining equation for  becomes

 (x, w) =  (0x +D (0x)
�1[w]) =  (w),

where we used (29.3). That (29.4) is well-defined follows from the fact that  is
locally a di↵eomorphism, and thus for an appropriate cuto↵ function ⌘(y, w) we
can define  as

 (y, w) := ⌘(y, w) 
�

 �1(y) + � �D ( �1(y))�1[w]
�

Finally, (29.1) follows from (29.3).
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LECTURE 30

The equivalence of connections and
parallel transport systems

The goal of this lecture is to prove that a parallel transport system P determines
and is uniquely determined by a connection H. This result is quite involved, and
we prove each direction separately.

Theorem 30.1. Let ⇡ : E !M be a vector bundle, and let P be a parallel transport
system on E. Then P determines a connection H on E. This connection has the
property that a section c along a curve � is parallel in the sense of Remark 29.9 if
and only if c is horizontal with respect to H in the sense of Definition 29.1.

This proof is non-examinable.

(|) Proof. Throughout we assume that M has dimension n, and that E is a vector
bundle of rank k. Given p 2 E, define Hp ⇢ TpE to be the set of all tangent vectors
⇣ such that there exists a smooth curve1 � : [0, 1]!M with

⇣ =
d

dt

�

�

�

t=0
P�(p)(t).

Then set
H :=

G

p2E
Hp ⇢ TE.

We will prove that H is a connection in four steps. In the fifth and final step we
prove the last sentence of the theorem.

1. Fix a point x 2 M , and let  : TM |U ! M denote the map from Lemma
29.13, where U is a suitable neighbourhood of x. Choose a point p 2 Ex. In this
step we show that Hp is the image of a linear map TxM ! TpE, and thus in
particular a vector space. Given v 2 TxM , let �v denote the curve t 7!  (x, tv),
and let cv := P�

v

(p) 2 ��
v

(E). We then define

C : TxM ⇥ [0, 1]! E, C(v, t) := cv(t)

By Axiom (iii) of Definition 29.8, C is a smooth map. By Axiom (ii), cv(t) = cvt(1),
and thus

c0v(0) =
d

dt

�

�

�

t=0
ctv(1) = DC(0x, 1)[J0

x

(v), 0].

Thus the map TxM ! TpE that sends v to c0v(0) is linear, as it is the composition
of linear maps. If we call this map L : v 7! c0v(0) then Hp is equal (by definition)
to imL. Thus Hp is a vector space, as claimed.

Will J. Merry, Di↵. Geometry II, Spring 2019, ETH Zürich. Last modified: June 28, 2019.
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2. In this step we show that TpE = Hp � VpE. We already know that Hp is a
vector space of dimension at most n by the previous step. With L as before, we
have

D⇡(p) � L(v) = D⇡(p)[c0v(0)]

=
d

dt

�

�

�

t=0
⇡(cv(t))

=
d

dt

�

�

�

t=0
 (x, tv)

= v,

where the last equality used (29.1).
3. In this step, we prove that H ! E is a vector subbundle of TE. This

requires us to build bundle charts. For this we recall from the solution to part (ii)
of Problem I.5 that the map

J : ⇡?E ! V E, (p, q) 7! Jp(q) =
d

dt

�

�

�

t=0
p+ tq

is a vector bundle isomorphism. If we denote by pr2 : V E ! E the map pr2(Jp(q)) :=
q then pr2 is a vector bundle isomorphism from V E to E along ⇡, and the following
diagram commutes:

V E E

E M

pr2

⇡
V E

⇡

⇡

(30.1)

Fix a chart � : U ! O on M and a vector bundle chart � : ⇡�1(U) ! Rk on E.
Define a smooth map

�̃ : TE|⇡�1(U) ! Rk, �̃(p, ⇣) := � � pr2
✓

⇣ � d

dt

�

�

�

t=0
P�(p)(t)

◆

,

where � : [0, 1] ! M is any smooth curve with �(0) = ⇡(p) and �0(0) = D⇡(p)[⇣].
The value of �̃(p, ⇣) does not depend on the choice of � by Axiom (iv) of Definition
29.8. If ⇣ 2 Hp then �̃(p, ⇣) = 0 by definition ofHp. As in the proof of Lemma 29.13,
let ↵ be the vector bundle chart on TM associated to �, so that ↵(y, v) = dxi|y(v) ei.
Then the map

� : TE|U ! Rn ⇥ Rk, �(p, ⇣) :=
�

↵ �D⇡(p)[⇣], �̃(p, ⇣)�

is a vector bundle chart for TE over U (i.e. (⇡TE,�) is a di↵eomorphism). Since
�̃[Hp] = 0, we have

�

⇡TE(p, ⇣),�(p, ⇣)
�

=
�

p,↵ �D⇡(p)[⇣], 0�

for all ⇣ 2 Hp. Thus the restriction ↵ �D⇡ can serve as a vector bundle chart on H
that will turn H into a vector subbundle of TE, provided the transition function is
smooth. This however is easy to check: if �1 is another chart with corresponding
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vector bundle chart ↵1 on TM then if x is a point in their overlapping domains
and p 2 Ex we compute

�

⇡H,↵1 �D⇡
� � �⇡H,↵ �D⇡

��1
(p, ei) =

�

⇡H,↵1 �D⇡
� �D⇡(p)|�1

H



@

@xi

�

�

�

x

�

=

✓

p,↵1

✓

x,
@

@xi

�

�

�

x

◆◆

=

✓

p, dyj|x
✓

@

@xi

�

�

�

x

◆

ej

◆

,

where yj are the local coordinates of �1. This shows (cf. the proof of Theorem
4.16) that the transition function is given simply by D(�1 � ��1) � (� � ⇡), which is
smooth.

4. The global splitting TE = H � V E follows from the pointwise splitting
already proved in Step 2. Thus we have now proved that H is a preconnection on
E. It remains therefore to prove that H is a connection.

Fix x 2M and p 2 Ex. We need to show that for any a 2 R,

Dµa(p)[Hp] = Hap

where µu is scalar multiplication in the fibres, as in Definition 28.3. Let � : [0, 1]!
M denote a smooth curve with �(0) = x, and let c := P�(p). By linearity of parallel
transport (this is Axiom (i) of Definition 29.8), µa � c is also parallel along �. Since

Dµa(p)[c
0(0)] =

d

dt

�

�

�

t=0
(µa � c)(t)

we see that Dµa(p)[Hp] ⇢ Hap. Then since

D⇡(ap) �Dµa(p)[c
0(0] = D⇡(p)[c0(0)]

and D⇡(ap) maps Hap isomorphically onto TxM , it follows that Dµa(p)[Hp] = Hap.
This completes the proof that H is a connection.

5. Finally we prove that a section c along a curve � is parallel in the sense of
Remark 29.9 if and only if c is horizontal with respect toH in the sense of Definition
29.1. One direction is clear by definition of H, so it su�ces to show that if � is
a smooth curve and c 2 ��(E) is horizontal along � then c is also parallel. Let
p = c(0) and let c1(t) := P�(p). Since both c and c1 are horizontal and

D⇡(c1(t))[c
0
1(t)] =

d

dt
⇡ � c1(t) = �0(t) = D⇡(c(t))[c0(t)],

we have by the defining condition of a preconnection that c0(t) = c01(t). Thus c and
c1 are two curves with the same initial condition and the same derivative, whence
they are equal. This at last completes the proof of Theorem 30.1.

We now get started on the proof of the opposite direction: how to go from a
connection to a parallel transport system.

Theorem 30.2. Let ⇡ : E !M be a vector bundle, and let H be a connection on
E. The system of all horizontal lifts to E of smooth curves in M defines a parallel
transport system P in E. Moreover the connection on E determined by P from
Theorem 30.1 is just H again.
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Proof. As the statement of the theorem indicated, given a smooth curve � : [a, b]!
M and p 2 E�(a), we define P�(p) 2 ��(E) to be the horizontal lift of � with respect
to H, whose existence and uniqueness is guaranteed by Proposition 29.7. We must
check that the four axioms of a parallel transport system are satisfied. We will do
this in three steps.

1. In this step we check that our proposed parallel transport system satisfies
Axiom (i) from Definition 29.8. Let � : [a, b]!M be a smooth curve. Set x = �(a)
and y = �(b). If c is a horizontal lift of � to E then a c is also horizontal since

d

dt
(ac)(t) = Dµa(c(t))[c

0(t)] 2 Hac(t)

by (28.5). Since (a c)(0) = a c(0), this shows that the map bP� : Ex ! Ey is homo-

geneous (i.e. bP�(a p) = abP�(p) for p 2 Ex and a 2 R). Moreover it follows from
the proof of Proposition 29.7 and the smooth dependence on initial conditions of
integral curves (Theorem 8.1 applied to T ) that bP� is di↵erentiable as a map from
the vector space Ex to the vector space Ey.

Note bP�(0x) = 0y by homogeneity. If p 2 Ex then

DbP�(0x)[J0
x

(p)] =
d

dt

�

�

�

t=0

bP�(tp)

= lim
t!0

bP�(tp)
t

= lim
t!0

tbP�(p)
t

= bP�(p)

Thus DbP�(0x)[J0
x

(p)] = bP�(p), and this, coupled with homogeneity, implies that
bP� is linear2.

Next, if ��(t) := �(1� t) is the reverse curve from y to x then c�(t) := c(1� t)
is a horizontal section along �� with initial condition c�(1). It follows that bP� is

invertible, with inverse bP�� . This proves that Axiom (i) from Definition 29.8 holds.
2. Let us now verify Axiom (ii) from Definition 29.8. Let � : [a, b] ! M be a

smooth curve and h : [a1, b1] ! [a, b] is a di↵eomorphism such that h(a1) = a and
h(b1) = b. Set � := � � h. Fix p 2 E�(a). Let c be the horizontal section of E along
� with c(0) = p and let d be the horizontal section along � such that d(a1) = p. We
claim that d = c � h. Indeed, c � h is certainly a lift of � (as ⇡ � c � h = � � h = �)
and

d

dt
c(h(t)) = h0(t)c0(h(t)) 2 Hc(h(t))

by the chain rule. Thus by the uniqueness part of Proposition 29.7, we have d = c�h
as desired.

3. We now address the final two axioms, Axiom (iii) and Axiom (iv) from
Definition 29.8. We will not say much about Axiom (iii) (given that we relegated

2Exercise: Verify that any continuous map f : V ! W between two vector spaces which is
di↵erentiable at 0 2 V and homogeneous in the sense that f(av) = af(v) for all v 2 V and a 6= 0
is necessarily a linear map.
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the precise statement of this Axiom to a footnote!), other than that it essentially
boils once again down to the fact that integral curves depend smoothly on initial
conditions. Axiom (iv) is immediate, since if � is a smooth curve in M , p 2 E�(0)

and c is the horizontal section of E along � with initial condition p then c0(0) is the
unique element of Hp which is mapped to �0(0) by D⇡(p).

Thus P is indeed a parallel transport system. To complete the proof we must
show that the connection obtained from P by applying Theorem 30.1 is simply H
again. This however is immediate from Axiom (iv) of Definition 29.8.

Remark 30.3. From now on we will usually work with connections, rather than
parallel transport systems (this is mainly out of personal preference). Thus if a
connection is specified and we refer to a section being “parallel”, it should always
be implicitly assumed that the parallel transport system in question is the one
associated via Theorem 30.1 to the given connection.

This convention has the somewhat amusing consequence that the words “par-
allel” and “horizontal” can now often be used interchangeably. In general I will
(usually) favour the word “parallel” when talking about sections, and “horizontal”
when talking about vectors.
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LECTURE 31

The connection map and covariant
derivatives

In this lecture we introduce the connection map of a connection, and use this to
define covariant derivative operators. First recall that if E is a vector bundle we
denote by pr2 : V E ! E the map pr2(Jp(q)) = q (cf. (30.1)).

Definition 31.1. Let ⇡ : E ! M be a vector bundle and let H be a connection
on E. Define a map

 : TE ! E, (⇣) := pr2(⇣
V) = pr2(⇣ � ⇣H).

This makes sense, since ⇣V 2 V E. We call  the connection map of the connection
H.

Remark 31.2. We can use the connection map  and the parallel transport system
P associated to H to give a new way to express the horizontal-vertical splitting of
a tangent vector. Indeed, if p 2 E and ⇣ 2 TpE and � : [0, 1] ! M is any smooth
curve with �(0) = ⇡(p) and D⇡(p)[⇣] = �0(0), then it follows from Theorem 30.1
and Definition 31.1 that

⇣H =
d

dt

�

�

�

t=0
P�(p)(t) and ⇣V = Jp((⇣)).

It is immediate that  is a vector bundle morphism along ⇡, i.e. that the
following commutes:

TE E

E M



⇡
TE

⇡

⇡

(31.1)

In fact, if we combine  with D⇡ we can build a vector bundle isomorphism along
⇡:

Lemma 31.3. Let ⇡ : E ! M be a vector bundle and let H be a connection on E
with connection map . Then (D⇡,) is a vector bundle isomorphism along ⇡:

TE TM � E

E M

(D⇡,)

⇡
TE (⇡

TM

,⇡)

⇡

Will J. Merry, Di↵. Geometry II, Spring 2019, ETH Zürich. Last modified: June 28, 2019.
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Proof. Since TE and TM � E have the same fibre dimension, it su�ces to check
that ker(D⇡,) = 0. This is immediate from the definition of a (pre)connection,
i.e. (28.4).

Far less obviously,  is also a vector bundle morphism from TE to E along
⇡ : TM ! M . Before proving this, let us recall1 from the solution to part (iii) of
Problem I.5 how to see that D⇡ : TE ! TM is also a vector bundle.

Lemma 31.4. Let ⇡ : E !M be a vector bundle of rank k. Then D⇡ : TE ! TM
is a vector bundle of rank 2k.

Proof. If2 (x, v) 2 TM then the fibre over (x, v) in TE are those pairs (p, ⇣) where
⇡(p) = x and D⇡(p)[⇣] = v. Let us now endow each fibre with a vector space
structure. For this let A : E � E ! E denote the vector bundle homomorphism

A : E � E ! E, A(p, q) = p+ q (31.2)

given by fibrewise addition. Then if (p, ⇣) and (q, ⇠) belong to the same fibre over
(x, v) we define3

(p, ⇣)� (q, ⇠) :=
�

p+ q,DA(p, q)[⇣, ⇠]
�

. (31.3)

Similarly if a 2 R then we define

a⇥ (p, ⇣) :=
�

ap,Dµa(p)[⇣]
�

(31.4)

where µa is the fibrewise scalar multiplication as in Definition 28.3. I will leave it
up to you to check that if ↵ : ⇡�1(U)! Rk is a vector bundle chart on E then the
bundle D↵ : T (⇡�1(U)) ! TRk = R2k is a linear isomorphism on each fibre, and
hence may serve as a vector bundle chart. The result now follows from Proposition
13.16.

The following lemma will appear on Problem Sheet O.

Lemma 31.5. Let ⇡ : E !M be a vector bundle of rank k with connection H. Fix
x 2 M and let {p1, . . . , pk} be a basis of Ex. Let � : [a, b]! M be a smooth curve
with �(a) = x. There exists a local frame {e1, . . . , ek} of E over an open set U
containing x such that ei(x) = pi and such that ei � � is a parallel along � for each
i = 1, . . . , k.

We call {e1, . . . , ek} a parallel local frame along �. If c 2 ��(E) is any
section along � then we can write

c(t) = f i(t) ei(�(t))

for some smooth functions f i(t). We claim:

1Here “recall” means: I am pretty certain most of you didn’t do this problem. . . And even
those of you who did have surely forgotten it by now, since it was non-examinable.

2Let me remind you that I (somewhat inconsistently) write points in TM either as pair (x, v)
or sometimes simply as a single element v. The rule is roughly: if it’s useful to explicitly say
which fibre T

x

M a vector v belongs to, I write (x, v). If it’s not important, I just write v.
3We use the special notation � and ⇥ in an attempt to minimise confusion later on.
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Lemma 31.6. Let ⇡ : E !M be a vector bundle of rank k with connection H. Let
� be a curve in M with �(0) = x, and let {e1, . . . , ek} be a parallel local frame
along �. Fix c 2 ��(E) and write c(t) = f i(t) ei(�(t)) as above. Then c is parallel
along � if and only if each f i is a constant function.

Proof. Set p = c(0). Then c is parallel if and only if c = P�(p). If pi := ei(�(0))
then we can write p = aipi for constants ai, and P�(p)(t) = aiP�(pi)(t) = aiei(�(t))
(cf. Remark 29.10).

Theorem 31.7. Let ⇡ : E ! M be a vector bundle and let H be a connection on
E with connection map  : TE ! E. Then

(⇣ � ⇠) = (⇣) + (⇠), (a⇥ ⇣) = a(⇣), ⇣, ⇠ 2 TE, a 2 R,

and hence  is a vector bundle morphism along ⇡TM :

TE E

TM M



D⇡ ⇡

⇡
TM

This somewhat innocuous looking result is actually the lynchpin needed to define
covariant derivatives, as we will see in the proof of Theorem 31.10 below. This proof
is non-examinable.

(|) Proof. Fix (x, v) 2 TM , and let � : [0, 1]!M be a smooth curve with �(0) =
x and �0(0) = v. Let (p, ⇣) 2 TE belong to the fibre of TE over (x, v), so that
p 2 Ex and D⇡(p)[⇣] = v. Write

⇣ = ⇣H + ⇣V.

By Remark 31.2 we can write this as

⇣H =
d

dt

�

�

�

t=0
P�(p)(t) and ⇣V = Jp((⇣)).

Now let {e1, . . . , ek} be a parallel local frame along �, and let ↵ denote the corre-
sponding vector bundle chart (cf. Remark (16.3)). Then we compute

D(⇡,↵)(p)[⇣] =
�

v,D↵(p)[Jp((⇣)]
�

=

✓

v,
d

dt

�

�

�

t=0
↵
�

p+ t(⇣)
�

◆

(†)
=

d

dt

�

�

�

t=0
(⇡,↵)

⇣

P�(p)(t) + tP�((⇣))(t)
⌘

= D(⇡,↵)(p)



d

dt

�

�

�

t=0
P�
�

p+ t(⇣)
�

(t)

�

where (†) used that ⇡ � P�(p) = � and that ↵ is constant along P�(p + t(⇣)) by
Lemma 31.6. Since (⇡,↵) is a di↵eomorphism by definition of a vector bundle chart,
this gives us the formula

⇣ =
d

dt

�

�

�

t=0
P�
�

p+ t(⇣)
�

(t). (31.5)
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Now suppose (q, ⇠) is another point in the fibre over (x, v). Then we can also write

⇠ =
d

dt

�

�

�

t=0
P�
�

q + t(⇠)
�

(t).

So using the definition of addition in TE, we have:

⇣ � ⇠ := DA(p, q)[⇣, ⇠]

=
d

dt

�

�

�

t=0

⇣

P�
�

p+ t(⇣)
�

(t) + P�
�

q + t(⇠)
�

(t)
⌘

=
d

dt

�

�

�

t=0

⇣

P�(p+ q)(t) + tP�
�

(⇣) + (⇠)
�

(t)
⌘

=
d

dt

�

�

�

t=0
P�(p+ q)(t) + Jp+q

�

(⇣) + (⇠)
�

= (⇣ + ⇠)H + Jp+q

�

(⇣) + (⇠)
�

,

where the last line used Remark 31.2. But Remark 31.2 also tells us that the vertical
component of ⇣ � ⇠ is Jp+q

�

(⇣ � ⇠)
�

. Comparing this to the expression above and
using the fact that Jp+q is an isomorphism, we see that

(⇣ � ⇠) = (⇣) + (⇠).

The proof that (a⇥ ⇣) = a(⇣) goes along similar lines, and is left as an exercise.

We now use the connection map to give a third interpretation of connections, via
covariant derivatives. This point of view is the “usual” one, and many introductory
accounts of connections only define them this way.

Definition 31.8. Let ⇡ : E ! N be a vector bundle and let ' : M ! N be a
smooth map. An operator

r : X(M)⇥ �'(E)! �'(E),

written
(X, s) 7! rX(s)

is called a covariant derivative operator in E along ' if the following four
conditions are satisfied for any X, Y 2 X(M), s1, s2 2 �'(E), and f 2 C1(M):

(i) rX+Y (s) = rX(s) +rY (s),

(ii) rfX(s) = frX(s),

(iii) rX(s1 + s2) = rX(s1) +rX(s2),

(iv) rX(fs) = X(f)s+ frX(s).

We call rX(s) the covariant derivative of s with respect to X. If M = N
and ' = id then we call r a covariant derivative operator on E.
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Remark 31.9. Let ⇡ : E ! N be a vector bundle and let ' : M ! N be a smooth
map. Suppose r is a covariant derivative operator in E along '. Let s 2 �'(E).
By property (ii) the operator X 7! rX(s) is C1(M)-linear, and hence defines an
element

rs 2 Hom(X(M),�'(E)).

We call rs the covariant di↵erential of s. The Hom-� Theorem 16.30 tells us
that we can also think of rs as an element of �

�

Hom(TM,'?E)
�

. It thus follows
that the value of rX(s)(x) only depends on X(x), and hence rv(s) is well defined
for v 2 TM . Put di↵erently, rs is a point operator. Note however that s 7! rX(s)
is not C1(M)-linear, and thus rX(p) is not well defined for p 2 E, i.e. rX is not
a point operator. Compare Problem I.1.

Here then is the main result that links connections and covariant derivative
operators. Just as with connections and parallel transport operators, the proof is
quite involved, and we split it into two stages.

Theorem 31.10. Let ⇡ : E ! N be a vector bundle and let H be a connection on
E with connection map . If ' : M ! N is any smooth map then

rX(s)(x) := (Ds(x)[X(x)]) (31.6)

defines a covariant derivative operator in E along '. This covariant derivative
operator has the property that a section s 2 �'(E) is parallel if and only ifrX(s) =
0 for all X 2 X(M). Moreover the chain rule holds: if  : L!M is a smooth map
then

rw(s �  )(y) = rD (y)[w](s)( (y)), y 2 L, w 2 TyL (31.7)

Remark 31.11. If  : L ! M is actually a di↵eomorphism then (31.7) can be
written as

rY (s �  ) = r 
?

(Y )(s) �  , Y 2 X(L), s 2 �'(E). (31.8)

This only makes sense for  a di↵eomorphism, as otherwise  ?(Y ) is not defined!

Proof. The formula (31.6) certainly defines an element of �'(E). We show that r
really is a covariant derivative operator along ' in four steps.

1. In this step we show that a section s 2 �'(E) is parallel with respect to
H if and only if rX(s) = 0 for every vector field X 2 X(M). This is clear, since
H = ker and by Definition 29.1 a section s is parallel (or horizontal—cf. Remark
30.3!) if and only if Ds[TM ] ⇢ H.

2. Let us now verify (31.7). Note s �  2 �'� (E). Fix y 2 L and w 2 TyL.
Then

rw(s �  )(y) = 
�

D(s �  )(y)[w]�

= 
⇣

Ds( (y))[D (y)[w]]
⌘

= rD (y)[w](s)( (y)).
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3. Let s1, s2 2 �'(E) and f 2 C1(M). Fix x 2 M , v 2 TxM . In this step we
show that

rv(s1 + s2)(x) = rv(s1)(x) +rv(s2)(x). (31.9)

Let � be a curve in M with �(0) = x and �0(0) = v. Then with A as in (31.2) we
have from (31.3) that

Ds1(x)[v] +Ds2(x)[v] = DA(s1(x), s2(x))
⇥

Ds1(x)[v], Ds2(x)[v]
⇤

=
d

dt

�

�

�

t=0
s1(�(t)) + s2(�(t))

=
d

dt

�

�

�

t=0
(s1 + s2)(�(t))

= D(s1 + s2)(x)[v].

Since  is a vector bundle morphism along ⇡TM by Theorem 31.7, we obtain

rv(s1 + s2)(x) = 
�

D(s1 + s2)(x)[v]
�

= 
�

Ds1(x)[v] +Ds2(x)[v]
�

= (Ds1[v]) + (Ds2(x)[v])

= rv(s1)(x) +rv(s2)(x).

This proves (31.9).
4. Let s 2 �'(E) and f 2 C1(M). Fix x 2 M and v 2 TxM . In this step we

prove that
rv(fs)(x) = v(f)s(x) + f(x)rv(s)(x). (31.10)

For this let
µ : R⇥ E ! E, µ(a, p) := µa(p) = ap.

Then

Dµ(a, p)



r
@

@t

�

�

�

a
, v

�

= Dµa(p)[v] + Jap(rp). (31.11)

The section x 7! f(x)s(x) can be written as the composition µ � (f, s), and hence
using (31.11) we compute

D(fs)(x)[v] = D
�

µ � (f, s)�(x)[v]
= Dµ(f(x), s(x)) � �Df(x)[v], Ds(x)[v]

�

= Dµf(x)(s(x))[Ds(x)[v]] + Jf(x)s(x)(Df(x)[v]s(x))

= Dµf(x)(s(x))[Ds(x)[v]] + Jf(x)s(x)(v(f)s(x)).

Now by definition
Dµf(x)(s(x))[Ds(x)] = f(x)⇥Ds(x).

Thus applying  to both sides and using Theorem 31.7 we obtain


�

D(fs)(x)[v]
�

= f(x)(Ds(x)[v]) + v(f)s(x),

which gives (31.10). This completes the proof.
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Corollary 31.12. Let4 ⇡ : E ! N be a vector bundle with connection H, and let
' : M ! N be smooth. If s1, s2 2 �'(M) are horizontal then so is c s1 + s2 for any
c 2 R.

Proof. For any vector field X on M ,

rX(c s1 + s2) = crX(s1) +rX(s2) = 0.

4Thank you to “Miao” for reminding me of this!
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LECTURE 32

Holonomy

We begin this lecture by completing the various chain of equivalences and proving
that a covariant derivative operator uniquely determines a connection. We then
introduce the notion of holonomy, which will give us a way to measure how “non-
trivial” a connection is.

Theorem 32.1. Let r be a covariant derivative operator on a vector bundle
⇡ : E ! M . Then there exists a connection H on E such that if s 2 �(E) and
(x, v) 2 TM then Ds(x)[v] 2 Hs(x) if and only if rv(s)(x) = 0.

Proof. Given p 2 Ex, we define

Hp :=
�

Ds(x)[v]� Jp

�rv(s)(x)
� | all s 2 �(E) such that s(x) = p and all v 2 TxM

 

,

and then we set H =
F

p2E Hp. In contrast to the proof of Theorem 30.1, this time
it is clear that Hp is a linear subspace of TpE. Moreover D⇡(p)|H

p

: Hp ! T⇡(p)M is
a linear isomorphism by construction. The proof thatH really is a vector subbundle
goes along exactly the same lines as the proof of Step 3 of Theorem 30.1: If � is
a chart on M with local coordinates xi, then if we set ↵ := dxi ei then ↵ � D⇡ is
a vector bundle chart on H that can be extended to a vector bundle chart on TE.
Thus H is a preconnection. Finally if a 2 R then

D(as)(x)[v]� Jap

�rv(as)(x)
�

= Dµa(p)
⇣

Ds(x)[v]� Jp

�rv(s)(x)
�

⌘

,

and hence H is a connection.

Remark 32.2. Important convention: Building on Remark 30.3, since we now
know that connections, parallel transport systems and covariant derivative oper-
ators are really three di↵erent ways of expressing the same concept, we will refer
to all of them as a “connection” and use the symbol1 r. Thus for instance if
⇡ : E ! N is a vector bundle and r is a connection on E then we’ll write '?(r)
for the connection on '?E from Proposition 28.10.

Next, we finally make rigorous the discussion from the beginning of Lecture 28
when we initially motivated the definition of a connection.

Proposition 32.3. Let ⇡ : E ! N be a vector bundle with connection r. Let
' : M ! N be a smooth map. Let � : [0, 1]!M be a smooth curve and abbreviate
by

bPt : E'(�(0)) ! E'(�(t))

the parallel transport along the curve r 7! '(�(r)) for 0  r  t. Then if s 2 �'(E)
one has

r�0(0)(s)(�(0)) = J �1
'(�(0))

✓

d

dt

�

�

�

t=0

bP�1
t (s(�(t)))

◆

(32.1)

Will J. Merry, Di↵. Geometry II, Spring 2019, ETH Zürich. Last modified: June 28, 2019.
1Yes, I know it makes no sense to mix words and notation like this. But it is consistent with

the majority of the literature. Also, r is easier to type than H. . .
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Proof. Let {ei} be a parallel local frame along '��. We can write s�� = f i(ei�'��)
for smooth functions f i. Then

bP�1
t (s(�(t)) = bP�1

t

�

f i(t)ei('(�(t)))
�

= f i(t)ei('(�(0))). (32.2)

Let T denote the vector field @
@t on [0, 1]. Then we have

r�0(0)(s)(�(0))
(†)
= rT (0)(s � �)(0)
= rT (0)

�

f i(ei � ' � �)
�

(0)
(‡)
= (f i)0(0)ei('(�(0)))

(~)
= J �1

'(�(0))

✓

d

dt

�

�

�

t=0

bP�1
t (s(�(t)))

◆

where (†) used the chain rule (31.8), (‡) used (31.10), and (~) used (32.2).

Remark 32.4. The equation (32.1) shows how parallel transport allows us to make
sense of (28.2). Indeed, if P is the trivial parallel transport system from Example
29.11 then this defines exactly what we called “the trivial connection” in Definition
28.1.

Remark 32.5. The proof of Proposition 32.3 used that we already knew that
the parallel transport system P determined a covariant derivative operator r—we
merely had to identify it. However a minor modification of the argument would
allow us to define r via (32.1). This would allow us to go directly from a parallel
transport system to a covariant derivative operator and bypass connections entirely.
Many introductory treatments of Di↵erential Geometry do this. We will see one
concrete advantage of why having the connection definition on hand is useful next
lecture (Theorem 33.4).

We now move onto studying the holonomy of a connection. In the following,
we will have cause to work with piecewise smooth curves. By definition a piece-
wise smooth curve � : [a, b] ! M in a manifold M is a continuous map � such
that there exist finitely many points a0 = a < a1 < . . . < ar = b such that
�|[a

i

,a
i+1] : [ai, ai+1] ! M is smooth for each i = 0, . . . r � 1 (thinking of [ai, ai+1]

as a one-dimensional manifold with boundary). The simplest way to manufacture
such a curve is simply to glue two smooth curves together:

Example 32.6. Suppose � : [a, b] ! M and � : [b, c] ! M are two smooth curves
with �(b) = �(b). Then the concatenation of � and � is the piecewise smooth
curve � ⇤ � : [a, c]!M defined by

(� ⇤ �)(t) :=
(

�(t), a  t  b,

�(t), b  t  c.

Definition 32.7. Let ⇡ : E !M be a vector bundle with connection r. Suppose
� : [a, b]!M and � : [b, c]!M are two smooth curves with �(b) = �(b). We define
the parallel transport2 along the piecewise smooth curve � ⇤ � to be the
linear isomorphism

bP�⇤� : E�(a) ! E�(c), bP�⇤� := bP� � bP�.
2We could also define the non-hat version, but we won’t need this.
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The same definition works for any piecewise smooth curve; as the composition of
finitely many linear isomorphisms, it is again a linear isomorphism.

Remark 32.8. More generally, suppose � : [a, b] ! M and � : [b1, c] ! M are two
smooth curves with �(b) = �(b1) but b 6= b1. Then we cannot directly concatenate
� and �, and thus we cannot directly define bP�⇤�. But this is easily rectified by
reparametrising. Indeed, we can choose a di↵eomorphism h : [a, b1] ! [a, b] such
that h(a) = a and h(b) = b1 and replace � with � � h. Then (� � h) ⇤ � is defined.
Alternatively, we could reparametrise �. This reparametrisation will have no e↵ect
on the parallel transport thanks to Axiom (ii) from Definition 29.8. From now on
we will often suppress the reparametrisation, and speak of the concatentated curve
� ⇤ � and the parallel transport bP�⇤� whenever � and � are two curves such that �
ends where � begins.

Remark 32.9. It follows from Axiom (ii) that parallel transport along piecewise
smooth curves is associative:

bP�⇤(�⇤") = bP(�⇤�)⇤"

for three curves �, �, " such that � ends where � begins, and � ends where " begins.

Since the inverse of bP� is bP�� , where �� is the reverse path—this is part of
Axiom (i), it follows that if we fix a basepoint we get a group.

Definition 32.10. Let ⇡ : E ! M be a vector bundle with connection r. Fix
x 2 M . The holonomy group of r at x is the subgroup Holr(x) ⇢ GL(Ex)
consisting of all parallel transport maps bP� : Ex ! Ex where � is a piecewise smooth
loop at x. We always consider Holr(x) as carrying the subspace topology inherited
from GL(Ex).

If the base manifold M is connected3 then the holonomy group Holr(x) is—up
to isomorphism—independent of x.

Lemma 32.11. Let ⇡ : E !M be a vector bundle with connection r. Assume that
M is connected. Fix x, y 2 M and let � denote a piecewise smooth curve from x
to y. Then the map

Holr(x)! Holr(y), bP� 7! bP��⇤�⇤� (32.3)

is an isomorphism.

Proof. The map (32.3) is a group homomorphism by associativity of parallel trans-
port, since parallel transport around �� ⇤ (� ⇤")⇤� is the same as parallel transport
around

�

�� ⇤ � ⇤ �� ⇤ ��� ⇤ " ⇤ ��. Moreover it is an isomorphism as the inverse

homomorphism is given by bP� 7! bP�⇤�⇤�� .

It is often useful to think of the holonomy group Holr(x) as a subgroup of GL(k)
rather than GL(Ex). This can be done, provided we only work up to conjugation.

3Recall a manifold is connected if and only if it is path connected, cf. part (ii) of Remark 1.9.

3



Recall the frame bundle Fr(E) from Definition 24.13. Fix x 2 M and A 2 Fr(Ex);
thus A : Rk ! Ex is a linear isomorphism. Then

Holr(x;A) :=
n

A�1 � bP� � A | bP� 2 Holr(x)
o

is a subgroup of GL(k). If B 2 Fr(Ex) is another frame then the subgroup
Holr(x;B) is not equal to Holr(x;A), but it is conjugate to it:

Holr(x;B) =
�

TST�1 | S 2 Holr(x;A)
 

where T := B�1 � A 2 GL(k). Moreover if M is connected then Lemma 32.11
shows that if x and y are two points in M and A 2 Fr(Ex) and B 2 Fr(Ey) then
the subgroups Holr(x;A) and Holr(y;B) are also conjugate in GL(k). This proves:

Corollary 32.12. Let ⇡ : E ! M be a vector bundle over a connected manifold
M with connection r. Then for all x 2 M , the holonomy group Holr(x) can be
regarded as a subgroup of GL(k), defined up to conjugation, and in this sense it is
independent of x.

Our first use of holonomy will be to define what it means for a connection on a
connected manifold to be trivial.

Definition 32.13. Let ⇡ : E !M be a vector bundle over a connected manifold,
and let r be a connection on E. We say that r is a trivial connection if Holr

is the trivial group.

This definition is consistent with Definition 28.1 and Example 29.11.

Proposition 32.14. Let ⇡ : E !M be a vector bundle over a connected manifold,
and let r be a connection on E. Then r is trivial if and only if E is a trivial vector
bundle and the parallel transport system P is the trivial parallel transport system
from Example 29.11.

Proof. Suppose Holr is the trivial group, and fix x 2M . Define ↵ : E ! Ex by

↵(p) := P�(p)(1)

where � is a smooth path in M from ⇡(p) to x. Then ↵ is well-defined because
Holr(x) is trivial, and ↵ is smooth by Axiom (iii) of Definition 29.8. By Axiom (i)
it follows that ↵ is a parallel4 vector bundle chart on E, and thus E is the trivial
bundle and P is the trivial parallel transport system.

Conversely, if E is the trivial bundle and P is the trivial parallel transport
system, then if � is path in M then any parallel section c along � is of the form
c = s � �, where s is a global parallel section of E. Thus if � : [0, 1]!M is a loop
then for any parallel c along �,

c(1) = s(�(1)) = s(�(0)) = c(0).

This shows Holr(�(0)) is the trivial group.

4That is, the frame {e
i

} corresponding to ↵ is a parallel frame.
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It is often convenient to restrict to contractible loops.

Definition 32.15. Let ⇡ : E !M be a vector bundle over a connected manifold,
and let r be a connection on E. Fix x 2 M . The restricted holonomy group
Holr0 (x) is the subgroup of Holr(x) consisting of all parallel transports around
contractible (i.e. null-homotopic) piecewise smooth loops at x.

Let ⇡1(M,x) denote the fundamental group ofM at x. It follows from the Whit-
ney Approximation Theorem5 6.14 that any class [�] 2 ⇡1(M,x) can be represented
by a smooth map � (and thus also a piecewise smooth �).

Proposition 32.16. The restricted holonomy group Holr0 (x) is a path-connected
normal subgroup of Holr(x), and there exists a surjective group homomorphism

⇡1(M,x)! Holr(x)
�

Holr0 (x). (32.4)

Proof. Suppose � : [0, 1] ! M is a contractible piecewise smooth loop based at x.
Thus there exists a continuous map H : [0, 1]⇥ [0, 1]!M such that H(0, t) = �(t),
H(1, t) is the constant loop ex(t) := x and such that H(s, ·) is a piecewise smooth6

loop based at x for each s 2 [0, 1]. Then s 7! bPH(s,·) is a path in Holr0 (x) from bP�
to the bPe

x

. Thus Holr0 (x) is path-connected.
Next, if � and � are any two loops at x such that � is nullhomotopic, then

the concatenation �� ⇤ � ⇤ � is also nullhomotopic. Thus if bP� 2 Holr0 (x) and
bP� 2 Holr(x) then bP� � bP� � bP�� = bP��⇤�⇤� belongs to Holr0 (x). This shows that
Holr0 (x) is normal in Holr(x).

Finally, the desired homomorphism (32.4) sends [�] to the equivalence class
of bP� in the quotient for � a smooth representative of [�]. This is a well-defined
surjective group homomorphism by the argument above.

We conclude this lecture with the following important result.

Theorem 32.17. Let ⇡ : E ! M be a vector bundle over a connected manifold,
and let r be a connection on E. Then Holr(x) is a Lie group, and Holr0 (x) is the
connected component containing the identity.

This proof is rather sketchy and is non-examinable.

(|) Proof. A (di�cult) theorem, proved independently by Kuranishi and Yamabe7,
says that any path connected subgroup of a Lie group is itself a Lie group. Applying
this to Holr0 (x) ⇢ GL(x) shows that Holr0 (x) is a Lie group. Since M is connected
and second countable, its fundamental group is countable. Thus Holr(x)

�

Holr0 (x)
is countable by Proposition 32.16. This implies that Holr(x) is also a Lie group
with Holr0 (x) the connected component containing the identity.

5Quoting the Whitney Approximation Theorem here is overkill, since it easy to prove this
directly.

6The fact that H(s, ·) can be taken to be piecewise smooth again uses the Whitney Approxi-
mation Theorem (see Remark 6.17).

7Yamabe’s proof is very short, and quite easy to understand. If you are interested, see here.
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LECTURE 33

Curvature

In this lecture we explore what it means to say that a connection H forms an
integrable distribution in the sense of Definition 11.11. This will lead us naturally
to the concept of the curvature of a connection, which roughly speaking measures
how far the connection is from being integrable.

Definition 33.1. Let ⇡ : E ! M be a vector bundle with connection r. We say
that r is a flat connection if the corresponding distribution H of E is integrable.
The pair (E,r) is referred to as a flat vector bundle.

Trivial connections are always flat. To see this, let us first give an alternative
criterion for a connection to be trivial.

Lemma 33.2. Let ⇡ : E !M be a vector bundle with connection r. Then r is the
trivial connection if and only if for every point p 2 E there exist a global parallel
section s 2 �(E) such that s(⇡(p)) = p.

Proof. This is just a rephrasing of the last part of Proposition 32.14. It is clear that
the trivial connection on the trivial vector bundle has this property. Meanwhile if
such a section exists through every point then the argument in the last paragraph of
the proof of Proposition 32.14 shows that the holonomy groups are trivial, whence
Proposition 32.14 itself then shows that r is the trivial connection.

Why is this relevant? If s 2 �(E) is a global parallel section then s(M) ⇢ E is
an embedded submanifold of E (Lemma 13.4) with

Dıs(x)[Ts(x)s(M)] = Hs(x), 8 x 2M.

Thus s(M) is an integral manifold for the distribution H passing through s(x) in
the sense of Definition 11.6. Therefore applying the easy half (Proposition 11.14)
of the Frobenius Theorem, we obtain:

Corollary 33.3. The trivial connection is flat.

The converse is true locally. This uses the hard direction of the Frobenius
Theorem.

Theorem 33.4. Let ⇡ : E !M be a vector bundle over a connected manifold, and
suppose r is a flat connection on E. Then r is a locally trivial connection and
Holr0 (x) is the trivial group for all x 2M .

Here by a “locally trivial connection” we meant that every point x 2 M has a
neighbourhood U such that the restriction of r to the trivial subbundle ⇡�1(U)!
U of E is the trivial connection. The proof uses a little bit of algebraic topology,
and therefore is non-examinable.

Will J. Merry, Di↵. Geometry II, Spring 2019, ETH Zürich. Last modified: June 28, 2019.
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(|) Proof. We prove the result in two steps.
1. In this step we show that r is locally trivial. By the Global Frobenius

Theorem 11.18, H induces a foliation of E. Let L be a leaf of the foliation, i.e.
a maximal connected integral manifold of the distribution H corresponding to r.
We claim that ⇡|L : L ! M is surjective. Indeed, given p 2 L and x 2 M , let
� : [0, 1]!M be a smooth curve such that �(0) = ⇡(p) and �(1) = x. The section
P�(p) is horizontal and thus has image contained in L. Since ⇡(P�(p)(1)) = x, this
shows that ⇡|L is surjective.

Since ⇡ is a submersion, the Inverse Function Theorem 5.2 tells us that ⇡|L
is a local di↵eomorphism from L to M . Let U ⇢ M be a connected and simply
connected open subset over which E is trivial. Then the intersection L \ ⇡�1(U)
is a disjoint union of connected embedded submanifolds of L such that for each
component Lh, ⇡|L

h

: Lh ! U is a di↵eomorphism. Thus sh := ⇡|�1
L
h

: U ! Lh is a
section of the vector subbundle ⇡�1(U) ! U . Since Lh is an integral submanifold
of H|⇡�1(U), sh is a parallel section. Thus for every point of L \ ⇡�1(U) there is a
parallel section of ⇡�1(U). By Lemma 33.2, the restriction of r to ⇡�1(U) is the
trivial connection.

2. In this step we show that the restricted holonomy groups are always trivial.
Fix a point x 2 M , and let � : [0, 1] ! M be a contractible piecewise smooth
loop at x. Then as in the proof of Proposition 32.16, there exists a continuous
map H : [0, 1] ⇥ [0, 1] ! M such that H(0, t) = �(t), H(1, t) is the constant loop
ex(t) := x and such that H(s, ·) is a piecewise smooth contractible loop based at x
for each s 2 [0, 1]. Fix p 2 Ex, and let L be the maximal integral manifold of r
passing through p. Then as in the previous step, each section PH(s,·)(p) has image
contained in L. Consider the map

H̃ : [0, 1]⇥ [0, 1]! L, H̃(s, t) := PH(s,·)(p)(t).

This map is a lift of H to L in the sense that

⇡(H̃(s, t)) = H(s, t).

Since H(s, 1) is independent of s, so1 is H̃(s, 1). Thus

P�(p)(1) = H̃(0, 1) = H̃(1, 1) = Pe
x

(p)(1) = p

Thus parallel transport around � is trivial. Since � was arbitrary, it follows that
Holr0 (x) is the trivial group. This completes the proof.

Corollary 33.5. Let ⇡ : E !M be a vector bundle over a connected and simply
connected manifold M , and let r be a connection on E. Then r is flat if and only
if E is the trivial bundle and r is the trivial connection.

1The eagle-eyed readers might worry a bit here: why does H(s, 1) being independent of s
imply that H̃(s, 1) is also independent of s? This argument is hiding a small amount of alge-
braic topology, which I am cleverly concealing in a footnote so as not to scare those of you who
are unfamiliar with algebraic topology o↵. Indeed, the argument in Step 1 actually shows that
⇡|

L

: L!M is a covering space. Covering spaces enjoy the unique homotopy lifting prop-

erty. One way to phrase this is as follows: if ⇡ : Y ! X is a covering space and �, � : [0, 1]! X
are two paths in X which are homotopic with fixed endpoints, then if y 2 Y is any point in Y such
that ⇡(y) = �(0) then there are unique lifts �̃, �̃ of � and � that �̃(0) = �̃(0) = y, and moreover
these lifts also satisfy �̃(1) = �̃(1).
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Proof. If M is simply connected then Holr(x) = Holr0 (x) for all x 2M . Thus the
claim is immediate from Proposition 32.14 and Theorem 33.4.

The Frobenius Theorem tells us that a connection is flat if and only if the vector
space �(H) of horizontal vector fields is a Lie subalgebra of the space X(E) = �(TE)
of all vector fields on E. The curvature of a connection gives a quantitative way to
measure how far a given connection is from being flat.

Definition 33.6. Let ⇡ : E ! M be a vector bundle with connection r and
connection map  : TE ! E. The curvature tensor Rr of r is defined as
follows. Fix vector fields X, Y 2 X(M) and p 2 E. Let X and Y denote the
horizontal lifts of X and Y to E (cf. Definition 28.8) and set

Rr(X, Y )(p) := ��[X, Y ](p)
�

. (33.1)

That is, we take the vertical component of the tangent vector [X, Y ](p) 2 TpE,
which therefore belongs to VpE, and then project it to Ep via the map pr2 : V E ! E
(cf. (30.1)).

The minus sign on the right-hand side of (33.1) may look a little unnatural,
and indeed some authors define it with the other sign. Our preference for this
sign convention will become clear next lecture when we give an alternative way of
expressing the curvature (see Theorem 35.1).

Remark 33.7. The meaning of the word “curvature” will become apparent when
we study Riemannian Geometry in the second half of the course. We will see
that the curvature of a (Riemannian) manifold does indeed correspond to what
you would naively guess it does. For example, the sphere Sn with its standard
Euclidean metric is “positively” curved.

Since (⇣) = pr2(⇣
V) and pr2 : V E ! E is an vector bundle isomorphism along

⇡ : E !M , we have:

Corollary 33.8. Let ⇡ : E !M be a vector bundle with connection r. Then r
is flat if and only if the curvature Rr is identically zero.

If s is a section of E then the correspondence

x 7! Rr(X, Y )(s(x))

defines another section of E, since it satisfies the section property and is smooth
(being the composition of smooth maps). We write this section as Rr(X, Y )(s).
Thus we can think of Rr as defining a map

Rr : X(M)⇥ X(M)⇥ �(E)! �(E).

The main result of this lecture proves that this map is a point operator in all three
variables.

Theorem 33.9. Let ⇡ : E ! M be a vector bundle with connection r. Then Rr

is C1(M)-linear in all three variables, and antisymmetric in the first two variables.
ThusRr can be thought of as a section of the bundleHom

�

V2(TM),Hom(E,E)
�

=
V2(T ⇤M)⌦ E ⌦ E⇤.
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The proof will use the following lemma, which is a souped-up version of Problem
E.2.

Lemma 33.10. Let M be a smooth manifold and let X, Y be vector fields on M
with local flows ✓Xt and ✓Yt respectively. Fix x 2M and consider the curve

� : [0, ")!M, �(t) := ✓Y�p
t � ✓X�p

t � ✓Ypt � ✓Xpt(x),

which is well-defined for small enough ". If f 2 C1(U) is a smooth function on a
neighbourhood U of x then

[X, Y ](f)(x) = lim
t!0

f(�(t))� f(�(0))

t
.

(|) Proof. Let �(t) := �(t2). Then we claim that

(i) (f � �)0(0) = 0,

(ii) (f � �)00(0) = 2[X, Y ](f)(x).

This implies

[X, Y ](f)(x) =
1

2
(f � �)00(0)

= lim
t!0

f(�(t))� f(�(0))

t2

= lim
t!0

f(�(
p
t))� f(�(0))

t

= lim
t!0

(f(�(t))� f(�(0))

t
.

To prove (i) and (ii), consider the rectangles

�1(s, t) := ✓Ys � ✓Xt (x)
�2(s, t) := ✓X�s � ✓Yt � ✓Xt (x)
�3(s, t) := ✓Y�s � ✓X�t � ✓Yt � ✓Xt (x).

Then �(t) = �3(t, t) and �3(0, t) = �2(t, t) and �2(0, t) = �1(t, t). Abbreviate

@s(f � �3)(0, 0) := D(f � �3)(0, 0)



@

@s

�

�

�

s=0
, 0

�

and similarly for the other partial derivatives. Then by the chain rule

(f � �)0(0) = @s(f � �3)(0, 0) + @t(f � �3)(0, 0)

= @s(f � �3)(0, 0) + @s(f � �2)(0, 0) + @t(f � �2)(0, 0)

= @s(f � �3)(0, 0) + @s(f � �2)(0, 0) + @s(f � �1)(0, 0) + @t(f � �1)(0, 0)

= �Y (f)(x)�X(f)(x) + Y (f)(x) +X(f)(x)

= 0.
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This proves (i). To prove (ii) we start from

(f � �)00(0) = @ss(f � �3)(0, 0) + 2@ts(f � �3)(0, 0) + @tt(f � �3)(0, 0). (33.2)

Since @s(f � �3) = �Y (f) � �3, the first term on the right-hand side of (33.2) is
equal to

@ss(f � �3)(0, 0) = @s(�Y (f) � �3)(0, 0) = Y (Y (f))(x).

Similarly since

@s(f � �1) = Y (f) � �1, @s(f � �s) = �X(f) � �2,

and
@t(f � �1)(0, t) = X(f) � �1(0, t),

we obtain
2@ts(f � �3)(0, 0) = �2Y (Y (f)(x))

and
@tt(f � �3)(0, 0) = Y (Y (f))(x) + 2[X, Y ](f)(x).

Substituting these into (33.2) gives

(f � �)00(0) = 2Y (Y (f))(x)� 2Y (Y (f))(x) + 2[X, Y ](f)(x),

which proves (ii).

Remark 33.11. The curve � from the statement of Lemma 33.10 is typically not
di↵erentiable (not even right di↵erentiable) at 0. Thus strictly speaking, the tangent
vector �0(0) is not defined. However if we formally define a tangent vector �0(0) by
declaring that

�0(0)(f) def
= lim

t!0

f(�(t))� f(�(0))

t

then �0(0) is a well-defined element of TxM . In this sense the conclusion of Lemma
33.10 can be restated as

[X, Y ](x) = �0(0).

We will use this convention without comment in the future.

Proof of Theorem 33.9. We prove the result in two steps.
1. By part (iii) of Lemma 28.9, if X, Y, Z are three vector fields on M and

s 2 �(E) we have

[X + Y , Z](s(x))V = [X + Y , Z](s(x))V

= [X,Z](s(x))V + [Y , Z](s(x))V.

Since pr2 : V E ! E is a vector bundle homomorphism along ⇡, this shows that for
any section s 2 �(E), we have

Rr(X + Y, Z)(s) = Rr(X,Z)(s) +Rr(Y, Z)(s).

Next, since the Lie bracket is anti-symmetric we certainly have

Rr(X, Y )(s) = �Rr(Y,X)(s).
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Now suppose f 2 C1(M). Then by part (ii) of Lemma 28.9 and Problem D.4, we
have

[fX, Y ](s(x))V = [(f � ⇡)X, Y ](s(x))V

= (f � ⇡)(s(x)) [X, Y ](s(x))V � Y (f � ⇡)(s(x))X(s(x))V

= (f � ⇡)(s(x)) [X, Y ](s(x))V

since X(p)V = 0 by definition of a horizontal lift. Thus

Rr(fX, Y )(s) = fRr(X, Y )(s).

We have thus show that for a given section s, the map Rr(·, ·)(s) is alternating and
bilinear over C1(M). Thus it defines a section of the bundle Hom(

V2(TM),Hom(E,E))
by the bundle-valued di↵erential form criterion (Theorem 26.12).

2. It remains to show that Rr is C1(M)-linear in the third argument, ie. that

Rr(X, Y )(fs) = fRr(X, Y )(s).

This is a bit trickier. Since we already know that Rr(X, Y ) maps sections of E to
sections of E, by Proposition 16.26 it is su�cient to show that for fixed x 2M and
v, w 2 TxM , the map Rr(v, w) : Ex ! Ex is linear (over R).

For this choose vector fields X, Y such that X(x) = v and Y (x) = w. Since
we already know Rr is a point operator in the first two variables, we may without
loss of generality assume that [X, Y ] = 0 on a neighbourhood of x. Let ✓Xt and ✓Yt
denote the local flows of X and Y .

Since [X, Y ] = 0 near x, by either Lemma 33.10 above or Problem E.2, for
su�ciently small t > 0 the curve �t obtained by concatenating the four curves:

(i) s 7! ✓Xs (x) for 0  s  t,

(ii) s 7! ✓Ys � ✓Xt (x) for 0  s  t,

(iii) s 7! ✓X�s � ✓Yt � ✓Xt (x) for 0  s  t,

(iv) s 7! ✓Y�s � ✓X�t � ✓Yt � ✓Xt (x) for 0  s  t,

is a piecewise smooth loop based at x. See Figure 33.1.
Now let ✓Xt and ✓Yt denote the local flows of the horizontal lifts X and Y . Then

by Problem E.1, we have

⇡ � ✓Xt = ✓Xt � ⇡, ⇡ � ✓Yt = ✓Yt � ⇡,
and by definition of the horizontal lift, for all p 2 E su�ciently close to Ex, we
have

✓Xt (p) = P�X (p)(t), where �X(t) := ✓Xt (x).

and similarly
✓Yt (p) = P�Y (p)(t), where �Y (t) := ✓Yt (x).

Thus for p 2 Ex and t > 0 su�ciently small, the curve

"p(t) := ✓Y�p
t � ✓X�p

t � ✓Ypt � ✓Xpt(p)

6



Figure 33.1: The piecewise smooth loop �t

is the parallel transport of p around the loop �pt:

"p(t) = bP�p
t

(p). (33.3)

Now we are in business: by Lemma 33.10 we have

[X, Y ](p) = "0p(0).

Moreover since "p(t) takes image in the fibre Ex, its tangent vector is vertical and
hence pr2("

0
p(0)) = J �1

p ("0p(0)). Thus

Rr(v, w)(p) = �J �1
p ("0p(0)). (33.4)

Now define a curve in GL(Ex) by

E(t)[p] := "p(t)

for small t > 0. Thus E 0(0) 2 Tid GL(Ex) = gl(Ex) = Hom(Ex, Ex). Then

Rr(v, w) = �E 0(0) 2 gl(Ex)

is a linear operator, which implies what we wanted to prove.

Remark 33.12. The proof of Step 2 of Theorem 33.9 may have seemed somewhat
roundabout, and an alternative proof is presented below. Nevertheless the geo-
metric interpretation of the curvature in terms of parallel transport that our proof
gave (specifically (33.3) and (33.4)) will turn out to be crucial next lecture when
we formulate the Ambrose-Singer Holonomy Theorem, as well in our derivation of
an alternative formula for Rr in Theorem 35.1.

Remark 33.13. Here2 is a quicker way to prove Rr(X, Y )(·) is a linear operator
which is based on Theorem 31.7. Let µa : E ! E denote scalar multiplication, as
in Definition 28.3. It follows from the defining condition (28.5) for a connection
that any horizontal lift is µa-invariant:

X(ap) = X(µa(p)) = Dµa(p)[X(p)].

2Thank you to forum member “Miao” for suggesting I include this proof as well.
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For a 6= 0, µa is a di↵eomorphism, and thus we can write this as (µa)?(X) = X.
Thus by Proposition 7.20 for a 6= 0 we have

(µa)?[X, Y ] = [X, Y ].

Now we use the fact that  is a vector bundle morphism along ⇡TM : TM ! M
(Theorem 31.7), and thus in particular respects scalar multiplication, i.e.

µa �  =  �Dµa

to obtain

�

[X, Y ]
�

= 
�

(µa)?[X, Y ]
�

= µa � 
�

[X, Y ]
�

.

This shows that Rr(v, w) : Ex ! Ex is a homogeneous map, i.e. Rr(v, w)(ap) =
aRr(v, w)(p) for a 6= 0. Thus similarly to the proof of Step 1 of Theorem 30.2
(see the footnote in particular), since Rr(v, w) is di↵erentiable at 0x, it is then
necessarily a linear map.
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LECTURE 34

The holonomy algebra and the
Ambrose-Singer Holonomy Theorem

We begin this lecture by defining the holonomy algebra of a connection, and stating
the vector bundle version of the Ambrose-Singer Holonomy Theorem. We won’t
prove this theorem until Lecture 38, when we will first prove the principal bundle
version, and then deduce the vector bundle version as a corollary.

Definition 34.1. Let ⇡ : E ! M be a vector bundle and let r be a connection
on E. We define the holonomy algebra at x 2 M , written hol

r(x), to be the
Lie algebra of Holr(x). Since Holr(x) is a Lie subgroup of GL(Ex), it follows that
hol

r(x) is a Lie subalgebra of gl(Ex) = L(Ex, Ex), with Lie bracket given by matrix
commutation (cf. Proposition 9.23):

[T1, T2] := T1 � T2 � T2 � T1, T1, T2 2 hol

r(x).

We then define
hol

r :=
G

x2M
hol

r(x).

We call holr the holonomy algebra of r.
The holonomy algebra is itself a vector bundle over M . In fact, it is a (Lie)

algebra bundle in the sense of Remark 15.27. Before proving this, we need another
definition.

Definition 34.2. Let ⇡ : E ! M be a vector bundle and let r be a connection
on E. Suppose E0 ⇢ E is a vector subbundle of E. We say that the connection r
is reducible to E0 if E0 is invariant under parallel transport in the sense that if
� : [0, 1]!M is a smooth curve and p 2 E0|�(0) then P�(p)(1) 2 E0|�(1).

On Problem Sheet Q you will show that if r is reducible to E0 then r induces
a connection on E0. In fact, the hypothesis that E0 is a vector subbundle of E is
superfluous, as the next lemma shows.

Lemma 34.3. Let ⇡ : E ! M be a vector bundle over a connected manifold and
let r be a connection on E. Assume E0 ⇢ E is a subset invariant under parallel
transport with the property that there exists x 2 M such that E0 \ Ex is a linear
subspace of Ex. Then E0 is a vector subbundle of E, and r is reducible to E0.

Proof. Since bP� : E�(a) ! E�(b) is a linear isomorphism for any smooth curve
� : [a, b] ! M , it follows that if E0 \ Ex is a linear subspace of Ex for some point
x 2 M then E0 \ Ey is a linear subspace of Ey for every point y 2 M . Vector
subbundle charts on E0 can be obtained by taking the restriction of the vector
bundle charts on E built in Problem O.1.
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Next, by part (ii) of Problem P.1, we know that if r is a connection on E then
r induces a connection1 rHom on Hom(E,E).

Theorem 34.4. Let ⇡ : E ! M be a vector bundle and let r be a connection on
E. Then the holonomy algebra hol

r is a vector subbundle of Hom(E,E) which
in addition is a (Lie) algebra bundle in the sense of Remark 15.27. Moreover the
induced connection rHom on Hom(E,E) is reducible to hol

r.

Remark 34.5. The statement of Theorem 34.4 makes it look more complicated
than it is, so here is the tl;dr version: If � : [a, b] ! M is a smooth path and
T 2 hol

r(�(a)) then bP� � T � bP�1
� 2 hol

r(�(b)).

This proof is non-examinable.

(|) Proof. We prove the result in three steps.
1. In this step we identify what parallel transport with respect to rHom in

the bundle Hom(E,E) is. Suppose x 2 M and � : [0, 1] ! M is a smooth curve
with �(0) = x. Abbreviate by bPt : Ex ! E�(t) parallel transport along the curve
r 7! �(r) for 0  r  t with respect to r and similarly by

bPHom
t : L(E�(0), E�(0))! L(E�(t), E�(t)).

the parallel transport with respect to rHom. Suppose C 2 ��(Hom(E,E)) is a
section along �, i.e.

C(t) : E�(t) ! E�(t)

is a linear map for each t 2 [0, 1]. It follows from Problem O.3, Problem P.1 and
Proposition 32.3 that a section C is parallel along � with respect to rHom if and
only if for every section c 2 ��(E) which is parallel along � with respect to r, the
section C[c] 2 ��(E) defined by t 7! C(t)[c(t)] is also parallel with respect to �.
This means that for T 2 L(E�(0), E�(0)) we have

bPHom
t (T ) = bPt � T � bP�1

t . (34.1)

2. In this step we use (34.1) to prove that holr is vector subbundle of Hom(E,E)
and that rHom is reducible to hol

r. Comparing (34.1) and Lemma 32.11, we see
that the isomorphism Holr(x) ⇠= Holr(�(t)) is exactly given by bPHom

t :

bPHom
t : Holr(x) ⇠�! Holr(�(t)).

If we di↵erentiate bPHom
t at id 2 Holr(x), we get a linear map:

DbPHom
t (id) : holr(x)! hol

r(�(t)).

But now as bPHom
t is a linear map, by Problem B.4 we have for all T 2 hol

r(x) that

DbPHom
t (id) [Jid(T )] = Jid(bPHom

t (T )).

1In later lectures I will usually denote this connection as r again (instead of rHom). However
in this lecture for clarity I will keep the Hom superscript.
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Suppressing the J maps, this says that bPHom
t defines a linear isomorphism

bPHom
t : holr(x)! hol

r(�(t)),

which is exactly the statement that holr is invariant under parallel transport. We
now apply Lemma 34.3 to deduce that holr is a vector subbundle of Hom(E,E) and
the connection on Hom(E,E) induced by our original connection on E is reducible
to hol

r.
3. It remains to show that holr is actually a Lie algebra subbundle in the sense

of Remark 15.27. For this the key observation is that if � is a smooth curve in M
and C1, C2 2 ��(Hom(E,E)) are two parallel sections (with respect to rHom) then
it follows from (34.1) that both C1 �C2 and C2 �C1 are also parallel, and thus so is
the Lie bracket2 [C1, C2]. Thus the vector bundle charts on Hom(E,E) constructed
using Problem O.1 preserve the Lie bracket, and so can serve as Lie algebra charts
for Hom(E,E). These charts restrict to Lie algebra charts on hol

r since the latter
is invariant under parallel transport by Step 2.

We now investigate how curvature a↵ects the holonomy algebra. We first have:

Lemma 34.6. Let ⇡ : E !M be a vector bundle and suppose r is a connection on
E. Then for all x 2 M and v, w 2 TxM , the linear operator Rr(v, w) 2 gl(Ex) =
L(Ex, Ex) actually belongs to hol

r(x).

Proof. This is immediate from the proof of Step 2 of Theorem 33.9—specifically
(33.3) and (33.4).

Definition 34.7. Let ⇡ : E ! M be a vector bundle and let r be a connection
on M . We say that r is flat near x if there exists an open set U ⇢M containing
x such that Rr(v, w) is the zero operator3 for all y 2 U and v, w 2 TyM .

One could naively hope that hol

r(x) is generated by all elements of the form
Rr(v, w) for v, w 2 TxM . However it is perfectly possible for Rr to be flat near
x 2M without r being globally flat, and thus in this situation hol

r(x) is non-zero
but Rr(v, w) is the zero map for all v, w 2 TxM . Assume M is connected. Then it
is easy to see how to construct a non-zero element of holr(x) using the curvature:
choose some point y 2 M such that Rr is not flat near y, and choose v, w 2 TyM
such that Rr(v, w) 6= 0. Thus Rr(v, w) determines a non-zero element in hol

r(y).
Choose a smooth path � : [0, 1] ! M such that �(0) = y and �(1) = x. Then by
Theorem 34.4,

bPHom
� (Rr(v, w)) = bP� �Rr(v, w) � P�1

�

is a non-zero element of holr(x). The next theorem, which is one of the cornerstones
of the subject, tells us that the entire Lie algebra hol

r(x) is generated by elements
of this form.

2In slightly fancier language, this shows that the Lie bracket [·, ·] is itself a parallel section

of the bundle Hom
⇣

V2(Hom(E,E)),Hom(E,E)
⌘

, where the latter bundle is endowed with the

connection induced from r on E.
3By a standard abuse of notation we write Rr(v, w) 6= 0 to mean Rr(v, w) is not the zero

operator E
x

! E
x

.
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Theorem 34.8 (The Ambrose-Singer Holonomy Theorem). Let ⇡ : E ! M be a
vector bundle over a connected manifold M and let r be a connection on E. Then
for any x 2M , the holonomy algebra hol

r(x) at x is the vector subspace of gl(Ex)
spanned by all the elements of the form

P� �Rr(v, w) � P�1
� , y 2M, v, w 2 TyM

where � is a piecewise smooth path in M from y to x.

The proof of Theorem 34.8 is deferred to Lecture 41, where we4 will deduce it
from a more general version for principal bundles (see Theorem 41.7). Instead, now
we work towards deriving a more convenient formula for Rr.

Definition 34.9. Let ⇡ : E ! N denote a vector bundle with connection r, and
let ' : M ! N denote a smooth map. Define for X, Y 2 X(M) and s 2 �'(E)

Rr
' (X, Y )(s) = rX(rY (s))�rY (rX(s))�r[X,Y ](s). (34.2)

We will prove next lecture that for ' = id we have

Rr
id = Rr.

After doing so we will drop the ' subscript and just write Rr for the operator
defined in (34.2)—this is consistent with the fact we denote all covariant derivatives
by r and not, eg, r'. One can interpret (34.2) as

Rr
' (X, Y ) = [rX ,rY ]�r[X,Y ].

The first term measures the failure of rX and rY to commute, and the second
term is subtracted to make the following result true.

Proposition 34.10. The operator Rr
' is C1(M)-linear in all three variables, and

antisymmetric in the first two variables.

Proof. We prove only that Rr
' (fX, Y )(s) = fRr

' (X, Y )(s); the remaining compu-
tations are similar and left as an exercise. By Problem D.4 we have [fX, Y ] =
f [X, Y ]� Y (f)X and hence

Rr
' (fX, Y ) = rfX(rY (s))�rY (rfX(s))�r[fX,Y ](s)

= frX(rY (s))�rY (frX(s))�rf [X,Y ](s) +rY (f)X(s)

= f
�rX(rY (s))�rY (rX(s))�r[X,Y ](s)

�� Y (f)rX(s) + Y (f)rX(s)

= fRr
' (X, Y )(s).

This completes the proof.

Since Rr
' is C1(M)-linear is all variables, it is a point operator in all three

variables by Proposition 16.25, and hence Rr
' (v, w)(p) is well defined for any v, w 2

TxM and p 2 E'(x).

4Actually “you”: the proof of Theorem 34.8 is on Problem Sheet S.
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Proposition 34.11. Let ⇡ : E ! N denote a vector bundle with connection r,
and let ' : M ! N denote a smooth map. Then for all x 2 M , v, w 2 TxM and
p 2 E'(x) we have

Rr
' (v, w)(p) = Rr

id

�

D'(x)[v], D'(x)[w]
�

(p). (34.3)

In particular, if ' : M ! N is a di↵eomorphism then for all X, Y 2 X(M) and
s 2 �'(E) we have

Rr
id('?(X),'?(Y ))(s) = Rr

' (X, Y )(s).

Proof. Assume X, Y 2 X(M) are '-related to vector fields Z,W 2 X(N), and
assume s 2 �'(E) has the property that s(x) = s̃('(x)) for some section s̃ of E
and all x 2M . Then by repeatedly applying the chain rule for covariant derivatives
(31.7) we have

rX(rY (s)) = rX(rY (s̃ � '))
= rX(rW�'(s̃)))

= rX(rW (s̃) � ')
= rZ�'(rW (s̃))

= rZ(rW (s̃)) � '.

Similarly rY (rX(s)) = rW (rZ(s̃)) � '. Moreover by Problem D.5 we have
r[X.Y ](s) = r[Z,W ](s̃) � ', and hence

Rr
' (X, Y )(s) =

⇣

Rr
id(Z,W )(s̃)

⌘

� '. (34.4)

To prove the general case, we first claim that the module �'(TN) of vector fields
along ' is locally generated by elements of the form Z�' for Z a vector field defined
on some open subset of N . Indeed, if X 2 X(M) and x0 2 M , let ⌧ : V ! ⌦ be a
chart on N about '(x0) with local coordinates yi. Set U := '�1(V \ '(M)) and
define smooth functions f i : U ! R by

f i := X(yi � ').

Then for x 2 U we have

D'(x)[X(x)] = f i(x)
@

@yi

�

�

�

'(x)
,

which proves the claim. Similarly sections of the form s̃ �' locally generate �'(E)
over C1(M). Since both sides of (34.3) are point operators in all three variables,
(34.3) follows from (34.4).
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LECTURE 35

The exterior covariant di↵erential

We begin today’s lecture by completing our discussion of curvature and proving
that for ' = id the operator Rr

id from Definition 34.9 agrees with the curvature Rr.

Theorem 35.1. Let ⇡ : E ! M denote a vector bundle with connection r. Then
Rr

id = Rr.

Proof. Consider R2 with coordinates1 (s, t). Let S, T denote the vector fields @
@s

and @
@t on R2 respectively. Now fix x 2 M , v, w 2 TxM and p 2 Ex. Choose a

smooth map � : (�", ")⇥ (�", ")!M such that �(0, 0) = x and

D�(0, 0)[S(0, 0)] = v, D�(0, 0)[T (0, 0)] = w.

Now define a section2 ⌘ 2 ��(E) such that ⌘(0, 0) = p and such that:

(i) ⌘ is parallel along the curve t 7! �(0, t),

(ii) ⌘ is parallel along the curve s 7! �(s, t) for all t 2 (�", ").
Such a section exists and is unique by Proposition 29.7. To see this first apply
Proposition 29.7 along to curve to t 7! �(0, t) so that (i) is satisfied. Then define ⌘
along each curve s 7! �(s, t) again via Proposition 29.7. The fact that the resulting
section ⌘ is smooth in both s and t is due to the fact that integral curves depend
smoothly on initial conditions (see the proof of Proposition 29.7 and Theorem 8.1).
Using (ii) and the fact that [S, T ] = 0 we obtain

Rr
� (S(0, 0), T (0, 0))(p) = rS(0,0)(rT (⌘)))(0, 0).

Let bPs : Ex ! E�(s,0) denote parallel transport along r 7! �(r, 0) for 0  r  s and

let bPs,t : E�(s,0) ! E�(s,t) denote parallel transport along r 7! �(s, r) for 0  r  t.
Then by Proposition 32.3 we have

rT (⌘)(s, 0) =
d

dt

�

�

�

t=0

bP�1
s,t (⌘(s, t))

and thus

Rr
� (S(0, 0), T (0, 0))(p) =

d2

dsdt

�

�

�

(s,t)=(0,0)

bP�1
s
bP�1
s,t (⌘(s, t))

Thus by the definition of the derivative as a limit, the right-hand side is equal to

lim
s,t!0

bP�1
s
bP�1
s,t (⌘(s, t))� bP�1

s
bP�1
s,0(⌘(s, 0))� bP�1

0
bP�1
0,t (⌘(0, t)) + bP�1

0
bP�1
0,0(⌘(0, 0))

st

Will J. Merry, Di↵. Geometry II, Spring 2019, ETH Zürich. Last modified: June 28, 2019.
1We break our usual convention that the coordinates on R2 are (x1, x2) here so as to simplify

the notation in this proof.
2Sadly, using s as a coordinate means I can’t use s as a section. . .
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Since ⌘(s, 0) = bPs(p) by assumption (i), ⌘(0, t) = bP0,t(p) by assumption (ii) and
bPs,0 = id by definition we can simplify this to

lim
s,t!0

bP�1
s
bP�1
s,t (⌘(s, t))� p

st

Now take s = t to obtain

Rr
� (S(0, 0), T (0, 0))(p) = lim

t!0

bP�1
t
bP�1
t,t (⌘(t, t))� p

t2
.

Finally set r =
p
t and observe that the right-hand side is exactly the parallel

transport of p along the inverse3 of the loop �r from the proof of Step 2 of Theorem
33.9. Thus by (33.3) and (33.4) we obtain

Rr
� (S(0, 0), T (0, 0))(p)) = Rr(v, w)(p).

Finally by Proposition 34.11 we have

Rr
� (S(0, 0), T (0, 0))(p)) = Rr

id(v, w)(p).

This completes the proof.

We now introduce the sheaf-theoretic definition of a connection. This requires
us to use bundle-valued di↵erential forms (Definition 26.10). We denote by ⌦r

M,E

the sheaf U 7! ⌦r(U,E) of E-valued di↵erential r-forms over U ⇢ M open, and
by ⌦M,E the sheaf U 7! ⌦(U,E). Thus ⌦0(M,E) = �(E) and ⌦1(M,E) can be
identified with C1(M)-linear maps ⇠ : X(M) ! �(E) (cf. Theorem 26.12). In
particular, Remark 31.9 tells us that we can think of rs as belonging to ⌦1(M,E).

A decomposable element of ⌦r(U,E) is an element of the form ⇠ = !⌦s where
! 2 ⌦r(U) and s 2 �(U,E). Note that any R-linear sheaf morphism ⌦r

M,E ! ⌦r
M,E

is entirely determined by what it does to decomposable elements on arbitrarily
small open sets U .

Lemma 35.2. A connection r on E is equivalent to an R-linear sheaf morphism
r : ⌦0

M,E ! ⌦1
M,E which satisfies the Leibniz rule

r(fs) = df ⌦ s+ f rs.

Proof. The axioms of a covariant derivative (Definition 31.8) tell us that we get an
R-linear map

r : ⌦0(M,E)! ⌦1(M,E)

satisfying the Leibniz rule. We therefore need only check that r is a sheaf mor-
phism. But this is immediate from Proposition 16.22: every local operator induces
a sheaf morphism.

3The inverse is consistent with the minus sign in our original Definition 33.6 of Rr.
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So far all we have done is added notational complexity. Recall that the exterior
di↵erential d : ⌦M ! ⌦M is a graded derivation of degree 1 (Definition 19.12),
which extends the operation f 7! df to higher di↵erential forms. We now play the
same game with connections.

First, some preliminaries. In Definition 26.5 we discussed how to define the
wedge product for vector-valued forms. Now we will need a version of the wedge
product for bundle-valued forms. Rather than work in maximal generality, we will
give the relevant definitions only for the case we are interested in. Compare this to
Definition 17.28.

Definition 35.3. The sheaf ⌦M,E is a sheaf of ⌦M -bimodules in the sense that
there are wedge products

^ : ⌦M ⇥ ⌦M,E ! ⌦M,E

and
^ : ⌦M,E ⇥ ⌦M ! ⌦M,E

which restrict to sheaf morphisms

⌦r
M ⇥ ⌦k

M,E ! ⌦r+k
M,E, ⌦k

M,E ⇥ ⌦r
M ! ⌦r+k

M,E

and are compatible in the sense that

(! ^ ⇠) ^ # = ! ^ (⇠ ^ #), ⇠ 2 ⌦M,E, !,# 2 ⌦M .

Explicitly, these wedge product are defined on decomposable elements ⇠ = !⌦ s as
follows:

(! ⌦ s) ^ # := (! ^ #)⌦ s.

where wedge product on the right-hand side is normal wedge product, and similarly

# ^ (! ⌦ s) := (# ^ !)⌦ s,

and then extended by linearity. Just as the wedge product reduces to multiplication
for 0-forms, we define

! ^ s = s ^ ! := ! ⌦ s, ! 2 ⌦M , s 2 ⌦0
M,E. (35.1)

It follows from the definition that the wedge product is again graded commutative
in the sense that

! ^ ⇠ = (�1)rk⇠ ^ !, ! 2 ⌦r
M , ⇠ 2 ⌦k

M,E. (35.2)

We can now formulate our main result.

Theorem 35.4. Let ⇡ : E ! M be a vector bundle with connection r. There
exists a unique R-linear sheaf morphism

dr : ⌦M,E ! ⌦M,E

of degree 1, i.e. that dr restricts to define sheaf morphisms

dr : ⌦r
M,E ! ⌦r+1

M,E

such that:
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(i) dr is a graded derivation with respect to the wedge products from Definition
35.3, i.e. for ! 2 ⌦r

M and ⇠ 2 ⌦k
M,E we have

dr(! ^ ⇠) = d! ^ ⇠ + (�1)r! ^ dr⇠.

dr(⇠ ^ !) = dr⇠ ^ ! + (�1)k⇠ ^ d!.
(35.3)

(ii) dr is equal to r on ⌦0
M,E: d

rs = rs for s 2 ⌦0
M,E.

We call dr the exterior covariant di↵erential associated to the connection r
as refer to dr⇠ as the exterior covariant di↵erential of ⇠.

The proof of Theorem 35.4 is very similar to the proof of Theorem 19.17. Indeed,
if one takes E to be the trivial bundle M ⇥ R ! R and r to be the trivial
connection then dr = d and the proof is of Theorem 35.4 reduces exactly to that
of Theorem 19.17. The general case is only notationally di↵erent, and we leave it
to the interested reader as an exercise.

We also have the following analogue of Theorem 20.7, which uses the Bundle-
Valued Di↵erential Form Criterion (Theorem 26.12) to make sense of its statement.

Theorem 35.5. Let ⇡ : E ! M be a vector bundle with connection r. Let ⇠ 2
⌦r(M,E) and let X0, . . . Xr 2 X(M). Then:

dr⇠(X0, . . . , Xr) =
r
X

i=0

(�1)irX
i

�

⇠(X0, . . . , bXi, . . . , Xr)
�

+
X

0i<jr

(�1)i+j⇠([Xi, Xj], X0, . . . bXi, . . . , bXj, . . . , Xr).

The proof is by induction on r, and proceeds in exactly the same was as Theorem
20.7. Similarly we have the following version of Lemma 19.19:

Lemma 35.6. Let ⇡ : E ! N be a vector bundle with connectionr. Let ' : M ! N
be a smooth map and let ⇠ 2 ⌦N,E. Then

'?(dr⇠) = dr('?(!)).

that is, '? commutes with the exterior covariant di↵erentials.

Remark 35.7. If ⇡ : E !M is an algebra bundle and r is a connection such that
the algebra multiplication � : E⇥E ! E is parallel in the sense that if � is a curve
in M and c1, c2 are two parallel sections then �(c1, c2) is also parallel along � then
dr satisfies a product rule

dr
�

�(⇠1, ⇠2)
�

= �
�

dr⇠1, ⇠2
�

+ (�1)r��⇠1, dr⇠2
�

, ⇠1 2 ⌦r
M,E, ⇠2 2 ⌦M,E.

The proof of this assertion is similar to Proposition 26.6 (which was also Problem
M.6).

Unlike the exterior di↵erential however, the exterior covariant di↵erential does
not necessarily square to zero. For this we need a bit more formalism. Since the
notation is rather cumbersome, we will e↵ect the following convention.
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Definition 35.8. Let ⇡ : E !M be a vector bundle. We abbreviate

Ar(U,E) := ⌦r(U,Hom(E,E))

the space of endomorphism-valued r-forms on E and by Ar
M,E the correspond-

ing sheaf: thus Ar
M,E = ⌦r

M,Hom(E,E). We define AM,E similarly.

Example 35.9. Let ⇡ : E ! M be a vector bundle and let r be a connection on
E. Then Theorem 33.9 tells us that the curvature of Rr is an element of A2(M,E).

A decomposable element of Ar(M,E) is of the form ! ⌦ T where ! 2 ⌦r(M)
and T 2 �(Hom(E,E)). This allows us to extend Definition 35.3 and define (even)
more wedge products.

Definition 35.10. We turn the sheaf AM,E into a sheaf of algebras over C1
M via

the multiplication
AM,E ⇥AM,E ! AM,E.

given by
(! ⌦ T ) ^ (#⌦ S) := (! ^ #)⌦ (T � S),

Moreover ⌦M,E is also a sheaf of left AM,E-modules via the wedge product

^ : AM,E ⇥ ⌦M,E ! ⌦M,E

defined on decomposable elements by

(! ⌦ T ) ^ (#⌦ s) := (! ^ #)⌦ T (s).

Note this wedge products restrict to a sheaf morphism

Ar
M ⇥ ⌦k

M,E ! ⌦r+k
M,E.

This wedge product makes ⌦M,E into a a sheaf of AM,E-⌦M bimodules, in the sense
that

(A ^ ⇠) ^ ! = A ^ (⇠ ^ !), A 2 AM,E, ⇠ 2 ⌦M,E, ! 2 ⌦M . (35.4)

We conclude this lecture with the following result, which is guaranteed to make
your head hurt.

Theorem 35.11. Let ⇡ : E ! M be a vector bundle with connection r. For all
⇠ 2 ⌦r(M,E) one has

dr � dr(⇠) = Rr ^ ⇠.
Thus dr � dr = 0 if and only if r is flat.

Proof. We first prove the result in the special case r = 0, so that ⇠ = s is just a
section of E. Let X, Y 2 X(M). Then using Theorem 35.5 and Theorem 35.1 we
compute:

dr � dr(s)(X, Y ) = rX(rs(Y ))�rY (rs(X))�rs([X, Y ]))

= rX(rY (s))�rY (rX(s))�r[X,Y ](s)

= Rr(X, Y )(s),
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and hence
dr � drs = Rr ^ s. (35.5)

For the general case it su�ces to take ⇠ = ! ⌦ s to be a decomposable element.
Then we compute

dr � dr⇠ (35.1)
= dr � dr(! ^ s)

(35.3)
= dr

�

d! ^ s+ (�1)r! ^ drs
�

= d(d!) ^ s+ (�1)r+1d! ^ dr(s) + (�1)rd! ^ drs+ (�1)2r! ^ �dr � drs�
(35.5)
= ! ^ (Rr ^ s)

(35.2)
= (Rr ^ s) ^ !

(35.4)
= Rr ^ (s ^ !)

(35.2)
= Rr ^ (! ^ s)

(35.1)
= Rr ^ ⇠.

This completes the proof.
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LECTURE 36

The Bianchi Identity and Riemannian
vector bundles

We begin this lecture by stating and proving the Bianchi identity. This identity
is the starting point for using connections to study de Rham cohomology of a
manifold via characteristic classes. Let ⇡ : E ! M denote a vector bundle and fix
a connection r on E. We denote by

dr
Hom

: AM,E ! AM,E

the exterior covariant di↵erential associated to the connection rHom on Hom(E,E).
By Example 35.9 the curvature Rr of r is an element of A2(M,E), and hence
dr

Hom
(Rr) 2 A3(M,E). In fact, this element is always zero.

Theorem 36.1 (The Bianchi Identity). Let ⇡ : E ! M be a vector bundle with
connection r. Then

dr
Hom

(Rr) = 0.

Proof. Let ⇠ 2 ⌦(M,E). We compute (dr)3(⇠) := dr � dr � dr⇠ in two ways.
Firstly, by Theorem 35.11 we have

(dr)3(⇠) = (dr)2
�

dr⇠
�

= Rr ^ dr⇠. (36.1)

However if we use Problem Q.3 in addition to Theorem 35.11 we alternatively have

(dr)3(⇠) = dr
�

(dr)2(⇠)
�

= dr(Rr ^ ⇠)
= dr

Hom

(Rr) ^ ⇠ + (�1)2Rr ^ dr⇠

= dr
Hom

(Rr) ^ ⇠ +Rr ^ dr⇠.

Comparing this with (36.1) tells us that

Rr ^ dr⇠ = dr
Hom

(Rr) ^ ⇠ +Rr ^ dr⇠,

and hence
dr

Hom

(Rr) ^ ⇠ = 0, 8 ⇠ 2 ⌦(M,E).

This implies that dr
Hom

(Rr) = 0, and thus completes the proof.

We now motivate the construction of characteristic classes by considering a
simple—and ultimately, useless (see Proposition 36.6 below)—example.

Suppose ⇡ : E ! M is a vector bundle and ⌘ is a section of the dual bundle
E⇤. If ⇠ 2 ⌦r(M,E) is an E-valued di↵erential r-form on M , then we can feed ⇠
to ⌘ to obtain a normal di↵erential r-form ⌘(⇠) 2 ⌦r(M). Explicitly, if ⇠ = ! ⌦ s
is decomposable then ⌘(⇠) := ⌘(s)!.

Will J. Merry, Di↵. Geometry II, Spring 2019, ETH Zürich. Last modified: June 28, 2019.
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Lemma 36.2. Suppose ⇡ : E !M is a vector bundle with connection r. Suppose
⌘ 2 �(E⇤) is a section of the dual bundle which is parallel with respect to the
induced connection. Then for any ⇠ 2 ⌦r(M,E), we have

d(⌘(⇠)) = ⌘
�

dr⇠
�

as elements of ⌦r+1(M).

Proof. If X0, . . . , Xr are vector fields on M then by Theorem 20.7

d(⌘(⇠))(X0, . . . , Xr) =
r
X

i=0

(�1)iXi

�

⌘(⇠)(X0, . . . , bXi, . . . , Xr)
�

+
X

0i<jr

(�1)i+j⌘(⇠)([Xi, Xj], X0, . . . bXi, . . . , bXj, . . . , Xr).

Using the definition of the induced connection on E⇤ (part (ii) of Problem O.3), we
have

Xi

�

⌘(⇠)(X0, . . . , bXi, . . . , Xr)
�

=(rX
i

(⌘))
�

⇠(X0, . . . , bXi, . . . , Xr)
�

+ ⌘
�rX

i

(⇠(X0, . . . , bXi, . . . , Xr))
�

,

and thus by Theorem 35.5 we have

d(⌘(⇠))(X0, . . . , Xr) =
r
X

i=0

(�1)irX
i

(⌘)
�

⇠(X0, . . . , bXi, . . . , Xr)
�

+ ⌘
�

dr⇠(X0, . . . , Xr)
�

.

If ⌘ is parallel then r⌘ = 0, and thus the result follows.

Now consider the trace operator

tr : Mat(k)! R

that sends a matrix to its trace. We will show that tr induces a parallel section
of the dual bundle to the homomorphism bundle. Recall the frame bundle Fr(E)
associated to E from Definition 24.13. An element of the fibre Fr(Ex) is a linear
isomorphism F : Rk ! Ex.

Proposition 36.3. Let ⇡ : E !M be a vector bundle with connection r. There
is a well-defined section ⌘ of the bundle (Hom(E,E))⇤ given by the trace:

⌘x(T ) := tr(F�1 � T � F ), T 2 L(Ex, Ex), (36.2)

where F 2 Fr(Ex) is any element. Morevoer this section ⌘ is parallel with respect to
the dual connection on Hom(E,E)⇤ induced by the connectionrHom on Hom(E,E).

Proof. To prove that ⌘ is well defined we observe that if F̃ : Rk ! Ex was another
element of Fr(Ex) then L := F�1F̃ 2 GL(k), and

tr(F̃�1 � T � F̃ ) = tr(L�1F�1 � T � FL) = tr(F�1 � T � F ).
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To prove that ⌘ is parallel with respect to the dual connection on (Hom(E,E))⇤

induced by rHom, by part (i) of Problem O.3 we need to show that ⌘ is constant
along parallel sections of Hom(E,E) with respect to rHom. Fix x 2 M and let
� : [0, 1]!M be a curve with �(0) = x. Let {ei} be a local frame of E over an open
set U containing x which is parallel along � (Lemma 31.5), and let ↵ : ⇡�1(U)! Rk

denote the associated vector bundle chart. Suppose C 2 ��(Hom(E,E)) is parallel
with respect to rHom. Then by the discussion in Step 1 of the proof of Theorem
34.4, the curve

C̃(t) := ↵|E
�(t)
� C(t) � ↵|�1

E
�(t)

is a constant curve in gl(k). Thus

⌘�(t)(C(t)) = tr(C̃(t))

is constant as required.

From now on by a slight abuse of notation we will denote the section ⌘ defined
in (36.2) also by tr. What have we gained from this construction?

Corollary 36.4. Let ⇡ : E ! M be a vector bundle with connection r. Then
the di↵erential 2-form tr(Rr) is closed, and hence defines a de Rham cohomology
class [tr(Rr)] 2 H2

dR(M).

Proof. We apply Lemma 36.2 applied with “E” equal to Hom(E,E) and “r” equal
to rHom. Then using also the Bianchi Identity (Theorem 36.1) we have

d(tr(Rr)) = tr
�

dr
Hom

(Rr)
�

= 0.

Thus tr(Rr) is closed, as required.

What is more surprising is that the cohomology class [tr(Rr)] is actually inde-
pendent of the choice of connection r.
Proposition 36.5. Let ⇡ : E ! M denote a vector bundle and let r0 and r1

denote two connections on E. Then as elements of H2
dR(M), we have

[tr(Rr0)] = [tr(Rr1)].

Proof. Let pr1 : M ⇥ [0, 1]!M denote the first projection, and consider the pull-
back bundle pr?1 E over M ⇥ [0, 1]. Let ri denote the pullback connection pr⇤1ri.
If pr2 : M ⇥ [0, 1]! [0, 1] is the second projection, then

r := (1� pr2)r0 + pr2r1

is a connection on pr⇤1 E. If |t : M !M ⇥ [0, 1] is the map |t(x) := (x, t) then

|?tr = (1� t)r0 + tr1,

and thus in particular
|?0r = r0, |?1r = r1.

3



If Rr denotes the curvature of r and Rr
i denotes the curvature of ri then using

Theorem 35.1 we obtain

tr(Rr0) = |?0
�

tr(Rr)
�

, tr(Rr1) = |?1
�

tr(Rr)
�

.

By Proposition 23.16 we obtain

[tr(Rr0)] = |?0[tr(R
r)] = |?1[tr(R

r)] = [tr(Rr1)].

This completes the proof.

We have thus shown that the trace of the curvature of a connection gives rise to
a de Rham cohomology class in the base manifold that depends only on the vector
bundle. Amusingly however, this cohomology class is not particularly interesting.

Proposition 36.6. Let ⇡ : E !M denote a vector bundle. Then [tr(Rr)] = 0.

Oh well, that was a waste.

Not!

The key idea behind characteristic classes is that we can play the same game
with any “invariant polynomial”, rather than just the trace. We will explore this
further next lecture.

The proof of Proposition 36.6 is not particularly hard, but it requires us to
introduce another concept, that of a Riemannian metric. After connections, this is
the second most important idea of the entire course.

Definition 36.7. Let ⇡ : E !M be a vector bundle. A Riemannian metric on
E (often shorted to just “a metric on E”) is a section m 2 �(E⇤ ⌦ E⇤) with the
property that for all x 2 M , the element mx 2 E⇤

x ⌦ E⇤
x
⇠= (E ⌦ E)⇤|x is an inner

product on the vector space Ex. We call the pair (E,m) a Riemannian vector
bundle.

Remark 36.8. Warning: It is common to use the symbol “g” for a metric. Since
I like to use g to denote a smooth function, I won’t do this, and instead use the
(more logical) symbol “m” instead.

In the special case E = TM , we say that m is a Riemannian metric on M
and refer to the pair (M,m) as a Riemannian manifold. The field of Riemannian
geometry is the study of Riemannian metrics on manifold.

Remark 36.9. Warning: Do not confuse a Riemannian metric with a normal
metric in the sense of point-set topology. They are not the same thing! We will
eventually prove that if (M,m) is a Riemannian manifold then the Riemannian
metric m induces an actual metric dm on M , which moreover induces the given
topology on M .
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We will often use the notation

hp, qix := mx(p, q)

to emphasise that mx is an inner product. Often we will omit the subscript x and
just write hp, qi, and sometimes we will refer to the entire metric by h·, ·i. Similarly
we abbreviate by

kpkx :=
q

hp, pix =
p

mx(p, p)

the associated norm on Ex, again sometimes omitting the subscript x.

Definition 36.10. Let ⇡i : Ei !Mi be vector bundles equipped with Riemmanian
metrics mi for i = 1, 2. Suppose ' : M1 !M2 is a smooth map and � : E1 ! E2 is
a vector bundle morphism along ':

E1 E2

M1 M2

�

⇡1 ⇡2

'

We say that � is an isometric vector bundle morphism if

m1|x(p, q) = m2|'(x)(�(p),�(q)), 8 x 2M, p, q 2 E1|x.

As with connections, every vector bundle admits a Riemannian metric.

Proposition 36.11. Every vector bundle ⇡ : E !M admits a Riemannian metric.

Proof. This is a standard partition of unity argument. Suppose E has rank k. Let
{Ua | a 2 A} be an open cover of M such that there exist a vector bundle chart
↵a : ⇡�1(Ua) ! Rk for each a 2 A. Let h·, ·i denote the standard Euclidean inner
product on Rk, and define for x 2 Ua

ma|x(p, q) := h↵a|E
x

(p),↵a|E
x

(q)i

Then ma is a Riemannian metric on the trivial bundle ⇡�1(Ua)! Ua. To globalise
this, let {�a | a 2 A} denote a partition of unity subordinate to {Ua | a 2 A} and
extend the local section �ama of E⇤⌦E⇤ to be defined on all of M by setting it to
be zero outside of Ua. Then define

m :=
X

a2A
�ama 2 �(E⇤ ⌦ E⇤).

This is a Riemannian metric on E as the sum is finite at every point.

We also have:

Lemma 36.12. Let ⇡ : E !M be a vector bundle and suppose m is a Riemannian
metric on E. Then around any point x 2 M there exists a local frame {ei} for E
which is orthonormal with respect to m.
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Proof. Apply the Gram-Schmidt process to an arbitrary local frame.

A corollary of this is that we can always reduce the structure group (cf. Remark
13.14) of a vector bundle to the orthogonal group.

Corollary 36.13. If ⇡ : E ! M is a vector bundle of rank k then the structure
group G of E may be reduced to O(k) ⇢ GL(k).

Proof. Lemma 36.12 furnishes the necessary vector bundle charts.

Now we relate connections to metrics.

Definition 36.14. Let ⇡ : E !M be a vector bundle with Riemannian metric m.
A connection r on E is said to be a Riemannian connection with respect to
m if m is a parallel section with respect to the induced connection on E⇤ ⌦ E⇤.

We often simply write “a Riemannian connection” if the metricm is understood.

Proposition 36.15. Let ⇡ : E ! M be a vector bundle with Riemannian metric
m = h·, ·i. A connection r on E is a Riemannian connection with respect to m if
and only if the Ricci Identity holds:

X hs1, s2i = hrX(s1), s2i+ hs1,rX(s2)i , 8X 2 X(M), s1, s2 2 �(E). (36.3)

Proof. By (both parts of) Problem P.1, if r (also) denotes the induced connection
on E⇤ ⌦ E⇤ then for X 2 X(M) and s1, s2 2 �(E), we have

rX(m)(s1, s2) = X hs1, s2i � hrX(s1), s2i � hs1,rX(s2)i .

Thus rX(m) = 0 if and only if the Ricci Identity (36.3) holds.

The Ricci Identity also holds for the pullback of a Riemannian connection.

Corollary 36.16. Let ⇡ : E ! N be a vector bundle with Riemannian metric
m = h·, ·i and let r denote a connection on E which is Riemannian with respect to
m. Suppose ' : M ! N is a smooth map. Then the pullback connection satisfies
the Ricci identity too: holds:

X hs1, s2i = hrX(s1), s2i+ hs1,rX(s2)i , 8X 2 X(M), s1, s2 2 �'(E),

where both sides are smooth functions on M .

Proof. Apply the chain rule (31.7) for covariant derivative operators.

On Problem Sheet R you will prove that if r is a Riemannian connection then
Holr(x) ⇢ O(Ex,mx) ⇢ GL(Ex), for every x 2 M , where O(Ex,mx) denotes the
orthogonal transformations with respect to the inner product mx.

Proposition 36.17. Let ⇡ : E ! M be a vector bundle with Riemannian metric
m = h·, ·i. Then there exists a Riemannian connection with respect to m.
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Proof. The argument is again via a partition of unity. Suppose E has rank k. Let
{Ua | a 2 A} be an open cover of M such that there exist a orthonormal frame
{eai | i = 1, . . . , k} for E over Ua. Define a covariant derivative operator on the
trivial bundle ⇡�1(Ua)! Ua by

ra
X(s) :=

k
X

i=1

X heai , si eai .

Now let {�a | a 2 A} denote a partition of unity subordinate to {Ua | a 2 A} and
extend the local section �ara to be defined on all of M by setting it to be zero
outside of Ua. Then define

r :=
X

a2A
�ara.

This is a covariant derivative operator1 on M . Moreover we claim that r is Rie-
mannian: indeed if X 2 X(M) and s1, s2 2 �(E) then

X hs1, s2i =
X

a2A

k
X

i=1

�aX (hs1, eai i heai , s2i)

=
X

a2A
�a (hra

X(s1), s2i+ hs1,ra
X(s2)i)

= hrX(s1), s2i+ hs1,rX(s2)i ,
where as usual the interchange of summation signs is justified as the sum is locally
finite.

We now prove that the curvature tensor of a Riemannian connection is skew-
symmetric.

Proposition 36.18. Let ⇡ : E !M be a vector bundle with Riemannian metricm,
and letr be a Riemannian connection with respect tom. Then for allX, Y 2 X(M)
and s1, s2 2 �(E), one has

⌦

Rr(X, Y )(s1), s2
↵

+
⌦

s1, R
r(X, Y )(s2)

↵

= 0.

Proof. It is su�cient to prove the result in the case [X, Y ] = 0 since Rr is a point
operator. Let s 2 �(E). Then by Theorem 35.1 and the Ricci Identity (36.3), we
have
⌦

Rr(X, Y )(s), s
↵

= hrX(rY (s)), si � hrY (rX(s)), si
= X hrY (s), si � hrY (s),rX(s)i � Y hrX(s), si+ hrX(s),rY (s)i
=

1

2
(XY hs, si � Y X hs, si)

=
1

2
[X, Y ] hs, si

= 0.

This completes the proof.

1If the associated distribution to ra is Ha then the distribution H constructed in Step 2 of
Theorem 28.5 has its associated covariant derivative equal to r.
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If m is a metric on E then we denote by o(E,m) ! M the orthogonal al-
gebra bundle of (E,m). The fibre of o(E,m) over x 2 M is the Lie subalgebra
o(Ex,mx) ⇢ L(Ex, Ex) of linear maps that are orthogonal with respect to the inner
product mx.

Corollary 36.19. Let ⇡ : E !M be a vector bundle of rank k with Riemannian
metric m, and let r be a Riemannian connection with respect to m. Then for all
X, Y 2 X(M), the curvature Rr(X, Y ) belongs to the orthogonal algebra bundle
o(m) ⇢ Hom(E,E).

Proof. Proposition 36.18 shows us that Rr(v, w) 2 o(Ex,mx) for all x 2 M and
v, w 2 TxM .

We conclude this lecture by using Corollary 36.19 to prove Proposition 36.6.

Proof of Proposition 36.6. It su�ces to find a single connection for which [tr(Rr)] =
0. Let m denote any Riemannian metric on E and let r denote any Riemannian
connection. Then Proposition 36.15 shows that Rr(X, Y ) is skew-symmetric and
hence has trace zero.
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LECTURE 37

Characteristic classes and the
Chern-Weil homomorphism

In this lecture we construct the characteristic classes of a vector bundle in generality.
The formalism is a little daunting, so I urge you to keep in mind the example
of the trace from the last lecture. We begin at the level of linear algebra. Let
R[X1, . . . , Xk] denote the R-algebra of polynomials in k indeterminates Xi. A
polynomial p 2 R[X1, . . . , Xk] is said to be homogeneous of degree r if we can
write

p(X1, . . . , Xk) =
X

ci1···irXi1 · · ·Xi
r

.

where the sum is over all kr tuples (i1, . . . , ir) such that 1  ij  k for each ij.
We may without loss of generality always assume that the coe�cients ci1···ir are
symmetric1 in the indices i1, . . . , ir.

Definition 37.1. Let V be a vector space of dimension k. A homogeneous
polynomial of degree r on V is a map

� : V ! R

such that for every basis {ei} of the dual space V ⇤ then there exists a unique
homogeneous p 2 R[X1, . . . , Xk] such that

�(v) = p(e1, . . . , ek)(v) =
X

ci1···ire
i1(v) · · · eir(v). (37.1)

It is easy to see that this property is independent of the choice of basis in the
sense that we could replace “for every basis” with “there exists a basis”.

Definition 37.2. Let V be a vector space. We let Pr(V ) denote the set of all
homogeneous polynomials of degree r, and P (V ) =

L

r�0 Pr(V ). Then P (V ) is an
algebra under the usual pointwise product of functions.

Definition 37.3. Let V be a vector space, and suppose � 2 Pr(V ). The polar-
isation of � is the tensor polar(�) 2 T 0,r(V ) ⇠= Multr,0(V ) (cf. Proposition 15.9)
defined by

polar(�) =
X

ci1···ire
i1 ⌦ · · ·⌦ eir .

where {ei} is some basis of V ⇤ and the coe�cients ci1···ir are determined by (37.1).

As above, it is easy to see that definition of polar(�) does not depend on the
choice of basis {ei} of V ⇤. Since we assumed that the original coe�cients ci1···ir
were symmetric in the indices ij, the tensor polar(�) is actually a symmetric tensor
in the following sense.

Will J. Merry, Di↵. Geometry II, Spring 2019, ETH Zürich. Last modified: June 28, 2019.
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Definition 37.4. Let V be a vector space. A tensor S 2 T 0,r(V ) is said to be
symmetric if we can write

S =
X

ci1···ire
i1 ⌦ · · ·⌦ eir

for some basis {ei} such that the coe�cients ci1···ir are symmetric in the indices
i1, . . . , ir. We denote by Sr(V ) ⇢ T 0,r(V ) the set of symmetric tensors and by
S(V ) =

L

r�0 Sr(V ). Then S(V ) is an algebra under the product

(S · T )(v1, . . . , vr+s) :=
1

(r + s)!

X

%2S
r+s

S
�

v%(1), . . . , v%(r)
�

T
�

v%(r+1), . . . , v%(r+s)

�

for S 2 Sr(V ) and T 2 Ss(V ) (compare Lemma 19.4).

Thus we can think of polarisation as defining a degree-preserving algebra ho-
momorphism

polar : P (V )! S(V ).

Actually polar is an isomorphism, since an explicit inverse is given by

polar�1(S)(v) := S(v, . . . , v),

as is easy to check.

Definition 37.5. Let G be a Lie group with Lie algebra g. A homogeneous poly-
nomial � : g! R is said to be invariant if

�(Ada(v)) = �(v), 8 a 2 G, v 2 g,

where Ada : g ! g was defined in Definition 10.21. We denote by PG(g) ⇢ P (g)
the subalgebra of all invariant polynomials.

Example 37.6. Take G = GL(k). Then the adjoint action on gl(k) is simply given
by conjugation:

AdT : gl(k)! gl(k), AdT (A) = TAT�1.

and thus a polynomial � : gl(k)! R is invariant if

�(TAT�1) = �(A), 8T 2 GL(k), A 2 gl(k).

The following lemma is elementary linear algebra.

Lemma 37.7. The coe�cients �i of the characteristic polynomial

det(tI + A) =
k
X

i=0

�i(A)t
k�i, A 2 gl(k), t 2 R (37.2)

are invariant polynomials of degree i on gl(k). In particular, the trace and deter-
minant are invariant polynomials:

1 = �0(A), trA = �1(A), detA = �k(A)
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In fact, polynomials of this form generate the entire algebra PGL(k)(gl(k)).

Theorem 37.8. The space PGL(k)(gl(k)) is generated as an R-algebra by the coef-
ficients �i of the characteristic polynomial (37.2).

Theorem 37.8 is a corollary of the so-called “Fundamental Theorem of Symmet-
ric Polynomials2” which states that any symmetric polynomial can be written as a
polynomial in the “elementary symmetric polynomials”. This result is not hard to
prove, but we will not carry it out here, since it has nothing to do with Di↵erential
Geometry and would take us too far afield.

Definition 37.9. Let G be a Lie group with Lie algebra g. We say a symmetric
tensor S 2 Sr(g) is invariant if

S(Ada(v1), . . . ,Ada(vr)) = S(v1, . . . , vr)

for all a 2 G and vi 2 g. We let SG(g) ⇢ S(g) denote the invariant symmetric
tensors.

If � 2 PG(g) then polar(�) 2 SG(g), and we obtain

Lemma 37.10. Let G be a Lie group with Lie algebra g. Then polarisation restricts
to define an algebra isomorphism polar : PG(g)! SG(g).

Let us now proceed to vector bundles. Suppose ⇡ : E ! M is a vector bundle.
Let us abbreviate

Homr(E,E) := T r,0(Hom(E,E))

for r � 0. Thus the fibre of Homr(E,E) over x 2M is

gl(Ex)⌦ · · ·⌦ gl(Ex)
| {z }

r

,

and Hom1(E,E) = Hom(E,E). The following lemma is the analogue of Proposition
36.3 to this new more complicated setting.

Lemma 37.11. Let ⇡ : E ! M be a vector bundle with connection r. Let � 2
PGL(k)(gl(k)) denote an invariant polynomial of degree r. Then � induces a parallel
section � of the dual bundle (Homr(E,E))⇤.

Proof. Let S = polar(�) denote the polarisation of �. For each x 2 M , choose an
element F 2 Fr(Ex), i.e. a linear isomorphism F : Rk ! Ex. We define

�x(T1 ⌦ · · ·⌦ Tr) := S
�

F�1 � T1 � F, . . . , F�1 � Tr � F
�

for Ti 2 gl(Ex) = L(Ex, Ex). This definition is independent of the choice of F , since
if F̃ : Rk ! Ex was another element of Fr(Ex) then L := F�1F̃ 2 GL(k), and

S
�

F̃�1 � T1 � F̃, . . . , F̃�1 � Tr � F̃
�

= S
�

L�1F�1 � T1 � FL, . . . , L�1F�1 � Tr � FL
�

= S
�

F�1 � T1 � F, . . . , F�1 � Tr � F
�

since S is invariant. The proof that � is parallel is identical to the proof of Propo-
sition 36.3.

2See for instance this Wikipedia entry.
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Let us now consider di↵erential forms with values in Homr(E,E). The tensor
product gives us another way to multiply such forms together:

Definition 37.12. Let A 2 ⌦h(M,Homr(E,E)) and B 2 ⌦l(M,Homs(E,E)). We
define an element A⌦B 2 ⌦h+l(M,Homr+s(E,E)) by wedging together the ⌦(M)
factors and tensoring the Hom(E,E) factors. Explicitly, on decomposable elements

A = ! ⌦ �T1 ⌦ · · ·⌦ Tr

�

, B = #⌦ (S1 ⌦ · · ·⌦ Ss)

for ! 2 ⌦h(M), # 2 ⌦l(M) and Ti, Sj 2 �(Hom(E,E)), we define

A⌦ B := (! ^ #)⌦ �T1 ⌦ · · ·⌦ Tr ⌦ S1 ⌦ · · ·⌦ Ss).

(|) Remark 37.13. If E !M is an algebra bundle in the sense of Remark 15.27,
where the multiplication is given by � : E ⌦ E ! E, then the module ⌦(M,E) of
E-valued di↵erential forms is itself an algebra with the multiplication

�̃ : ⌦(M,E)⇥ ⌦(M,E)! ⌦(M,E)

via

�̃(!,#)x(v1, . . . , vr+s) :=
1

r!s!

X

%2S
r+s

sgn(%)�
�

!x

�

v%(1), . . . , v%(r)
�⌦ #x

�

v%(r+1), . . . v%(r+s)

��

.

(This is just the bundle-valued version of Definition 26.5.) Now, if we were to
allow ourselves infinite-dimensional bundles, then Definition 37.12 would fit into
this framework (and thus seem less ad-hoc). Namely, if we set

Hom1(E,E) :=
M

r�0

Homr(E,E),

then Hom1(E,E) ! M can be seen as an infinite-dimensional algebra bundle
over M , cf. Remark 15.19, where � is simply ⌦. In this case Definition 37.12 is
simply the natural algebra structure on Hom1(E,E)-valued forms coming from the
algebra structure on Hom1(E,E).

Just as in the discussion before Lemma 36.2, if we are given a section � of the
dual bundle (Homr(E,E))⇤ then given an element A 2 ⌦k(M,Homr(E,E)) we can
feed it to � to obtain a normal di↵erential k-form �(A). We then have the following
generalisation of Lemma 36.2.

Lemma 37.14. Suppose ⇡ : E ! M is a vector bundle of rank k with connection
r, and suppose � 2 PGL(k)(gl(k)) is an invariant polynomial of degree r. Let �
denote the induced parallel section of the dual bundle (Homr(E,E))⇤. Suppose
Ai 2 Ah

i(M,E) for i = 1, . . . , r. Then denoting by rHom the induced connection
on Hom(E,E), we have

d
�

�(A1 ⌦ · · ·⌦ Ar)
�

= �

 

r
X

j=1

(�1)h1+···+h
j�1A1 ⌦ · · ·⌦ dr

Hom

Aj ⌦ · · ·⌦ Ar

!

.

Proof. Use Remark 35.7 together with the argument from the proof of Lemma
36.2.
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We are now ready to state and prove our main result.

Theorem 37.15 (The Chern-Weil Theorem). Let ⇡ : E ! M denote a vector
bundle of rank k and let � 2 PGL(k)(gl(k)) have degree r. Then:

(i) Ifr is a connection onE and � is the induced parallel section of (Homr(E,E))⇤

from Lemma 37.11 then the 2r-form

�(r) := �
0

@Rr ⌦ · · ·⌦Rr
| {z }

r

1

A

is closed.

(ii) The cohomology class [�(r)] 2 H2r
dR(M) is independent of r.

(iii) The map3

CWE : PGL(k)(gl(k))! H⇤
dR(M) :=

M

r�0

Hr
dR(M),

given by
CWE(�) := [�(r)]

is an algebra homomorphism.

Proof. The proof of (i) is the same as Corollary 36.4, and uses the Bianchi Identity
(Theorem 36.1) and Lemma 37.14:

d
�

�(Rr ⌦ · · ·⌦Rr)
�

= �

0

@

X

i

(�1)2+···+2Rr ⌦ · · ·⌦ dr
Hom

(Rr)
| {z }

=0

⌦ · · ·⌦Rr

1

A

= �
�

Rr ⌦ · · ·⌦ 0⌦ · · ·⌦Rr�

= 0.

The proof of (ii) is identical to that of Proposition 36.5: using the notation from
that proof one has

�(r0) = |?0
�

�(r)�, �(r1) = |?1
�

�(r)�,

and hence by Proposition 23.16 again

[�(r0)] = |?0[�(r)] = |?1[�(r)] = [�(r1)].

The proof of (iii) is on Problem Sheet R.

We now prove that CW behaves nicely with respect to pullbacks.

3Here “CW” stands for “Chern-Weil” (don’t confuse this with a CW complex in algebraic
topology!)
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Proposition 37.16. Let ⇡ : E ! N denote a vector bundle of rank k and let
' : M ! N denote a smooth map. Then the following diagram commutes:

H⇤
dR(N)

PGL(k)(gl(k))

H⇤
dR(M)

'?

CW
E

CW
'

?

E

Proof. This follows from the equality R'?r = '?(Rr), which in turns follows from
Proposition 34.11.

Definition 37.17. Let ⇡ : E !M be a vector bundle of rank k. We call an element
CWE(�) 2 H⇤

dR(M) a characteristic class of E. The map CWE : PGL(k)(gl(k))!
H⇤

dR(M) is called the Chern-Weil homomorphism.

It follows from Proposition 37.16 that isomorphic vector bundles have the same
characteristic classes. Turning this on its head, if E1 and E2 are any two vector
bundles, then in order to show that E1 and E2 are not isomorphic, it su�ces to
find a single characteristic class which takes di↵erent values on E1 and E2.

The following generalisation of Proposition 36.6 is on Problem Sheet R.

Proposition 37.18. If � 2 PGL(k)(gl(k)) is an invariant homogeneous polynomial
of odd degree 2r + 1 then CWE(�) = 0 for any vector bundle of rank k.

Combining this with Theorem 37.8 tells us that the ring of characteristic classes
on M has two sets of generators:

(i) the trace polynomials of even degree:

2

4tr

0

@Rr ⌦ · · ·⌦Rr
| {z }

2r

1

A

3

5,

(ii) the coe�cients �2r of even degree of the characteristic polynomial (37.2).

Let us focus on the second case.

Definition 37.19. Let ⇡ : E ! M be a vector bundle of rank k. We define the
rth Pontryagin class of E to be

pr(E) :=



�2r

✓

i

2⇡
r
◆�

2 H4r
dR(M).

The factor of i
2⇡ is not too important, it is just there to make certain other

formulae prettier (note in particular that as �2r is homogeneous of degree 2r, the
factor of i disappears when fed to �). Note pr(E) = 0 if r >

⌅

k
2

⇧

. It is also
formally useful to define p0(E) := 1, where 1 2 H0

dR(M) = R is the cohomology
class containing the constant function 1. In order to state the next result, note that
the wedge product on di↵erential forms is also well defined on the level of de Rham
cohomology.
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Definition 37.20. Let M be a smooth manifold. If [!] 2 Hr
dR(M) and # 2

Hs
dR(M) are two de Rham cohomology classes represented by closed forms ! and

# respectively, then we define

[!] ^ [#] := [! ^ #] 2 Hr+s
dR (M). (37.3)

This is well defined as (a) the (r+s)-form !^# is closed, since d(!^#) = d!^#+
(�1)r! ^ d# = 0, and (b) [! ^ #] is independent of the choice of representatives !
and #, since if !1 and #1 were two more representatives (meaning that ! � !1 and
#� #1 are both exact) then the same formula shows that ! ^ #� !1 ^ #1 is exact.

The wedge product (37.3) turns the total cohomology H⇤
dR(M) into a graded

ring. On Problem Sheet R you will prove4:

Proposition 37.21 (The Whitney Product Formula). If E1 and E2 are vector
bundles over M then

pr(E1 � E2) =
r
X

i=0

pi(E1) ^ pr�i(E2).

We conclude this lecture with a sample application.

Proposition 37.22. Suppose Mn is a compact manifold which can be embedded
in Rn+1. Then pr(TM) = 0 for r > 0.

Proof. If M embeds in Rn+1 then the normal bundle Norm(M) from Definition 6.8
is a one-dimensional vector bundle and hence has pr(Norm(M)) = 0 for r > 0. We
have a vector bundle isomorphism:

TRn+1|M ⇠= TM � Norm(M).

Proposition 37.16 applied to the embeddingM ,! Rn+1 tells us that pr(TRn+1|M) =
0 for r > 0. Thus the Whitney Product Formula (Proposition 37.21) implies that
pr(TM) = 0 for r > 0. This completes the proof.

Of course, the usefulness of Proposition 37.22 depends on our ability to compute
the Pontryagin classes! But this is a topic best suited for a course on Algebraic
Topology. We just state here one result.

Corollary 37.23. CP 2 does not embed in R5.

(|) Proof. We can think of CP 2 as a compact manifold of (real) dimension four.
One can show that the class p1(TCP 2) 2 H4

dR(CP 2) is of the form 3c2, where
c 2 H2

dR(CP 2) is a generator (and thus in particular is non-zero).

4For those of you who are familiar with Algebraic Topology: the statement would be more
complicated if one worked with (singular) cohomology with coe�cients in Z, since then one would
need to worry about 2-torsion elements.

7



LECTURE 38

Connections on principal bundles

In this lecture we look at connections on principal bundles. The definition of a
preconnection is the same as Definition 28.2 (indeed, we defined preconnections for
arbitrary fibre bundles, which thus includes principal bundles as a special case).
Just as with vector bundles, a connection on a principal bundle is a preconnection
which satisfies an additional condition. Recall that if ⇡ : P ! M is a principal
G-bundle we denote by ra : P ! P the right G-action

ra(p) := p · a, p 2 P, a 2 G.

Definition 38.1. Let ⇡ : P ! M be a principal G-bundle. A connection on P
is a preconnection H which satisfies

Dra(p)[Hp] = Hp·a, 8 p 2 P, a 2 G. (38.1)

As before, given a connection H we denote by

⇣ = ⇣H + ⇣V

the horizontal-vertical splitting of a tangent vector ⇣ 2 TP . The condition (38.1)
implies that

Dra(p)[⇣
H] = (Dra(p)[⇣])

H , 8 ⇣ 2 TpP, a 2 G. (38.2)

We will shortly investigate the relationship between connections on principal
bundles and connections on vector bundles. Before doing so, however, we look at
parallel transport systems in principal bundles. The following definition is easier to
remember if you follow the general mantra that you simply take the vector bundle
version and replace “linear” with “equivariant” at every opportunity.

Definition 38.2. Let ⇡ : P !M be a principal G-bundle. A parallel transport
system P on P assigns to every point p 2 P and every curve1 � : [r1, r2]!M with
�(r1) = ⇡(p), a unique section P�(p) 2 ��(P ) with initial condition p, i.e. such that
P�(p)(r1) = p. One calls P�(p) the parallel lift of � starting at p. This association
should satisfy the following four axioms:

(i) (Equivariance): For every smooth curve � : [r1, r2]!M the map

bP� : P�(r1) ! P�(r2), bP�(p) := P�(p)(r2)

is a di↵eomorphism which is equivariant with respect to the G-action:

bP�(p · a) = bP�(p) · a, 8 a 2 G.

bP�1
� = bP��

where �� : [r1, r2]!M is the reverse curve t 7! �(r1 � t+ r2).

Will J. Merry, Di↵. Geometry II, Spring 2019, ETH Zürich. Last modified: June 28, 2019.
1Oh dear, there are not enough letters in the alphabet! I cannot use [a, b] for an interval since

a and b are used to denote elements of G. *Screams internally*
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(ii) (Independence of parametrisation): If � : [r1, r2]!M is a smooth curve
and h : [r3, r4]! [r1, r2] is a di↵eomorphism such that h(r3) = r1 and h(r4) =
r2 then for every point p 2 P�(r1) and every t 2 [r3, r4], we have

P��h(p)(t) = P�(p)(h(t)).

(iii) (Smooth dependence on initial conditions): The section P�(p) depends
smoothly on both � and p.

(iv) (Initial uniqueness): Suppose �, � : [r1, r2] ! M are two curves such that
�(r1) = �(r1) and �0(r1) = �0(r1). Then for each p 2 P�(r1), the two curves
t 7! P�(p)(t) and t 7! P�(p)(t) have the same initial tangent vector:

d

dt

�

�

�

t=r1
P�(p)(t) =

d

dt

�

�

�

t=r1
P�(p)(t)

As you can guess, connections on principal bundles are the equivalent to parallel
transport systems.

Theorem 38.3. Let ⇡ : P !M be a principal G-bundle. Then a connection on P
(in the sense of Definition 38.1) determines and is uniquely determined by a parallel
transport system on P (in the sense of Definition 38.2).

The proof of Theorem 38.3 proceeds analogously to Theorem 30.1 and Theorem
30.2, and you will be pleased to learn that I will spare you the gory details. Let
us now explain how connections on principal bundles are related to connections on
vector bundles.

For this we recall how associated bundles work: Let ⇡ : P ! M be a principal
bundle. Suppose2 ⇢ : G ! GL(V ) is a smooth3 e↵ective representation of G on a
vector space V . Let us write ⇢(P ) for the associated vector bundle P ⇥G V over
M . The salient properties we need to recall from Theorem 25.3 and Theorem 26.17
are as follows:

• An element of ⇢(P ) is written [p, v] where p 2 P and v 2 V . This is the
equivalence class of the pair (p, v) 2 P ⇥ V under the equivalence relation

(p · a, v) ⇠ (p, ⇢a(v))

• The footpoint map } : ⇢(P )!M is given by }([p, v]) := ⇡(p).

• For any p 2 P , the map Lp : V ! ⇢(P )|⇡(p) given by v 7! [p, v] is a linear
isomorphism. Thus for x 2 M the vector space structure on ⇢(P )|x is given
by

[p, v] + r[p, w]
def
= Lp(v + rw) = [p, v + rw]. (38.3)

• The map ⇧ : P ⇥ V ! ⇢(P ) given by ⇧(p, v) := [p, v] exhibits P ⇥ V as
another principal G-bundle over ⇢(P ).

2Since I have been using µ to denote scalar multiplication on a vector bundle, I will switch
notation from Lecture 25 and use ⇢ to denote a representation of a Lie group on a vector space.

3The smoothness is actually automatic provided ⇢ is a continuous group homomorphism (cf.
Problem F.6).
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• There is a bijective correspondence between horizontalG-equivariant V -valued
forms on P and ⇢(P )-valued forms on M (this is Theorem 26.17). This cor-
respondence is written:

! 2 ⌦k
G(P, V ) 7! ![ 2 ⌦k(M, ⇢(P )),

⇠ 2 ⌦k(M, ⇢(P )) 7! ⇠] 2 ⌦k
G(P, V ).

In particular, a section s 2 �(⇢(P )) determines and is uniquely determined
by a smooth equivariant function f : P ! V via

s(x) = [p, f(p)], for any p 2 Px. (38.4)

Remark 38.4. Fix a smooth manifold M . If E is a vector bundle of rank k
then its frame bundle Fr(E) is a principal GL(k)-bundle. Moreover if ⇢ is the
canonical representation of GL(k) on Rk then E ⇠= ⇢(Fr(E)), and hence there is a
1-1 correspondence between vector bundles of rank k over M and principal GL(k)-
bundles. However any Lie group can be the fibre of a principal bundle over M (not
just GL(k)) and hence principal bundles are more general than vector bundles.

Theorem 38.5. Let ⇡ : P !M be a principal bundle. Suppose ⇢ : G! GL(V ) is
a smooth representation of G on a vector space V , and let E := ⇢(P ) denote the
associated bundle. A connection H on P (in the principal bundle sense) induces a
connection HE on E (in the vector bundle sense).

Proof. Although not strictly necessary, we will give three proofs, one from the point
of view of parallel transport, one from the point of view of distributions, and one
from the point of view of covariant derivatives.

• Proof using parallel transport: Let � : [0, 1] ! M be a smooth curve in M ,
and suppose c 2 ��(P ) is a section along �. Then for any fixed v 2 V ,
t 7! ⇧(c(t), v) is a section of E along � (not every section of E along � is
of this form though). We define a parallel transport system PE on E by
declaring that a section c̃ of E along � is parallel if and only if c̃ = ⇧(c, v) for
c a parallel section of P along �. In terms of the hat maps, this means:

bPE
� [p, v] :=

h

bP�(p), v
i

.

This is well defined because bP� is equivariant. Indeed, if (q, w) 2 P ⇥ V is
another representative of [p, v] then there exists a 2 G such that q = p ·a and
w = ⇢a�1(v). Then

h

bP�(q), w
i

=
h

bP�(p · a), w
i

=
h

bP�(p) · a, w
i

=
h

bP�(p), ⇢a(w)
i

=
h

bP�(p), v
i

.
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All the axioms for PE follow from those of P. For instance, to see that bPE
� is

a linear map we simply observe by (38.3) that for r 2 R and v, w 2 V :

bPE
� ([p, v] + r[p, w]) = bPE

� [p, v + rw]

=
h

bP�(p), v + rw
i

=
h

bP�(p), v
i

+ r
h

bP�(p), w
i

= bPE
� [p, v] + rbPE

� [p, w].

• Proof using distributions: Alternatively, in terms of distributions, we define

HE|[p,v] := D⇧(p, v)[Hp ⇥ {0}].

It is clear this defines a preconnection on E. Let µr : E ! E denote the scalar
multiplication µr[p, v] := [p, rv]. Then

µr � ⇧(p, v) = [p, rv] = ⇧(p, rv),

and hence

Dµr[p, v]
⇥HE|[p,v]

⇤

= Dµr[p, v] �D⇧(p, v) [Hp ⇥ {0}]
= D(µr � ⇧)(p, v) [Hp ⇥ {0}]
= D⇧(p, rv) [Hp ⇥ {0}]
= HE|[p,rv].

• Proof using covariant derivatives: This is arguably the most interesting proof.
Firstly, if ! 2 ⌦k(P, V ) is any V -valued k-form on P , we define the horizon-
tal component of ! (with respect to H) to be the form !H 2 ⌦k(P, V ) given
by

!H
p(⇣1, . . . , ⇣k) := !p(⇣

H
1 , . . . , ⇣

H
k),

where as usual ⇣H denotes the horizontal component of ⇣. Then !H is a
horizontal vector-valued form. Now we claim:

! 2 ⌦k
G(P, V ) ) (d!)H 2 ⌦k+1

G (P, V ). (38.5)

We split the proof of (38.5) into two parts:

(i) If ! 2 ⌦k(P, V ) is G-equivariant then so is d!.

(ii) If ! 2 ⌦k(P, V ) is G-equivariant then so is !H.

To prove (i), fix a 2 G. Then

r?a(d!) = dr?a(!)

= d⇢a�1(!)

= ⇢a�1(d!)

4



where the first line used Lemma 26.9 and the last line used the fact that
⇢a�1 : V ! V is a linear map. Next, to prove (ii), we take a 2 G, p 2 P and
⇣1, . . . , ⇣k 2 TpP and compute

(r?a(!
H))p(⇣1, . . . , ⇣k) = !H

p·a
�

Dra(p)[⇣1], . . . , Dra(p)[⇣k]
�

(†)
= !p·a

�

Dra(p)[⇣
H
1 ], . . . , Dra(p)[⇣

H
k ]
�

= (r?a(!))p(⇣
H
1 , . . . ⇣

H
k)

= ⇢a�1

�

!p

�

⇣H1 , . . . ⇣
H
k

��

= ⇢a�1

�

!H
p(⇣1, . . . , ⇣k)

�

,

where (†) used (38.2). Thus (38.5) is proved. We now use (38.5) to define an
exterior covariant di↵erential dr : ⌦k(M,E)! ⌦k+1(M,E) by

dr⇠ :=
⇣

�

d(⇠])
�H
⌘[

(38.6)

In particular, for k = 0, if s 2 �(E) then

rs := �(df)H�[,

where f : P ! V is the function from (38.4). All the axioms of a covariant
derivative operator are easy to check.

This completes the proof (three times over). Wholesome exercise: Check that all
three proofs give rise to the same connection on E.

If ⇡ : E !M is a vector bundle of rank k, then its frame bundle ⇡̂ : Fr(E)!M
is a principal GL(k)-bundle. In this special case, the converse to Theorem 38.5 is
true.

Proposition 38.6. Let ⇡ : E ! M be a vector bundle of rank k. There is a
bijective correspondence between connections on E (in the vector bundle sense)
and connections on Fr(E) (in the principal bundle sense).

Proof. We need only show that a connection on E determines one of Fr(E), thus
providing an inverse to the construction from Theorem 38.5. This time we will give
two proofs4:

• Proof using parallel transport: Suppose � : [0, 1] ! M is a smooth curve in
M . Let F 2 Fr(E�(0)). Write vi := F (ei), where ei is the standard basis of
Rn. Let F̃ 2 Fr(E�(1)) denote the frame defined by

F̃ (ei) := bP�(vi).

Then we define
bPFr(E)
� (F ) := F̃.

4Only two, since—so far—we only have two di↵erent ways to view connections on principal
bundles. A third will be introduced next lecture. . .
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Then we claim that bPFr(E) is a parallel transport system on Fr(E). Indeed,
to prove that PFr(E) satisfies the equivariance axiom, we must show that

bPFr(E)
� (F � T ) = bPFr(E)

� (F ) � T

for T 2 GL(k). This is immediate from the fact that bP� is a linear isomor-
phism.

• Proof using distributions: As before we consider the map ⇧ : Fr(E)⇥Rk ! E
is the map

⇧(F, v) := F (v) 2 Ex, F 2 Fr(Ex), v 2 Rk.

We then define for F 2 Fr(E)

HFr(E)
F :=

�

Z 2 TF Fr(E) | D⇧(F, 0)[Z, 0] 2 H⇧(F,0)

 

.

I will leave the verification that this defines a connection on Fr(E) as another
instructive exercise.

This completes the proof (twice over).

Remark 38.7. We have shown that there is a bijective correspondence between
connections on Fr(E) and connections on E. For a general principal G-bundle P
however, the passage given by Theorem 38.5 from connections on P to connections
on ⇢(P ) may not be injective or surjective.
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LECTURE 39

The connection form and the curvature
form

In Lecture 31 we defined the connection map  : TE ! E associated to a connection
on a vector bundle E. In this lecture we investigate the principal bundle analogue,
and then use this to define the curvature of a principal bundle connection.

Let ⇡ : P ! M be a principal G-bundle, and let g denote the Lie algebra of G
Recall from Definition 25.9 that for each v 2 g there is a vector field ⇠v on P , called
the fundamental vector field, which is defined by

⇠v(p) :=
d

dt

�

�

�

t=0
p · exp(tv) 2 TpP,

where exp: g! G is the exponential map of G. Moreover if we denote by

⌘p : G! P, ⌘p(a) := p · a (39.1)

for p 2 P then by(25.2) we have

D⌘p(e)[v] = ⇠v(p). (39.2)

We now prove:

Proposition 39.1. Let ⇡ : P !M be a principal G-bundle. Then for any p 2 P ,
the di↵erential D⌘p(e) of the map ⌘p from (39.1) at e is an isomorphism

D⌘p(e) : g! VpP.

Proof. We first show that any fundamental vector field ⇠v is vertical. Indeed, note
that ⇡ � ⌘p is a constant map. Thus

D⇡(p)[⇠v(p)] = D⇡(p) �D⌘p(e)[v] = D(⇡ � ⌘p)(e)[v] = 0.

Now suppose v 2 kerD⌘p(e). Then

0 = D⌘p(e)[v] = ⇠v(p) =
d

dt

�

�

�

t=0
p · exp(tv)

implies by uniqueness of integral curves (cf. Proposition 25.11) that p is a fixed
point of exp(tv). But G acts freely on P , whence v = 0. To complete the proof
we note that both g and VpP have dimension equal to the dimension of G. Thus
D⌘p(e) is an isomorphism, as claimed.

We now define the principal bundle version of the connection map, which this
time is called a connection form.

Will J. Merry, Di↵. Geometry II, Spring 2019, ETH Zürich. Last modified: June 28, 2019.
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Definition 39.2. Let ⇡ : P ! M be a principal G-bundle, and let H be a con-
nection on P . The connection form $ of H is the g-valued 1-form $ 2 ⌦1(P, g)
defined by

$p(⇣) := D⌘p(e)
�1[⇣V].

This does indeed define an element of g: ⇣V 2 VpP and hence by Proposition 39.1
there is a unique element $p(⇣) 2 g such that D⌘p(e)[$p(⇣)] = ⇣V.

Of course, it must be proved that $ really is smooth. The next result establishes
this, and shows that $ uniquely determines H. Recall that G acts on g via the
adjoint representation Ad: G ! GL(g). In the following, whenever we talk about
G acting on g, we will always implicitly assume that the action is the adjoint one.

Theorem 39.3 (Properties of the connection form). Let ⇡ : P !M be a principal
bundle with connection H. Then the connection form $ is smooth and equivariant,
i.e.

r?a($) = Ada�1($), 8 a 2 G

and satisfies
$(⇠v) ⌘ v, 8 v 2 g. (39.3)

Moreover if # 2 ⌦1(P, g) is any equivariant form satisfying (39.3) then ker#p defines
a connection on P .

Remark 39.4. The connection form does not belong to ⌦1
G(P, g)! Indeed, (39.3)

is the “opposite” of being a horizontal form. We will see how that the curvature
form, which is a g-valued 2-form, does belong to ⌦2

G(P, g).

Proof of Theorem 39.3. We prove the theorem in three steps.
1. In this step we show that $ is equivariant and that (39.3) holds. We begin

with the latter statement. By Proposition 39.1 for any p 2 P one has ⇠v(p) 2 VpP
and thus ⇠v(p)V = ⇠v(p); thus

$p(⇠v(p)) = D⌘p(e)
�1[⇠v(p)] = v

by (39.2). To verify equivariance, fix p 2 P , a 2 G, and ⇣ 2 TpP . We wish to show
that

$p·a(Dra(p)[⇣]) = Ada�1($p(⇣)). (39.4)

Since both sides of (39.4) are R-linear and ⇣ = ⇣H + ⇣V is the sum of a horizontal
and vertical vector, it su�ces to prove (39.3) when ⇣ is horizontal and when ⇣ is
vertical.

If ⇣ is horizontal then by (38.2) so is Dra(p)[⇣]. Thus $p(⇣) and $p·a(Dra(p)[⇣])
are both zero, and so (39.4) follows. If instead ⇣ is vertical then by Proposition 39.1
we may assume ⇣ = ⇠v(p) for some v 2 g. We now use Proposition 25.14, which
tells us that

Dra(p)[⇠v(p)] = ⇠Ad
a

�1 (v)(ra(p)).

Thus using (39.3) twice, we have:

$p·a (Dra(p)[⇠v(p)]) = $p·a
�

⇠Ad
a

�1 (v)(ra(p))
�

= Ada�1(v)

= Ada�1($p(⇠v(p)))

which proves (39.4) for the vertical case.
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2. In this step we prove that $ is smooth. Choose a basis {vi} of g. Then by
Proposition 39.1 the vector fields {⇠v

i

} span the vertical subbundle. Now fix a point
p 2 P . Since H is a distribution, there exist vector fields Zj on a neighbourhood of
p that span H. Since H is complementary to V P , the collection {⇠v

i

, Zj} span the
entire tangent bundle to P near p. Thus if Z is any vector field on P we can write

Z = f i ⇠vi + gj Zj

near p for smooth functions f i, gj. Then by (39.3) one has near p that

$(Z) = f i vi.

The right-hand side is smooth, and since Z was arbitrary this proves that $ is
smooth at p (this is a special case of Theorem 26.3). Since p was also arbitrary, it
follows that $ is smooth.

3. Finally we prove that any equivariant form # 2 ⌦1(P, g) satisfying (39.3)
determines a connection via H := ker#. Indeed, ker# is automatically a subbundle
(as # is smooth), and (39.3) tells us that

TP = ker#� kerD⇡ = ker#� V P.

Thus H is a preconnection. Moreover since # is equivariant we have

Dra[ker#] ✓ ker#.

Applying this with Dra�1 to both sides and using equivariance again we have

ker# = Dra�1 �Dra[ker#] ⇢ Dra�1 [ker#] ✓ ker#

which shows we have equality. Thus ker# is a connection. This completes the
proof.

Remark 39.5. We now have three di↵erent ways to specify a connection on a prin-
cipal bundle: as a distribution, as a parallel transport system, and via a connection
form. Just as with Remark 32.2, it is useful to have a single fixed notation to refer
to a connection, which can then be used to mean whichever viewpoint is convenient
at the time. Thus from now on we will typically refer to a connection on a principal
bundle with the symbol $.

We say a vector field on P is horizontal if Z(p) 2 Hp for all p. Thus in
particular given any vector field X on M , its horizontal lift (Definition 28.8) is
horizontal.

Remark 39.6. We remark that for any p 2 P and any ⇣ 2 TpP there exists a
horizontal vector field Z on P such that Z(p) = ⇣H. Indeed, we can even take Z to be
a horizontal lift: let X denote any vector field on M such that X(⇡(p)) = D⇡(p)[⇣]
(such X exists by Problem D.1). Then X(p) = ⇣H. Similarly Proposition 39.1
shows that for any p 2 P and any ⇣ 2 TpP we can find v 2 g such that ⇠v(p) = ⇣V.

We now define the curvature of a connection on a principal bundle. Firstly, we
define flatness in the same way.
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Definition 39.7. A connection H on a principal bundle P is flat if H is integrable.

The curvature then measures how far away a connection is from being flat.

Definition 39.8. Let ⇡ : P !M be a principal G-bundle with connection $. The
curvature form ⌦ 2 ⌦2(P, g) of $ is defined by

⌦p(⇣1, ⇣2) := �$p

�

[Z1, Z2](p)
�

, p 2 P, ⇣1, ⇣2 2 TpP

where Z1, Z2 are any two horizontal vector fields on P such that Zi(p) = ⇣Hi .

Such lifts exist by Remark 39.6. Of course, it must be proved that this is
well-defined (i.e. independent of the choice of Z1 and Z2) and smooth.

Lemma 39.9. The curvature form ⌦ is well defined and belongs to ⌦2(P, g). More-
over the connection is flat if and only if ⌦ is identically zero.

Proof. Fix p 2 P and ⇣1, ⇣2 2 TpP . Suppose Z1 and Z2 are any two horizontal
vector fields on P such that Zi(p) = ⇣Hi . Let f be a smooth function on P such
that f(p) = 0, and let W denote any horizontal vector field on P . Then any
Z := Z1 + fW is another horizontal vector field on P such that Z(p) = ⇣H1 (and
moreover any horizontal vector field which agrees with Z1 at p is locally a finite
sum of vector fields of this form). Then

[Z,Z2](p) = [Z1, Z2](p) + f(p)[W,Z2](p)� Z2(f)W (p),

and thus taking vertical components, we see that

[Z,Z2](p)
V = [Z1, Z2](p)

V,

and thus also
$p([Z,Z2](p)) = $p([Z1, Z2](p)).

A similar argument shows that $p([Z1, Z2](p)) is independent of the choice of Z2

as well. This proves that ⌦ is well defined. It is then obvious that ⌦ is smooth. It
is clearly antisymmetric, and thus ⌦ does indeed define element of ⌦2(P, g). Since
H = ker$, it is clear from the definition that the distribution H is integrable if
and only if ⌦ is identically zero.

In fact, the connection form belongs to ⌦2
G(P, g) ⇢ ⌦2(P, g). The next theorem

summarises the main properties of ⌦. Its proof is deferred to the next lecture.

Theorem 39.10 (Properties of the curvature form). Let ⇡ : P ! M denote a
principal bundle, and let $ denote a connection on P . Then:

(i) The curvature ⌦ belongs to ⌦2
G(P, g).

(ii) The two forms $ and ⌦ satisfy Cartan’s Structure Equation:

⌦ = d$ +
1

2
[$,$] (39.5)

(iii) The Bianchi Identity holds:

d⌦ = [⌦,$]. (39.6)
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Remark 39.11. The Lie bracket in (39.5) and (39.6) is the one from Example 26.7.
Thus in particular if Z,W are two vector fields on P then

[$,$](Z,W )
def
= [$(Z),$(W )]� [$(W ),$(Z)].

But now note that by (26.2) this Lie bracket is symmetric on 1-forms, and hence

[$,$](Z,W ) = 2[$(Z),$(W )].

This is the reason1 for the factor of a 1
2
on the right-hand side of (39.5).

Remark 39.12. The Bianchi Identity (39.6) for connections on principal bundles
implies the Bianchi Identity for connections on vector bundles (Theorem 36.1), as
you will prove on Problem Sheet S.

We conclude this lecture with a preliminary lemma that will be useful in the
proof of Theorem 39.10. We say a vector field Z is right-invariant if (ra)?(Z) = Z
for every a 2 G, that is:

Dra(p)[Z(p)] = Z(p · a), 8 p 2 P, a 2 G.

Lemma 39.13. Let ⇡ : P !M be a principal bundle with connection $. Then:

(i) If X is a vector field on M then the horizontal lift X of X is right-invariant.

(ii) If Z is a horizontal vector field on P then [⇠v, Z] is also horizontal for any
v 2 g.

(iii) If Z is any right-invariant vector field on P then [⇠v, Z] = 0 for any v 2 g,

Proof. To prove (i) we take p 2 P and a 2 G. Since ⇡ � ra = ⇡, we have

D⇡(p · a)⇥Dra(p)[X(p)]
⇤

= D⇡(p)[X(p)] = X(⇡(p)) = D⇡(p · a)[X(p · a)]
By uniqueness of horizontal lifts this implies that Dra(p)[X(p)] = X(p · a), and
thus X is right-invariant, as claimed.

To prove (ii), we recall from Proposition 25.11 that the flow of ⇠v is given by
✓t(p) := p · exp(tv) = rexp(tv)(p). Thus using Theorem 8.25 we have

[⇠v, Z](p) = L⇠
v

(Z)(p)

= lim
t!0

Drexp(�tv)(p · exp(tv))
⇥

Z(p · exp(tv))⇤� Z(p)

t
. (39.7)

Since right translation preserves H, if Z(p) 2 Hp then also Drexp(�tv)(exp(tv))
⇥

Z(p·
exp(tv))

⇤ 2 Hp. Thus if we set

h(t) :=
Drexp(�tv)(p · exp(tv))

⇥

Z(p · exp(tv))⇤� Z(p)

t

then for all small t, h(t) belongs to the vector space Hp. Thus also [⇠v, Z](p) =
limt!0 h(t) belongs to Hp.

Finally to prove (iii), if Z is right-invariant then the numerator in (39.7) is
identically zero, and thus [⇠v, Z] is too.

1We warn the reader that some textbooks are inconsistent with how [·, ·] is defined, and thus
sometimes the factor of 1

2 is incorrectly omitted.
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LECTURE 40

Cartan’s Structure Equation

In this lecture we begin by proving Theorem 39.10. For convenience, we restate it
again here.

Theorem 40.1 (Properties of the curvature form). Let ⇡ : P !M denote a prin-
cipal bundle, and let $ denote a connection on P . Then:

(i) The curvature ⌦ belongs to ⌦2
G(P, g).

(ii) The two forms $ and ⌦ satisfy Cartan’s Structure Equation:

⌦ = d$ +
1

2
[$,$] (40.1)

(iii) The Bianchi Identity holds:

d⌦ = [⌦,$]. (40.2)

Proof. We will prove the result in three steps.
1. In this step we prove Cartan’s Structure Equation (40.1). This means that

for any two vector fields Z,W on P we must show that

⌦(Z,W ) = d$(Z,W ) + [$(Z),$(W )] (40.3)

as functions P ! g (cf. Remark 39.11). Since both sides of (40.3) are point
operators, it su�ces to consider separately the three cases where one or both Z
and W are horizontal or vertical respectively. For this let X, Y denote two vector
fields on M and let v, w 2 g.

(i) The case Z = ⇠v and W = ⇠w (both sides vertical):

In this case ⌦(⇠v, ⇠w) = 0 by definition. To compute the left-hand side we
first start with:

d$(⇠v, ⇠w) = ⇠v($(⇠w))� ⇠w($(⇠v))�$([⇠v, ⇠w])

= d($(⇠w))[⇠v]� d($(⇠v))[⇠w]�$(⇠[v,w])

= 0� 0� [v, w],

where the first line used Theorem 26.8, the second line used Problem M.5,
and the third line used the fact that $(⇠w) is the constant function p 7! w
by (39.3), and thus d($(⇠w)) is identically zero. Since

[$(⇠v),$(⇠w)] = [v, w]

by (39.3) again, this shows that the right-hand side of (40.3) is also identically
zero.

Will J. Merry, Di↵. Geometry II, Spring 2019, ETH Zürich. Last modified: June 28, 2019.
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(ii) The case Z = ⇠v and W = Y (one side vertical, one side horizontal:

In this case by part (i) and part (ii) of Lemma 39.13 we have [⇠v, Y ] = 0 and
thus ⌦(⇠v, Y ) = 0. Looking at the right-hand side again, we have:

d$(⇠v, Y ) = ⇠v($(Y )
| {z }

=0

)� Y ($(⇠v))�$
�

[⇠v, Y ]
| {z }

=0

�

= 0� d($(⇠v))[Y ]� 0

= 0

Similarly [$(⇠v),$(Y )] = 0 as $(Y ) = 0. This proves (40.3) in this case too.

(iii) The case Z = X and W = Y (both sides horizontal):

In this case we have by

⌦(X, Y ) = �$�[X, Y ]
�

= d$(X, Y )�X($(Y )) + Y ($(X))

= d$(X, Y ),

where the second line used the Theorem 26.8 again and the last used $(X) =
$(Y ) = 0. But by this same logic we can also write

⌦(X, Y ) = d$(X, Y ) + [$(X),$(Y )],

since we are just adding zero. This proves (40.1) in this case, and hence in
general.

2. In this step we prove the Bianchi Identity (40.2). For this we argue as follows:

d⌦
(†)
= d2$ +

1

2
d[$,$]

(‡)
=

1

2
([d$,$]� [$, d$])

(~)
= [d$,$]

(†)
= [⌦,$]� 1

2
[[$,$],$]

(})
= [⌦,$]

where (†) used the Cartan Structure Equation (both times), (‡) used Problem M.6,
(~) used (26.2), and finally (}) used Problem S.1. This proves the Bianchi Identity.

3. To complete the proof we show that ⌦ is horizontal and equivariant, and
hence defines an element of ⌦2

G(P, g). The fact that ⌦ is horizontal was already
proved in Step 1 (namely, the computation ⌦(⇠v, ·) is identically zero). Thus we
need only prove equivariance. For this we use Cartan’s Structure Equation and the
fact that $ is equivariant to prove:

r?a(⌦) = r?a

✓

d$ +
1

2
[$,$]

◆

= dr?a($) +
1

2

⇥

r?a($), r?a($)
⇤

(†)
= Ada�1(d$) +

⇥

Ada�1($),Ada�1($)
⇤

= Ada�1(⌦),

2



where this time (†) used the fact that d$ is also equivariant (see claim (ii) from
our third proof of Theorem 38.3 in Lecture 38). This finally completes the proof of
the theorem.

Since the curvature belongs to ⌦2
G(P, g), we can interpret it also as a bundle-

valued form on M .

Definition 40.2. Let ⇡ : P ! M denote a principal G-bundle. We denote by
Ad(P ) = P ⇥G g the vector bundle over M corresponding to ⇢ = Ad: G! GL(g)
and call this the adjoint bundle of P .

Corollary 40.3. Let ⇡ : P ! M be a principal G-bundle and let $ denote a
connection on P . Then the curvature ⌦ induces a bundle-valued 2-form ⌦[ 2
⌦2(M,Ad(P )). Explicitly, ⌦[ is defined by

⌦[x(w1, w2) := [p,⌦p(⇣1, ⇣2)] (40.4)

for w1, w2 2 TxM , p 2 Px and ⇣1, ⇣2 2 TpP satisfy D⇡(p)[⇣i] = wi.

Proof. Apply Theorem 26.17 to ⌦.

Let ⇡ : P ! M denote a principal G-bundle, and let ⇢ : G ! GL(V ) denote a
smooth e↵ective representation of G. We have seen that a connection on a principal
bundle P induces a connection on the associated bundle ⇢(P ). We now examine the
relationship between the connection form $ and the covariant derivative operator
r, and also between the two curvatures ⌦ and Rr.

The starting point for this discussion is the observation that the di↵erential

� := D⇢(e) : g! gl(V )

of ⇢ is a Lie algebra representation of g (this is a special case of Proposition 9.21).
Thus for example if ⇢ = Ad is the adjoint representation of G on g then � = ad.
The following lemma is on Problem Sheet S.

Lemma 40.4. Let ⇡ : P !M denote a principal G-bundle, and let ⇢ : G! GL(V )
denote a smooth e↵ective representation of G. Let � := D⇢(e), and suppose f : P !
V is an equivariant smooth function. Then for any v 2 g, one has

⇠v(f) + �(v)[f ] = 0.

Here ⇠v(f) should be interpreted as another smooth function P ! V , cf. (26.1).

Definition 40.5. Suppose ! 2 ⌦r(P, g) and # 2 ⌦s(P, V ) are vector-valued forms
on g and V respectively. Using � = D⇢(e), we can form the product of ! and # via
the formula

�

!^⇢#
�

p
(⇣1, . . . , ⇣r+s) (40.5)

:=
1

r!s!

X

%2S
r+s

sgn(%)�
�

!
�

⇣%(1), . . . , ⇣%(r)
��

h

#
�

⇣%(r+1), . . . ⇣%(r+s)

�

i

.

This is similar (but not quite the same) as the construction of the wedge product
^� in Lecture 26.
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Our next result gives an explicit formula for dr in terms of ⇢ and $.

Theorem 40.6. Let ⇡ : P ! M denote a principal G-bundle, and let ⇢ : G !
GL(V ) denote a smooth e↵ective representation of G. Abbreviate by E = ⇢(P ) the
associated vector bundle. Suppose $ is a connection on P , and let dr denote the
corresponding exterior covariant di↵erential on E. Then for any # 2 ⌦(M,E) we
have

dr# =
�

d#] +$ ^⇢ #]
�[
.

Remark 40.7. As the proof will show, d#]+$^⇢ #] is horizontal and equivariant,

and hence
�

d#] +$ ^⇢ #]
�[

is well-defined.

As a special case for r = 0, we obtain:

Corollary 40.8. If s 2 �(E) corresponds to an equivariant function f : P ! V
(Corollary 26.18) then

rs = �df + �($)[f ]
�[

(40.6)

Thus if X 2 X(M) then section rX(s) of E corresponds to the equivariant function
X(f), where X is the horizontal lift of X.

Proof. If f 2 ⌦0(P, V ) is a zero-form, (40.5) simplifies to

$ ^⇢ f = �($)[f ].

and thus (40.6) is immediate from Theorem 40.6. Moreover if X 2 X(M) then
rX(s) is the section of E corresponding to the equivariant function

df [Z] + �($(Z))[f ],

where Z is any vector field on P such that D⇡[Z] = X (this is independent of
the choice of Z by equivariance). In particular, choosing Z = X, the second term
disappears, and thus rX(s) corresponds to X(f), as required.

Proof of Theorem 40.6. We will prove the theorem in three steps.
1. In this step we set up notation and outline the strategy of the proof. Suppose

# 2 ⌦r(M,E). By the definition (cf. (38.6)) of dr, we have

dr# :=
⇣

�

d(#])
�H
⌘[

Since the [ $ ] correspondence is bijective, it su�ces to show that if  := #] 2
⌦r

G(P, V ) then for all p 2 P and all ⇣1, . . . , ⇣r+1 2 TpP , we have1:

d |p
�

⇣H0 , . . . , ⇣
H
r

�

= d |p
�

⇣0, . . . , ⇣r
�

(40.7)

+
1

r!

X

%2S
r+1

sgn(%)�
�

$p(⇣%(0))
�

h

 
�

⇣%(1), . . . ⇣%(r)
�

i

.

Since both sides of (40.7) are linear in each ⇣i, as in the previous theorem we may
assume that each ⇣i is either vertical or horizontal. Moreover by Remark 39.6 we

1In the sum below, we think of elements % 2 S

r+1 as permutations of {0, 1, . . . , r} (instead of
the more usual {1, 2, . . . , r + 1}.
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may assume ⇣i = Zi(p) for some vector field Zi on P , which is either of the form
Zi = X i for some vector field Xi on M (if ⇣i is horizontal) or of the form Zi = ⇠v

i

for some vi 2 g (if ⇣i is vertical). Define functions  0, 1, 2 : P ! V by

 0(p) := d |p
�

Z0(p)
H, . . . , Zr(p)

H
�

,

and
 1(p) := d |p

�

Z0(p), . . . , Zr(p)
�

,

and

 2(p) :=
1

r!

X

%2S
r+1

sgn(%)�
�

$p(Z%(0)(p))
�

h

 
�

Z%(1)(p), . . . Z%(r)(p)
�

i

.

It su�ces to show that

 0 =  1 + 2, as functions P ! V. (40.8)

2. In this step we deal with the two easy cases. If every single Zi is horizontal
then  0 =  1 by definition, and  2 = 0 since $(Zi) = 0 for every i. Next, suppose
two or more of the Zi are vertical. In this case without loss of generality we may
assume Z1 = ⇠v0 and Z2 = ⇠v1 are vertical. In this case we again have  0 = 0, since
ZH

0 = ZH
1 = 0. Also  2 = 0 as at least one of the arguments Z%(i) for i = 0, . . . , r

is vertical and  = #] is horizontal. Thus we need only show that  1 = 0. By
Theorem 26.8 we have

 1 =
r
X

i=0

(�1)iZi

�

 (Z0, . . . , bZi, . . . , Zr)
�

(40.9)

+
X

0i<jr

(�1)i+j ([Zi, Zj], Z0, . . . bZi, . . . , bZj, . . . , Zr).

Every term in the first summand is zero, since at least one of the arguments is zero.
The only term in the second summand that could possibly be non-zero is i = 0
and j = 1. But in this case by Problem M.5, [Z0, Z1] = ⇠[v0,v1] is also vertical, and
hence this term is zero too.

3. In this step we deal with the hardest case, where exactly one of the Zi is
vertical. Thus without loss of generality assume that Z0 = ⇠v and that Zi = X i for
vector fields Xi on M for i = 1, . . . , r. As before,  0 = 0 (since ZH

0 = 0). Now in
(40.9) some of the terms survive, and we get

 1 = ⇠v
�

 (Z1, . . . , Zr)
�

+
r
X

i=1

(�1)i!([⇠v, Zi], Z1, . . . bZi, . . . , Zr).

But actually by part (iii) of Lemma 39.13, we have [⇠v, Zi] = [⇠v, X i] = 0, and thus
 1 = ⇠v

�

 (Z1, . . . , Zr)
�

. Now if we look at  2, all the terms die apart from those
permutations % such that %(0) = 0. Since $(⇠v) = v, it follows that

 2 =
1

r!

X

%2S
r+1 with %(0)=0

sgn(%)�(v)
h

 
�

Z%(1), . . . Z%(r)
�

i

= �(v)

2

4

1

r!

X

%2S
r+1 with %(0)=0

sgn(%) 
�

Z%(1), . . . Z%(r)
�

3

5

= �(v)
⇥

 (Z1, . . . , Zr)
⇤
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Thus to complete the proof we need to show that

⇠v( (Z1, . . . , Zr)) + �(v)[ (Z1, . . . , Zr)] = 0. (40.10)

But since Zi = X i is right-invariant for each i and  2 ⌦r
G(P, V ) is equivariant,

it follows that f :=  (Z1, . . . , Zr) is itself equivariant. Thus (40.10) follows from
Lemma 40.4.

We conclude this lecture by comparing the curvature forms ⌦ and Rr. For this
one starts by observing that � : g! gl(V ) induces a vector bundle homomorphism

⇤ : Ad(P )! Hom(⇢(P ), ⇢(P )),

given explicitly by

⇤([p, v])
�

[p, w]
�

:= [p,�(v)[w]], p 2 P, v 2 g, w 2 V.

This in turn induces a C1(M)-linear map ⇤? : �(Ad(P ))! �(Hom(⇢(P ), ⇢(P )) by

⇤?(s)(x) := ⇤(s(x)), x 2M

(this is the easy direction of the Hom-� Theorem 16.30). Finally, we can also think
of ⇤? as defining a map

⇤? : ⌦
r(M,Ad(P ))! ⌦r(M,Hom(⇢(P ), ⇢(P ))),

for any r � 0, via

⇤?(!)(X1, . . . , Xr) := ⇤?(!(X1, . . . , Xr))

for ! 2 ⌦r(M,Ad(P )) and X1, . . . , Xr 2 X(M).

Theorem 40.9. Let ⇡ : P ! M denote a principal G-bundle, and let ⇢ : G !
GL(V ) denote a smooth e↵ective representation of G. Let $ denote a connection
on P , and letr denote the induced connection on ⇢(P ). Let ⌦ denote the curvature
form of $, and consider ⌦[ 2 ⌦2

G(M,Ad(P )) as in Corollary 40.3. Then

⇤?
�

⌦[
�

= Rr.

Proof. In this proof we will suppress the bijection between sections of ⇢(P ) and
equivariant functions f : P ! V , and treat it as an identification. Thus we write
s = f to indicate that a section s corresponds to f . Thus Corollary 40.8 can be
stated more succinctly as

rX(s) = X(f).

This will help keep the notation transparent. With this convention in mind, by
Theorem 35.1 we have

Rr(X, Y )(s) =
⇣

⇥

X, Y
⇤� [X, Y ]

⌘

(f).

The vector field
⇥

X, Y
⇤� [X, Y ] is vertical by part (iii) of Lemma 28.9. In fact, by

Problem S.2 and (39.2), one has
⇣

⇥

X, Y
⇤� [X, Y ]

⌘

(p) = �⇠⌦
p

(X(p),Y (p))(p)
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Thus applying Lemma 40.4 we see that2 we have

Rr(X, Y )(s) = �
�

⌦
�

X, Y
��

[f ],

which—after unravelling the notation—is exactly what we wanted to prove.

2This is where it is crucial we defined ⌦ with a negative sign.
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LECTURE 41

Holonomy and principal bundles

In this lecture we define holonomy in principal bundles, and prove the principal
bundle version of the Ambrose-Singer Holonomy Theorem. The vector bundle
version (Theorem 34.8) is a simple corollary of the principal version, as you will
prove on Problem Sheet S.

Definition 41.1. Let ⇡ : P !M be a principal G-bundle with connection $. The
holonomy group Hol$(x) of $ at x 2 M is the group of equivariant di↵eomor-
phisms of the fibre Px of the form bP�, where � is a piecewise smooth loop in M
based at x. The restricted holonomy group Hol$0 (x) ⇢ Hol$(x) is the subgroup
consisting of parallel transport around null-homotopic loops �.

The following result is the principal bundle analogue of Proposition 32.11. The
key di↵erence is that we can view the holonomy group Hol$(x) as being a subgroup
of G itself.

Proposition 41.2. Let ⇡ : P !M be a principal G-bundle with connection $.

(i) For each p 2 P , there is a subgroup H$(p) ⇢ G and a group isomorphism

�p : Hol
$(⇡(p))! H$(p).

(ii) The subgroups H$(p) and H$(p · a) are conjugate in G.

(iii) If p, q 2 P can be joined by a horizontal path then H$(p) = H$(q).

(iv) There is a subgroup H$
0 (p) ⇢ H$(p) such that �p restricts to define an

isomorphism Hol$0 (x) ! H$
0 (p). This subgroup again has the property that

H$
0 (p · a) is conjugate to H$

0 (p), and H$
0 (p) = H$

0 (q) whenever p and q can
be joined by a horizontal path.

Proof. Let x 2M and p 2 Px. If � is a piecewise smooth loop based at x, we define
�p

�

bP�
�

to be the unique element b 2 G such that

p · b = bP�(p).

If �p(bP�) = e then we claim that bP� = id |P
x

. Indeed, by the equivariance axiom
from Definition 38.2 we have that for any a 2 G,

bP�(p · a) = bP�(p) · a = p · a.
We set H$(p) to be the image of �p. Next, using the equivariance axiom again, if

�p(bP�) = b then

(p · a) · (a�1ba) = bP�(p) · a = bP�(p · a),
Will J. Merry, Di↵. Geometry II, Spring 2019, ETH Zürich. Last modified: June 28, 2019.
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so that
�p·a
�

bP�
�

= a�1ba.

Thus
H$(p · a) = a�1H$(p)a,

which proves the two subgroups are conjugate. This proves (ii). To prove (iii), let
� : [0, 1] ! M be a path in M from x := �(0) to y := �(1). Let p 2 Px and set
q := bP�(p). We claim that H$(p) ✓ H$(q). Indeed, suppose b 2 H$(p). Then
there exists a piecewise smooth loop � based at x such that

bP�(p) = p · b.
Then �� ⇤ � ⇤ � is a loop based at y, and

bP��⇤�⇤�(q) = bP� � bP� � bP��(q)
= bP� � bP�(p)
= bP�(p · b)
= bP�(p) · b
= q · b

Thus b 2 H$(q). Applying the same argument with �� in place of � shows that
H$(q) ✓ H$(p), and thus H$(p) = H$(q). Finally, (iv) is proved in the same
way, and we leave the details as an exercise.

The holonomy groups H$(p) ⇢ G enjoy the same properties that the holonomy
groups did for vector bundles. The next theorem summarises the key properties
we will need. The proofs all proceed analogously to the corresponding statements
about vector bundles.

Theorem 41.3. Let ⇡ : P !M be a principal G-bundle with connection $. Then
the holonomy group H$(p) ⇢ G is a Lie subgroup of G. The connected component
of H$(p) containing the identity is exactly H$

0 (p). If M is simply connected then
H$(p) = H$

0 (p). Finally, H$(p) is the trivial subgroup {e} for all p 2 P if and
only if P is a trivial bundle and $ is the trivial connection.

Meanwhile the proof of the next result is on Problem Sheet S.

Proposition 41.4. Let ⇡ : P ! M be a principal G-bundle. Let ⇢ : G ! GL(V )
denote an e↵ective representation. Let $ denote a connection on P and let r
denote the associated connection on ⇢(P ). Fix x 2 M . Then we can regard
Hol$(x) and Holr(x) as subgroups of G and GL(V ) respectively, which are defined
up to conjugation. Then (also up to conjugation)

⇢
�

Hol$(x)
�

= Holr(x).

Definition 41.5. Let ⇡ : P ! M be a principal G-bundle, let H ⇢ G be a Lie
subgroup and suppose ⇡1 : Q!M is a principal H-subbundle of P (cf. Definition
24.19). A connection $ on P with associated distributionH is said to be reducible
toQ if the distributionH\TQ defines a connection onQ. Equivalently, if ı : Q ,! P
denotes the inclusion this means that $|Q = ı?($) is a connection one-form on Q
with curvature ⌦|Q = ı?(⌦) (compare Problem Q.1).
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On Problem Sheet S you will investigate the relationship between this definition
and the notion of a G-connection on a vector bundle (cf. Problem Q.4). The next
result is similar to Theorem 34.4.

Theorem 41.6 (The Reduction Theorem). Let ⇡ : P !M be a principal G-bundle
over a connected manifold M and let $ denote a connection on P . Fix a point
p 2 P and set H := H$(p) ⇢ G. Let Q denote the set of all points q 2 P which
can be joined to p via a piecewise smooth horizontal path. Then Q is a principal
H-subbundle of P , and the connection $ is reducible to Q.

Proof. The proof is an application of Proposition 24.20. Part (iii) of Proposition
41.2 tells us that Q is preserved by the action of H, and that the action of H
on Py \ Q for any point y 2 M is transitive. Moreover since M is connected the
restriction of ⇡ to Q is surjective (compare this to the proof of Step 1 of Theorem
33.4). Thus to show that Q is a principal H-subbundle, by Proposition 24.20 we
need only construct local sections of P that take values in Q.

For this, suppose ⇡(p) := x, and fix any other point y 2 M . Let � : U ! O
denote a chart about y, and set

�v(t) := ��1
�

�(y) + tD�(y)[v]
�

,

which is a well-defined smooth curve for t depending on v su�ciently small. Fix
q 2 Py. Define a section sq 2 �(U, P ) by

sq(�v(t)) := P�
v

(q)(t).

If the point q 2 Py actually belongs to Q then sq takes values in Q. Indeed, if

q = bP�(p) for some path � : [0, 1]!M such that �(0) = x and �(1) := y then

sq(�v(t)) = bP�⇤�
v,t

(p),

where �v,t(r) := �v(rt) for 0  r  1.
Finally, to see that the connection is reducible toQ, we observe that by definition

any horizontal curve starting in Q must remain in Q, and hence Hq ⇢ TqQ. Since
clearly VqQ = VqP\TqQ, it follows that TqQ = Hq�VqQ. ThusH is a preconnection
on Q, and the equivariance condition is clear from above. This completes the
proof.

We now state and prove the principal bundle version of the Ambrose-Singer
Holonomy Theorem. The proof is another application of the Frobenius Theorem
11.18.

Theorem 41.7 (The Ambrose-Singer Holonomy Theorem Redux). Let ⇡ : P !M
be a principalG-bundle over a connected manifoldM . Let$ denote a connection on
P , and let ⌦ 2 ⌦2

G(P, g) denote the curvature form. Let p 2 P , letH = H$(p) ⇢ G,
and let Q denote the principal H-subbundle of P from the Reduction Theorem 41.6.
Then the Lie algebra h of H is the subalgebra of g spanned by all elements of the
form ⌦q(⇣1, ⇣2) for q 2 Q and ⇣1, ⇣2 2 TqQ.
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Proof. Let k denote the Lie subalgebra of g spanned by elements of the form
⌦q(⇣1, ⇣2) for q 2 Q and ⇣1, ⇣2 2 TqQ. Then certainly k ✓ h. Let k = dim k

and n = dimM . Then dim h = dimQ� n. We will show that also k = dimQ� n,
which implies k = h.

Define a distribution � on Q by

�q := Hq �D⌘q(e)[k],

where H is the connection distribution and ⌘q : H ! Q is the map ⌘q(a) = q · a.
To see that this is indeed a distribution on Q, we argue as in the proof of Step
2 of Theorem 39.3. Take a basis {vi | i = 1, . . . , k} of k, and let ⇠v

i

denote the
fundamental vector fields associated to this basis. Fix q 2 Q, and let {Xj | j =
1, . . . , n} denote vector fields on M such that {Xj(y)} is a basis of TyM for all y
near ⇡(q), and let Xj denote the horizontal lifts of Xj. Then {⇠v

i

, Xj} spans �
near q, and thus � is indeed a distribution of dimension n+ k. Next. we claim �
is integrable. Using Lemma 11.13, we need only check:

(i) [⇠v
i

, ⇠v
j

] belongs to �.

(ii) [⇠v
i

, Xj] belongs to �.

(iii) [X i, Xj] belongs to �.

Of these, (i) follows because [⇠v
i

, ⇠v
j

] = ⇠[v
i

,v
j

] by Problem M.5 and because k is (by
definition) a subalgebra. Next, (ii) is immediate, since by part (iii) of Lemma 39.13
such a bracket is always zero. Finally, by Problem S.2, we have

[X i, Xj](q) = [Xi, Xj](q)�D⌘q(e)[⌦q(X i(q), Xj)(q)],

which belongs to �q by definition. Thus by the Frobenius Theorem, � induces a
foliation of Q. Let L denote the leaf containing p. We claim that in fact L = Q
(and thus this is not a particularly thrilling foliation). Indeed, if c(t) is a horizontal
curve starting at p then c0(t) 2 Hc(t) ⇢ �c(t) for each t, and thus im(c) is contained
in an integral manifold of �. By maximality, im(c) is also contained in L. Since c
was arbitrary, this shows that Q ✓ L. Since L ✓ Q by definition, we have L = Q
as claimed. Since dimL = n + k, this shows that k = dimQ � n = dim h. This
completes the proof.

We conclude this lecture by stating the following existence result. The proof is
not too hard1, but it is a long and somewhat uninspiring computation, and hence
we will skip it.

Theorem 41.8. Let ⇡ : P !M denote a principal G-bundle. Assume dimM � 2
and that G is connected. Then there exists a connection $ on P with H$(p) = G
for all p 2 P .

As a corollary, we obtain the following converse to the Reduction Theorem 41.6.

1See for instance Theorem 8.2 on p90 of Foundations of Di↵erential Geometry Vol I. by
Kobayashi and Nomizu.
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Corollary 41.9. Let ⇡ : P ! M be a principal G-bundle, where dimM � 2.
Then for any connected Lie subgroup H ⇢ G, there exists a connection $ on P
with H$(p) = H (for some p 2 P ) if and only if P admits a principal H-subundle.

Remark 41.10. Corollary 41.9 means that the question as to when a given principal
G-bundle admits a connection with holonomy equal to a prescribed subgroup H
of G is not very geometrically interesting. Indeed, the existence (or non-existence)
of a principal H-subbundle is a purely topological issue, and can be answered
using algebraic topology. We will see in Lecture 44 that the situation dramatically
changes if we impose the additional condition that our connection is torsion-free.
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LECTURE 42

Geodesics and sprays

In this lecture we study geodesics and sprays. These are concepts normally as-
sociated with Riemannian geometry. However, as we will see, they make perfect
sense for an arbitrary connection on a manifold. The word “geodesic” needs to
be understood carefully however—in this more general setting there is no relation
between geodesics and shortest paths, see Remark 42.6 below.

Remark 42.1. Convention: For the remainder of the course we will almost exclu-
sively work on the tangent bundle TM of a manifold M , rather than an arbitrary
vector bundle. Thus we adopt the convention that a connection on M is, by
definition, a connection on the vector bundle ⇡ : TM !M .

A connection r on M induces a connection on all the associated tensor bundles
(eg. the cotangent bundle T ⇤M !M), which we will continue to denote by r. In
fact, by Problem P.1, r defines a tensor derivation T (M)! T (M) in the sense of
Definition 18.14, which will also be denoted by r.

Let � : U ! O denote a chart on M with local coordinates xi. When no
confusion is possible, we will abbreviate

@i :=
@

@xi

for the corresponding vector field on U .

Definition 42.2. We define the Christo↵el symbols of the chart � and the
connection r as

�k
ij(x) := dxk|x (r@

i

(@j)(x))

Thus �k
ij : U ! R is a smooth function on U .

Pay attention to the indices—the Einstein Summation Convention is very useful
here.

Lemma 42.3. The connection r is uniquely determined on U by the Christo↵el
symbols.

Proof. If X and Y are any two vector fields on U then we can write X = f i @i and
Y = gj @j for smooth functions f i, gj. Abbreviate

@ig
j :=

@gj

@xi
= dgj(@i).

Will J. Merry, Di↵. Geometry II, Spring 2019, ETH Zürich. Last modified: June 28, 2019.
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Then by the axioms for a covariant derivative operator (Definition 31.8) we have

rX(Y ) = rf i @
i

(gj @j)

= f ir@
i

(gj @j)

= f igjr@
i

(@j) + f i@ig
j@j

=
�

f i gj �k
ij + f i@ig

k
�

@k,

where on the last line we replaced the dummy variable j by k.

Lemma 42.3 gives yet another viewpoint on connections: they are determined
locally by n3 (where n = dimM) smooth functions �k

ij. On Problem Sheet T you
will investigate how the Christo↵el symbols of two charts with overlapping domains
are related.

Definition 42.4. Let r be a connection on M . A curve � in M is called a
geodesic of r if �0 is a parallel curve.

Example 42.5. Consider the connection r on Sn introduced in Problem N.3. By
part (ii) of Problem O.2, if x, y are two points in Sn such that x ? y then the great
circle � : [0, 2⇡]! Sn defined by �(t) = (cos t)x+ (sin t)y is a geodesic.

Remark 42.6. The word “geodesic” was originally used to mean the shortest path
between two points on the Earth’s surface. As we will see in Lecture 52, if M is
endowed with a Riemannian metric m, and the connection r is the Levi-Civita
connection (see Theorem 45.1) of (M,m), then M admits a metric dm (in the sense
of point-set topology) for which every geodesic is locally a length-minimising curve.
In this lecture however, we are working with arbitrary connections on manifolds,
and thus geodesics do not need to locally minimise lengths (and indeed, without
reference to a specific metric on M the idea of “length-minimising” simply does not
make sense!)

Geodesics always exist with prescribed initial conditions. The next result is a
variation of Proposition 29.7.

Proposition 42.7. Let r be a connection on M , and let (x, v) 2 TM . There
exists a geodesic � of r in M with initial condition �(0) = x and �0(0) = v.
Moreover � is unique up to the domain of definition.

Proof. By the chain rule for covariant derivatives (31.7), a curve � is a geodesic if
and only if rT (�0) = 0, where T = @

@t 2 X(R) and r (also) denotes the pullback
connection along �.

Now let � denote a chart on M that intersects the image of � with local coor-
dinates xi. Abbreviate �i = xi � � and ci := @i � �. Then1

rT (ci) = r�0(@i). (42.1)

1This notation can be confusing, and it is hard to keep track of which connection is which,
particularly as they are all written r! The thing to remember is that whilst X 7! r

X

(s) is a point
operator (and thus r

v

(s) is defined for an individual tangent vector v), the operator s 7! r
X

(s)
is not a point operator, and hence this expression is only defined when s is a section of the correct
vector bundle. Thus if you are not sure which connection is being used in a given expression,
consult the second variable s. In (42.1), c

i

belongs to �
�

(TM); thus the left-hand side r
T

(c
i

)
must refer to the covariant derivative operator along �. Meanwhile on the right-hand side, @

i

is a
vector field on M , and thus r

�

0(@
i

) refers to the covariant derivative operator on M itself. Easy,
right? Right?
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Since the notation (�i)0 is cumbersome (due to the superscript i), we will often use
the dot notation and write �̇i for the function t 7! (�i)0(t), so that �̇i = T (�i).
Thus �0 = �̇i ci, and so by the chain rule (31.7) applied repeatedly, we have

rT (�
0) = T (�̇i)ci + �̇irT (ci)

= �̈ici + �̇ir�0(@i)

=
�

�̈k + �̇i �̇j �k
ij(�)

�

ck.

This means that the equation rT (�0) = 0 is locally equivalent to the second-order
system of ordinary di↵erential equations:

�̈k + �̇i �̇j �k
ij(�) = 0, 8 1  i, j, k  n. (42.2)

We refer to (42.2) as the geodesic equation. The conclusion now follows from
standard existence and uniqueness theorems for ordinary di↵erential equations.
Note that in general we only get short-term existence (unless �k

ij = 0).

Lemma 42.8. Let � : (a, b)!M be a non-constant geodesic, and let h : (a1, b1)!
(a, b) be a smooth map. Then � � h is a geodesic if and only if h is an a�ne map,
i.e. h00 = 0.

Proof. By the chain rule for covariant derivative operators (31.7) we have

rT ((� � h)0) = h00 (�0 � h) + h0rT (�
0 � h),

and rT (�0 �h) = rDh[T ](�0) = h0rT�h(�0) = 0. Since �0 is non-constant we see that
� � h is a geodesic if and only if h00 = 0.

In general it may not be possible to extend a geodesic to be defined on all of R.
The following definition is analogous to Definition 8.12.

Definition 42.9. A connection r on a manifold is called complete if all geodesics
have maximal domain of definition equal to R.

Example 42.10. The connection r on Sn from Problem N.3 is complete. Indeed,
by Example 42.5 and Proposition 42.7, we see that any geodesic on Sn is a great
circle of the form �(t) = (cos t)x+ (sin t)y for two perpendicular points on Sn, and
moreover any such geodesic may be extended to all of R by periodicity.

In fact, Definition 42.9 is more than analogous to Definition 8.12—it is merely
a special case, as we shall now see.

Remark 42.11. Warning: Do not confuse the bundle ⇡TM : TTM ! TM (the
tangent bundle of the tangent bundle) with the bundle D⇡ : TTM ! TM from
Lemma 31.4. Despite the fact that these two bundles have the same total space
and the same base space, they are not the same, as they have di↵erent fibres. We
will adopt the convention that—unless explicitly stated otherwise—when referring
to TTM we are always implicitly using the bundle structure arising ⇡TM .
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In the following, we let µa : TM ! TM and µ̃a : TTM ! TTM denote scalar
multiplication in the fibres in TM and TTM respectively, i.e.

µa(x, v) := (x, av), µ̃a(x, v, ⇣) := (x, v, a⇣). (42.3)

This should not be confused with scalar multiplication in the other vector bundle
D⇡ : TTM ! TM , which is given by a⇥ (x, v, ⇣) := (x, av,Dµa(v)[⇣]) (cf. (31.4)).

Definition 42.12. Let M be a manifold. A vector field S on the tangent bundle
TM is called a spray if D⇡ � S = idTM and

S � µa = µ̃a �Dµa � S. (42.4)

Remark 42.13. Every vector field on TM satisfies (by definition) the section prop-
erty for the bundle ⇡TM : TTM ! TM . The first condition D⇡ � S = idTM

in the definition of a spray is exactly the section property for the vector bundle
D⇡ : TTM ! TM (cf. Lemma 31.4).

We now prove that geodesics can be seen as integral curves of a spray.

Theorem 42.14. Let r be a connection on M . There is a unique spray S on M
which is horizontal with respect to r (i.e. S(x, v) 2 Hx,v for all (x, v) 2 TM , where
H is the distribution associated to r). A curve � in M is a geodesic if and only if
�0 is an integral curve of S.

Remark 42.15. The spray S constructed in Theorem 42.14 is called the geodesic
spray of the connection r. The converse to Theorem 42.14 is also true: if we are
given any spray S then there exists a connection r for which S is the geodesic spray
of r. This is the content of the Ambrose-Palais-Singer Spray Theorem, and
we will prove this next lecture as Theorem 43.5.

Proof. We prove the result in two steps.
1. Let  : TTM ! TM denote connection map of r. The requirement that S

is horizontal is equivalent to asking that  � S = 0. Recall from Lemma 31.3 that
(D⇡,) : TTM ! TM � TM is a vector bundle isomorphism. We can therefore
define S by

S(x, v) := (D⇡(x, v),)�1 �(x, v), (x, 0x)
�

.

Then S is smooth, since it is the composition

S = (D⇡,)�1(idTM , o � ⇡),

where o : M ! TM is the zero section. Moreover D⇡ �S = idTM and since D⇡|H is
an isomorphism, we see that S(x, v) is the only horizontal vector which is mapped
to (x, v) under D⇡(x, v). This shows there is at most one horizontal vector field
on TM which satisfies the first condition of a spray. Thus if we can prove that S
satisfies (42.4) we will have both existence and uniqueness for S. For this, using
Lemma 31.3 again, it su�ces to show that

D⇡ � S � µa = D⇡ � µ̃a �Dµa � S (42.5)
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and
 � S � µa =  � µ̃a �Dµa � S. (42.6)

To see (42.5) we observe that since D⇡ is a linear map,

D⇡ � µ̃a = µa �D⇡.
Next, since ⇡ � µa = ⇡ we have D⇡ �Dµa = D⇡ and thus

D⇡ � µ̃a �Dµa = µa �D⇡.
Thus if we start with (x, v) 2 TM , the right-hand side of (42.5) is

D⇡ � µ̃a �Dµa � S(x, v) = µa �D⇡ � S(x, v)
= µa(x, v)

= (x, av).

Similarly if we feed (x, v) to the left-hand side we get D⇡ � S(x, av) = (x, av), and
thus (42.5) is proved. To prove (42.6), we again start from the fact that  is a
linear map, and hence

 � µ̃a = µa � .
Moreover  is also a vector bundle morphism along D⇡ (Theorem 31.7), which
means that

 �Dµa = µa � .
Thus the right-hand side of (42.6) is equal to

 � µ̃a �Dµa � S = µa �  �Dµa � S
= µa � µa �  � S
= 0

since  � S = 0. Similarly the left-hand side of (42.6) is also zero. This proves that
S is a spray.

2. It remains to show that the geodesics of r are exactly the projections to M
of integral curves of S. Let � be an integral curve of S, and let � := ⇡ � �. Since �0
is a curve in H, � is parallel along �. But

�0(t) =
d

ds

�

�

�

s=t
⇡(�(s))

= D⇡(�(t))[�0(t))]

= D⇡(�(t))[S(�(t))]
= �(t),

and thus �0 is parallel along �, so that � is a geodesic. Conversely if � is a geodesic
then if � denotes the unique integral curve of S with �(0) = �0(0) then the argument
above shows that ⇡ � � is another geodesic with the same initial condition as �, and
hence the uniqueness part of Proposition 42.7 shows that � = �0. This completes
the proof.

We conclude this lecture by defining the geodesic flow of a connection.
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Definition 42.16. Let r denote a connection on M . The geodesic flow of r is
the maximal flow ⇥ of the geodesic spray S of r.

In general by Theorem 8.10, the geodesic flow is a smooth map ⇥ : D ! TM ,
where D ⇢ R⇥ TM is an open set containing {0}⇥ TM . We have D = R⇥ TM
if and only if r is complete. Explicitly if we write ⇥t := ⇥(t, ·) then one has

⇥t(x, v) =
�

�x,v(t), �
0
x,v(t)

�

,

where �x,v is the unique geodesic from Proposition 42.7 with initial condition
�x,v(0) = x and �0x,v(0) = v.
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LECTURE 43

The Ambrose-Palais-Singer Spray
Theorem

In this lecture we define the exponential map associated to a spray. We warn the
reader this is not the same “exponential map” as the one discussed previously for
Lie groups. They are however related in some cases, see Remark 10.16 for more
information.

Definition 43.1. Let S denote a spray on M with maximal flow ⇥S : D ! TM .
Let Sx ⇢ TM denote the set of tangent vectors v such that that (1, (x, v)) 2 D,
and set S =

S

x2M Sx. Thus S consists of those points (x, v) 2 TM for which the
maximal integral curve of S with initial condition (x, v) is defined for at least t = 1.

Since D is open by Theorem 8.10, so is S. We claim that Sx is non-empty for
every x 2M . Indeed, it follows from (42.4) that

S(x, 0x) = 0x

(see also the first part of the proof of Theorem 43.3 below), and thus 0x is a fixed
point of the flow ⇥S

t—in particular ⇥S
t (x, 0x) is defined for all t 2 R.

Definition 43.2. We define the exponential map of S by

expS : S !M. expS(x, v) = ⇡(⇥S
1(x, v)).

Since ⇥S is smooth (Theorem 8.10), the map expS is smooth1. We write

expS
x := expS |S

x

: Sx !M.

Theorem 43.3 (Properties of the exponential map). Let S be a spray on a smooth
manifold Mn with exponential map expS : S !M . Then:

(i) For each x 2M , Sx is a star-shaped neighbourhood of 0x. Moreover if v 2 Sx

then
expS(x, tv) = ⇡ �⇥S

t (x, v), 8 t 2 [0, 1].

(ii) For each x 2M , expS
x satisfies

D expS
x(0x) � J0

x

= idT
x

M ,

and so expS
x has maximal rank n at 0x. Thus expS

x maps a neighbourhood of
0x in TxM di↵eomorphically onto a neighbourhood of x 2M .

Will J. Merry, Di↵. Geometry II, Spring 2019, ETH Zürich. Last modified: June 28, 2019.
1Compare this to Theorem 10.10: there we had to work a bit here to prove smoothness, since

we did not start with a vector field S.
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(iii) For2 every x 2M , the map (⇡, expS) : S !M⇥M has rank 2n at 0x, and thus
maps a neighbourhood of 0x in TxM di↵eomorphically onto a neighbourhood
of (x, x) in M ⇥ M . Moreover if o : M ! TM denotes the zero section
then there exists a neighbourhood U of o(M) such that (⇡, expS) maps U
di↵eomorphically onto a neighbourhood of the diagonal � = {(x, x) | x 2M}
in M ⇥M .

Proof. During the proof we will drop the superscript S everywhere and just write
⇥t and exp. We prove the theorem in four steps.

1. In this step we prove part (i). Fix (x, v) 2 TM and let � : (t�, t+) ! TM
denote the maximal integral curve of S with initial condition (x, v). Let µa : TM !
TM and µ̃a : TTM ! TTM denote scalar multiplication in the fibres in TM and
TTM respectively (cf. (42.3)). For a > 0 we consider the curve

�a :

✓

t�

a
,
t+

a

◆

! TM, �a(t) := µa � �(at).

Then

�0a(t) = Dµa(�(at)) [a�
0(at)]

= aDµa(�(at))[S(�(at))]
= µ̃a �Dµa(�(at))[S(�(at))]
(†)
= S(µa(�(at)))

= S(�a(t)),

where (†) used (42.4). Thus �a is an integral curve of S. Since �a(0) = av, it follows
from uniqueness of integral curves that

⇥t(x, av) = µa �⇥at(x, v), for at 2 (t�, t+).

In particular, if v 2 Sx (so that t+ > 1) then av 2 Sx for all 0  a  1 and moreover

exp(x, av) = ⇡ �⇥1(x, av)

= ⇡ � µa �⇥a(x, v)

= ⇡ �⇥a(x, v).

This proves part (i).
2. In this step we prove (ii). Using (i), we have:

D expx(0x) [J0
x

(v)] =
d

dt

�

�

�

t=0
expx(0x + tv)

=
d

dt

�

�

�

t=0
⇡ �⇥t(x, v)

= D⇡(x, v)[S(x, v)]
= v,

Thus D expx(0x)�J0
x

= idT
x

M as claimed. The Inverse Function Theorem 5.2 then
completes the proof of (ii).

2The proof of this statement is non-examinable.
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3. In this step3 we investigate the map (⇡, exp) in local coordinates. Let � : U !
O denote a chart on M about x with local coordinates xi. Let �̃ : ⇡�1(U)! O⇥Rn

denote the corresponding chart on TM (cf. Theorem 4.16). Write (yi) for the local
coordinates of �̃, so that

yi =

(

xi � ⇡, 1  i  n,

dxi�n, n+ 1  i  2n.

Similarly we let ⌧ := (� � pr1, � � pr2) : U ⇥ U ! O ⇥ O, where prj : U ⇥ U ! U
is the projection onto the jth factor for j = 1, 2, so that ⌧ is a chart on M ⇥M
about (x, x). If (zi) denote the local coordinates of ⌧ then

zi =

(

xi � pr1, 1  i  n,

xi�n � pr2, n+ 1  i  2n.

By Lemma 4.4, we have4

D(⇡, exp)(0x)



@

@yj

�

�

�

0
x

�

=
2n
X

i=1

@

@yj

�

�

�

0
x

(zi � (⇡, exp)) @

@zi

�

�

�

(x,x)

For i  n we have zi � (⇡, exp) = xi �⇡ = yi and for i � n+1 we have zi � (⇡, exp) =
xi�n � exp. Thus if 1  j  n we have

D(⇡, exp)(0x)



@

@yj

�

�

�

0
x

�

=
@

@zj

�

�

�

(x,x)
+

n
X

i=1

@

@yj

�

�

�

0
x

(xi � exp) @

@zi+n

�

�

�

(x,x)
(43.1)

meanwhile if n+ 1  j  2n we have

D(⇡, exp)(0x)



@

@yj

�

�

�

0
x

�

=
2n
X

i=n+1

@

@yj

�

�

�

0
x

(xi�n � exp) @

@zi

�

�

�

(x,x)
. (43.2)

We now claim that for n+ 1  j  2n one has

D exp(0x)



@

@yj

�

�

�

0
x

�

=
@

@xj�n

�

�

�

x
. (43.3)

Indeed, if ıx : TxM ,! TM denotes the inclusion then5

@

@yj

�

�

�

0
x

= Dıx(0x)



J0
x

✓

@

@xj�n

�

�

�

x

◆�

(43.4)

3Remember, this part of the proof is non-examinable!
4We write the summation signs in this proof to make it clear exactly what index range we are

summing over.
5One way to see this is to consider the curve "

j

in T
x

M given by

"
j

(t) := ı
x

✓

t
@

@xj�n

�

�

�

x

◆

.

The left-hand side of (43.4) is "0
j

(0) computed using (4.5), and the right-hand side of (43.4) is
"0
j

(0) computed using (4.4).
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Since expx = exp �ıx, (43.3) follows from (43.4) and part (ii). Now inserting (43.3)
into (43.2) and simplifying tells us that for n+ 1  j  2n we have

D(⇡, exp)(0x)



@

@yj

�

�

�

0
x

�

=
@

@zj

�

�

�

(x,x)
(43.5)

4. We now complete the proof of (iii). By (43.1) and (43.5), the matrix of
D(⇡, exp)(0x) with respect to the bases { @

@zi

�

�

0
x

} and { @
@yj

�

�

(x,x)
} is of the form

D(⇡, exp)(0x) =

✓

id 0
⇤ id

◆

,

which has rank 2n. Thus (⇡, exp) is a di↵eomorphism on a neighbourhood of (x, x by
the Inverse Function Theorem 5.2. The final claim that (⇡, exp) is a di↵eomorphism
on a neighbourhood the zero-section is a formal point-set topological consequence
of what we have already proved6.

Remark 43.4. We will use part (ii) of Theorem 43.3 many times throughout the
rest of the course. The stronger statement given by part (iii) will only be needed
once: during our proof that the injectivity radius of a compact manifold is positive
(see Proposition 52.16).

We now prove a converse to Theorem 42.14.

Theorem 43.5 (The Ambrose-Palais-Singer Spray Theorem). Let M be a smooth
manifold and let S be a spray on TM . There exists a connection r on M such that
S is the geodesic spray of r.
Remark 43.6. Warning: This theorem is not asserting that there exists a unique
connection r for which S is the geodesic spray of r. In general, there can be many
connections with the same geodesics (and hence the same geodesic spray). As we
will see next lecture, if we impose in addition that the connection r is torsion-free
then the correspondence becomes bijective, i.e. for each spray S on M there exists
precisely one torsion-free connection r for which S is the geodesic spray of r (see
Corollary 44.10).

This proof is non-examinable.

(|) Proof. We prove the result in four steps.
1. In this step we define for each (x, v) 2 TM a subspace H(x,v) ⇢ T(x,v)TM ,

which will form our desired connection distribution H ⇢ TM . Write exp = expS

for the exponential map of S with domain S ⇢ TM . Fix x 2M . For any w 2 TxM ,
the curve

�w(t) := expx(tw).

6To be precise: Suppose X and Y are locally compact, Hausdor↵, and paracompact topo-
logical spaces and f : X ! Y is a local homeomorphism. If A ⇢ X is any closed set such that
f |

A

is a homeomorphism then there exists an open set U containing A such that f |
U

is also a
homeomorphism.
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is well-defined on some interval about 0 and satisfies �w(0) = x. Now let v 2 TxM
denote another tangent vector at x (possibly equal to w). We define a section
cv,w 2 ��

w

(TM) by
cv,w(t) := D expx(tw)

⇥Jtw(v)
⇤

. (43.6)

This makes sense: expx is a map Sx ! M , and thus for tw 2 Sx, its di↵erential
D expx(tw) is a map from T(x,tw)Sx = T(x,tw)TxM = V(x,tw)TM to T�

w

(t)M :

D expx(tw) : V(x,tw)TM ! T�
w

(t)M.

Moreover by part (ii) of Theorem 43.3, we have

cv,w(0) = v,

and thus in particular
�0w(0) = cw,w(0) = w. (43.7)

We define our connection H by declaring that these sections are all parallel:

H(x,v) :=
�

c0v,w(0) | w 2 TxM
 ⇢ T(x,v)TM, (43.8)

(pay attention to the order of v and w!), and then set as usual

H :=
G

(x,v)2TM

H(x,v).

2. We now prove that H is a preconnection on TM . This proof is similar to the
proof of Step 1 of Theorem 30.1, but simpler. Fix (x, v) 2 TM and consider the
smooth map

Cv : Sx ⇥ [0, 1]!M, Cv(w, t) := cv,w(t).

Since Cv(w, t) = Cv(tw, 1) we have

c0v,w(0) =
d

dt

�

�

�

t=0
Cv(tw, 1) = DCv(0x, 1)

⇥J0
x

(w), 0
⇤

,

which shows that H(x,v) is the image of a linear map TxM ! T(x,v)TM , and hence
is a vector space of dimension at most n := dimM . But since

D⇡(x, v)[c0v,w(0)] =
d

dt

�

�

�

t=0
⇡(cv,w(t)) = �0w(0) = w

by (43.7), we see that D⇡(x, v) maps H(x,v) surjectively onto TxM . Thus H(x,v) is a
vector space of dimension n which is mapped isomorphically onto TxM by D⇡(x, v).
Next, since exp and J : TM � TM ! V TM are smooth, and exp has maximal
rank near the zero section by part (ii) of Theorem 43.3, and J has maximal rank
everywhere, it follows that H is a submanifold of TTM . The construction of vector
bundle charts for H is similar (but again, easier) to Step 3 of Theorem 30.1, and
we omit the details. Thus H is a distribution on TM , and the computation above
shows it is complementary to V TM . This prove that H is a preconnection.
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3. In this step we show that H is a genuine connection. Let µa : (x, v) 7! (x, av)
denote the usual scalar multiplication on TM . We compute:

Dµa(x, v)
⇥

c0v,w(0)
⇤

=
d

dt

�

�

�

t=0
µa(cv,w(t))

=
d

dt

�

�

�

t=0
D expx(tw)

⇥Jtw(av)
⇤

= c0av,w(0).

This shows that Dµa(x, v)[H(x,v)] ✓ H(x,av). Since ⇡ � µa = ⇡, we have D⇡(x, av) �
Dµa(x, v) = D⇡(x, v), and thus it follows thatD⇡(x, av) maps bothDµa(x, v)[H(x,v)]
and H(x,av) isomorphically onto TxM , and thus we must have equality:

Dµa(x, v)[H(x,v)] = H(x,av).

4. It remains to show that S is the geodesic spray of H. Since S is a spray and
there is at most one horizontal spray with respect to a given connection by Theorem
42.14), it su�ces to show that S(x, v) 2 H(x,v) for each (x, v) 2 TM . For this, let �
denote the integral curve of S with initial condition (x, v), and let � := ⇡ � �. Then
� = �0 by the argument from the last bit of the proof of Theorem 42.14, and thus

�(s) = �0(s)

=
d

dt

�

�

�

t=0
�(s+ t)

=
d

dt

�

�

�

t=0
expx(sv + tv)

= D expx(sv)
⇥Jsv(v)

⇤

= cv,v(s).

Therefore
S(x, v) = �0(0) = c0v,v(0) 2 H(x,v).

This completes the proof.
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LECTURE 44

Torsion-free connections

As we remarked last lecture (Remark 43.6), the correspondence between connec-
tions on M and sprays on M is not bijective, since di↵erent connections can have
the same geodesics (and hence also the same geodesic spray). The aim of this lec-
ture is to introduce a special type of connection, called a torsion-free connection,
which is uniquely determined by its geodesics.

Recall from Problem Q.2 that if r1 and r2 are two connections on M then
their di↵erence

A(X, Y ) := r1
X(Y )�r2

X(Y )

is an element of T 1,2(M), i.e. a tensor of type (1, 2).

Lemma 44.1. Two connections r1 and r2 have the same geodesic spray if and
only if their di↵erence A is skew-symmetric.

Proof. From the proof of Theorem 42.14, if Si is the geodesic spray of ri then

Si(x, v) = D⇡(x, v)|�1
H

i

|
x,v

(v),

where Hi ⇢ TTM is the connection distribution of ri. By part (ii) of Problem
Q.2, we have

H2|x,v =
n

⇣ + Jv

�

Ã(D⇡(x, v)[⇣])
� | ⇣ 2 H1|x,v

o

,

where Ã(X)(Y ) := A(X, Y ), and hence

S2(x, v) = D⇡(x, v)|�1
H2|x,v(v)

= D⇡(x, v)|�1
H1|x,v(v) + Jv(A(v, v))

= S1(x, v) + Jv(A(v, v)).

Thus S1 = S2 if and only if A(v, v) = 0 for all v, i.e. that A is skew-symmetric.

This motivates the following definition.

Definition 44.2. Let r be a connection on M . The torsion tensor Tr of r is
the tensor of type (1, 2) defined by

Tr(X, Y ) := rX(Y )�rY (X)� [X, Y ], X, Y 2 X(M).

As with the curvature tensor, merely calling Tr a tensor does not make it one.
In contrast to Theorem 33.9 however, the verification that Tr is a tensor is much
easier.

Will J. Merry, Di↵. Geometry II, Spring 2019, ETH Zürich. Last modified: June 28, 2019.
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Lemma 44.3. The torsion tensor Tr is an alternating tensor.

Proof. By the Tensor Criterion (Theorem 18.3) we need only check that Tr is
C1(M)-linear in both variables. Take X, Y 2 X(M) and f 2 C1(M). Then

Tr(fX, Y ) = rfX(Y )�rY (fX)� [fX, Y ]

= frX(Y )� Y (f)X � frY (X)� f [X, Y ] + Y (f)X

= fTr(X, Y ) + 0,

where we used Problem D.4 and the now familiar properties of a covariant derivative
operator (parts (ii) and (iv) of Definition 31.8). It is clear that Tr is alternating,
and thus Tr is also C1(M)-linear in the second variable.

Definition 44.4. A connection r is said to be torsion-free if Tr = 0.

Remark 44.5. Many textbooks call a torsion-free connection a “symmetric” con-
nection. The motivation for this is the following: if r is a torsion free connection
then the Christo↵el symbols �k

ij associated to any chart � on M (cf. Definition
42.2) are symmetric in i and j. Indeed, given any connection r, if � : U ! O is a
chart on M with local coordinates (xi) then the local expression for Tr on U with
respect to � is (cf. Definition 16.13):

Tr = T k
ij @k ⌦ dxi ⌦ dxj

where the T k
ij : U ! R are the smooth functions given by

T k
ij = dxk

�

T (@i, @j)
�

.

But since [@i, @j] = 0 by Problem D.3, it follows that

T k
ij = �

k
ij � �k

ji.

In particular, Tr = 0 if and only if for every local coordinate system (xi) one has
�k
ij = �

k
ji.

Remark 44.6. It is easy to turn any connection into a torsion-free one. Indeed, if
r is a connection then r1 := r� 1

2
Tr is another connection by Problem Q.2, and

it follows immediately from the definition that Tr1 = 0.

The next theorem gives us yet another way to view connections: namely, spec-
ifying a connection on M is the same thing as specifying the geodesics and the
torsion tensor.

Theorem 44.7. Let r1 and r2 denote two connections on M . Then r1 = r2 if
and only if r1 and r2 have the same geodesics and the same torsion tensors.

Proof. Let A := r1 � r2, and decompose A into its symmetric and alternating
parts: A = As + Aa, i.e.

As(X, Y ) :=
1

2
(A(X, Y ) + A(Y,X)) , Aa(X, Y ) :=

1

2
(A(X, Y )� A(Y,X))

2



In Lemma 44.1 we already showed that As = 0 if and only if r1 and r2 have the
same geodesics. Thus if su�ces to show that Aa = 0 if and only if Tr1

= Tr2
. But

this is immediate from:

2Aa(X, Y ) = A(X, Y )� A(Y,X)

= r1
X(Y )�r2

X(Y )�r1
Y (X) +r2

Y (X)

= Tr1

(X, Y )� Tr2

(X, Y ).

This completes the proof.

If ' : M ! N is a smooth map and r is a connection on N , then the pullback
connection (also denoted by r) on M is a map

r : X(M)⇥ �'(TN)! �'(TN).

If X is a vector field in M then x 7! D'(x)[X(x)] is a well-defined element
of �'(TN)—this is true even if ' is not a di↵eomorphism and so '?(X) is not
defined!—which we write simply as D'[X]. Thus the expression

Tr
' : X(M)⇥ X(M)! �'(TN)

given by
Tr
' (X, Y ) := rX(D'[Y ])�rY (D'[X])�D'[X, Y ]

is well defined. Next, since Tr is a tensor, it is in particular a point operator, and
hence Tr(v, w) is defined for individual tangent vectors v, w. Thus the expression
Tr(D'[X], D'[Y ]) is also a well defined section along '. The next result is the
analogue of Proposition 34.11 for the torsion tensor..

Proposition 44.8. Let r denote a connection on a smooth manifold N , and let
' : M ! N denote a smooth map. Then for any X, Y 2 X(M), one has

Tr(D'[X], D'[Y ]) = Tr
' (X, Y )

as elements of �'(TN).

The proof of Proposition 44.8 is almost identical to that of Proposition 34.11,
and we leave the details to you. The Ambrose-Palais-Singer Spray Theorem 43.5
constructed a connection from a spray. In fact, this connection is torsion-free, as
we now prove.

Proposition 44.9. Let S denote a spray on M , and let r denote the connection
constructed in the proof of the Ambrose-Palais-Singer Spray Theorem 43.5. Then
r is torsion-free.

This proof is non-examinable.

(|) Proof. Fix x 2 M and v, w 2 TxM . We will prove that Tr(v, w) = 0 in two
steps.

3



1. In this step we derive an expression for Tr(v, w). There is a well-defined
vector field J (v) 2 X(TxM) defined by

J (v)(w) := Jw(v) =
d

dt

�

�

�

t=0
w + tv.

Write exp = expS for the exponential map of S with domain S ⇢ TM , with
expx : Sx ! M the restriction to the fibre over x. Then for any v 2 TxM , we
may regard J (v) as a vector field on Sx, and hence (using the notation above),
D expx[J (v)] is a vector field along expx, which we abbreviate by Xv. Moreover by
part (ii) of Theorem 43.3, this vector field satisfies

Xv(0x) = D expx(0x)[J0
x

(v)] = v.

By Proposition 44.8, we have

Tr(Xv,Xw) = Tr
exp

x

(J (v),J (w)),

and evaluating both sides at 0x tells us that

Tr(v, w) = rv(Xw)�rw(Xv)� [Xv,Xw](0x). (44.1)

2. In this step we compute the right-hand side of (44.1). Since J (v) and J (w)
are constant vector fields, the Lie bracket [J (v),J (w)] is zero by Problem D.3 (note
this is a Lie bracket of vector fields on the vector space TxM). Thus by Problem
D.5 we also have [Xv,Xw] = 0. Now let H denote the connection distribution from
(43.8) and let  : TTM ! TM denote the connection map of r. Then by definition
(cf. Theorem 31.10) one has

rv(Xw) = 
�

DXw(0x)[J (v)(0x)]
�

= 

✓

d

dt

�

�

�

t=0
D expx(tv)[Jtv(w)]

◆

.

This last term is exactly (c0w,v(0)) using the notation from the proof of Theorem
43.5 (cf. (43.6)). But now c0w,v(0) 2 Hx,w by definition, and thus as H = ker we
conclude that

rv(Xw) = 0.

Similarly rw(Xv) = 0 and thus by (44.1) we have Tr(v, w) = 0. This completes
the proof.

This gives us the following strengthening of the Ambrose-Palais-Singer Spray
Theorem.

Corollary 44.10. Let S be a spray on M and let T be an alternating tensor
of type (1, 2). There exists a unique connection on M with geodesic spray S and
torsion tensor T .

Proof. Let r denote the connection on M given by the Ambrose-Palais-Singer
Spray Theorem. Then r has geodesic spray S and r is torsion-free by Proposition
44.9. The desired connection is then given by r1 := r + 1

2
T (apply Remark 44.6

backwards). This connection is unique by Theorem 44.7.
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One of the most useful consequences of Corollary 44.10 is that if we start with a
torsion-free connection we now have an explicit formula for the horizontal distribu-
tion in terms of the exponential map of the geodesic spray of r (i.e. (43.8)). Here is
an application of this, which will aid our forthcoming computations in Riemannnian
geometry.

Proposition 44.11. Let r be a torsion-free connection on Mn. Fix x 2 M and
let {v1, . . . , vn} be a basis of TxM . There exists a chart � : U ! O on M , where
x 2 U and 0 2 O such that:

(i) �(x) = 0,

(ii) @i|x = vi,

(iii) rw(@i) = 0 for all w 2 TxM ,

(iv) rw(dxi) = 0 for all w 2 TxM (for r is the induced connection on T ⇤M).

Note that by (iii) we have that in these coordinates the Christo↵el symbols
vanish at x: �k

ij(x) = 0 for all i, j, k.

Proof. Let T : TxM ! Rn denote the linear isomorphism determined by Tvi = ei.
Let exp denote the exponential map of the geodesic spray of r. Let V ⇢ TxM to
be a neighbourhood of 0x on which expx is a di↵eomorphism (such V exists by part
(ii) of Theorem 43.3). Let U := expx(V ) and O := T (V ). Then if we define

� := T � expx |�1
V

then (i) is clear. By construction we have

@i
�

�

exp
x

(v)
= D expx(v)[Jv(vi)],

and so taking v = 0 and applying part (ii) of Theorem 43.3 gives (ii). To prove
(iii), we consider the curve c(t) = tw in TxM . Then thinking of @i as a smooth
map U ! TU , we have

D@i(x)[w] =
d

dt

�

�

�

t=0
D expx(tw)[Jtw(vi)]

which belongs to the connection distribution H of r at (x, v) by by (43.8). Thus
if  denotes the connection map of r then

rw(@i) = (D@i(x)[w]) = 0

as ker = H. This proves property (iii). Finally property (iv) is immediate from
(iii) and the definition (Problem O.3) of the induced connection on T ⇤M , since
dxi(@j) = �ij.

A torsion-free connection enjoys some additional symmetry properties of its
curvature tensor.

Proposition 44.12 (Additional symmetries of torsion-free curvature tensors). Let
r be a torsion-free connection on M with curvature tensor Rr. Then for all
X, Y, Z 2 X(M), one has:
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(i) Rr(X, Y )(Z) +Rr(Y, Z)(X) +Rr(Z,X)(Y ) = 0.

(ii)
�rXRr�(Y, Z) +

�rYRr�(Z,X) +
�rZRr�(X, Y ) = 0.

Proof. Since Rr is a point operator in all three variables, it is su�cient to prove
the result in the special case where [X, Y ] = [Y, Z] = [Z,X] = 0. Then rX(Y ) =
rY (X), rY (Z) = rZ(Y ), and rZ(X) = rX(Z), and hence

Rr(X, Y )(Z) +Rr(Y, Z)(X) +Rr(Z,X)(Y )

= rX(rY (Z))�rY (rX(Z)) +rY (rZ(X))

�rZ(rY (X)) +rZ(rX(Y ))�rX(rZ(Y ))

= rX

�rY (Z)�rZ(Y )
�

+rY

�rZ(X)�rX(Z)
�

+rZ

�rX(Y )�rY (X)
�

= 0 + 0 + 0.

This proves (i). The proof of (ii) is on Problem Sheet T.

Remark 44.13. In the literature the two identities (i) and (ii) are often somewhat
confusingly referred to as the “First Bianchi Identity” and the “Second Bianchi
Identity” respectively. We will avoid this nomenclature since we already have two
“Bianchi Identities” (Theorem 36.1 and (39.6) from Theorem 39.10)!

Proposition 38.6 tells us that there is a bijective correspondence between con-
nections on M and connections on the principal bundle Fr(TM). Thus we can also
unambiguously define a principal bundle connection $ on Fr(TM) to be torsion-
free if the corresponding vector bundle connection r on M is torsion-free. For the
rest of this lecture we will suppress this bijection from Proposition 38.6 and simply
regard connections on M as being the same as connections on Fr(TM).

Let us now briefly survey how the torsion-free condition a↵ects the possible
holonomy groups that can arise. As explained at the end of Lecture 41, the general
question as to which Lie groups can arise as the holonomy group of a connection
on a given principal bundle is not very interesting (see Remark 41.10). If however
we work with torsion-free connections, this dramatically changes.

Consider the following question:

• Let M be a connected smooth manifold of dimension n. What Lie
subgroups G ⇢ GL(n,R) can occur as holonomy groups for torsion-free
connections on M?

This is an extremely di�cult problem in general, and is an open problem for
many manifolds M . We can simplify things by turning the question on its
head and starting with the Lie group.

• Let G ⇢ GL(n,R) be a Lie subgroup. Does there exist any manifold
Mn and a torsion-free connection r on M such that G is the holonomy
group of r?

6



This is still very hard, but a complete classification is (mostly) understood. We
conclude this lecture by outlining why. The key starting point is the two additional
symmetries from Proposition 44.12.

Definition 44.14. Let V be a vector space and suppose G is a Lie subgroup of
GL(V ) with Lie algebra g ⇢ gl(V ). We define two subspaces as follows:

K(g) :=
n

R 2
^2

(V ⇤)⌦ g | R(u, v)w +R(v, w)(u) +R(w, u)(v) = 0, 8 u, v, w 2 V
o

,

and

K̃(g) := {⇢ 2 V ⇤ ⌦K(g) | ⇢(u)(v, w) + ⇢(v)(w, u) + ⇢(w)(u, v) = 0, 8 u, v, w 2 V }
Finally define

k(g) := {R(u, v) | R 2 K(g), u, v 2 V } .
Definition 44.15. We say that G ⇢ GL(V ) is a Berger subgroup if its Lie
algebra g satisfies:

(i) K̃(g) 6= {0}.
(ii) k(g) = g.

The next result gives a necessary condition for a Lie subgroup to occur as the
holonomy group of a torsion-free connection.

Theorem 44.16. Let M be connected manifold of dimension n, and suppose G ⇢
GL(n,R). Assume that G is irreducible and M is not locally symmetric1. If G
is the holonomy group of a torsion-free connection then G is necessarily a Berger
group.

(|) Proof. The idea is very simple: if G is the holonomy group of a torsion-free
connection r, then the curvature tensor defines an element of K̃(g) by Proposition
44.12. Thus K̃(g) is not zero. On the other hand, the Ambrose-Singer Holonomy
Theorem 34.8 tells us that k(g) is all of g.

Theorem 44.16 allows us to rule out many Lie groups (i.e. all the non-Berger
groups). This however is merely the “easy” half of answering the second question
posed above—to show that a Lie group really does appear as a holonomy group,
one needs to explicitly construct a connection. Unlike Theorem 41.8, there is no
easy way to construct a connection “by hand”. In 1999, a complete classification of
those groups that could appear was obtained by Merkulov and Schwachhöfer. The
list is rather long, and we will not attempt to enumerate it here.

We remark however that the list gets much shorter if we require that r is not
only torsion-free, but in addition is Riemannian with respect to some Riemannian
metric on M (in other words, that r is a Levi-Civita connection with respect to
some Riemannian metric on M). The holonomy groups that can arise for such r
are the so-called Riemannian holonomy groups. We will come back to this at
the end of the next lecture.

1For the purposes of our discussion here, just ignore these two conditions. Defining them
precisely would take us too far afield, and it is not necessary to understand the general “idea”.
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LECTURE 45

The Fundamental Theorem of
Riemannian Geometry

In this lecture we begin our study of Riemannian geometry proper, starting with
the construction of the famous Levi-Civita connection of a Riemannian manifold.
Let M be a smooth manifold, and suppose m = h·, ·i is a Riemannian metric on
M (i.e. a Riemannian metric on the vector bundle TM). Recall a connection r
on M is said to be Riemannian with respect to m if m is parallel with respect to
the induced connection on T ⇤M ⌦ T ⇤M : rm = 0. By Proposition 36.15 this is
equivalent to asking that the Ricci Identity holds:

X hY, Zi = hrX(Y ), Zi+ hY,rX(Z)i , 8X, Y, Z 2 X(M). (45.1)

In Proposition 36.17 we proved that Riemannian connections always exist. Mean-
while the Ambrose-Palais-Singer Theorem 43.5 (together with Proposition 44.9)
proved that torsion-free connections exist. But can we satisfy both conditions si-
multaneously? The following somewhat grandiosely named theorem asserts that
the answer is yes in the best possible way: there is a unique connection on M with
both these properties.

Theorem 45.1 (The Fundamental Theorem of Riemannian Geometry). Let m =
h·, ·i be a Riemannian metric on M . There exists a unique connection r on M
which is Riemannian with respect to m and torsion-free. We call r the Levi-
Civita connection of m.

Proof. We first deal with uniqueness. Suppose that r is a torsion-free connection
on M which is Riemannian with respect to m. Let X, Y, Z 2 X(M). We combine
the Ricci Identity (45.1) together with the torsion-free condition:

hrX(Y ), Zi � hrY (X), Zi = h[X, Y ], Zi ,

to obtain

X hY, Zi+ Y hZ,Xi � Z hX, Y i = hrX(Y ), Zi+ hY,rX(Z)i+ hrY (Z), Xi
+ hZ,rY (X)i � hrZ(X), Y i � hX,rZ(Y )i

= 2 hrX(Y ), Zi � h[X, Y ], Zi+ h[X,Z], Y i+ h[Y, Z], Xi ,

and hence

hrX(Y ), Zi = 1

2

⇣

X hY, Zi+ Y hZ,Xi � Z hX, Y i (45.2)

� h[Y, Z], Xi+ h[Z,X], Y i+ h[X, Y ], Zi
⌘

.

Will J. Merry, Di↵. Geometry II, Spring 2019, ETH Zürich. Last modified: June 28, 2019.
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With this in mind, let us define a function

!X,Y : X(M)! C1(M)

by declaring that !X,Y (Z) is the right-hand side of (45.2). We claim that !X,Y

is actually a one-form on M . By Corollary 16.29 (which is itself a special case of
the Di↵erential Form Criterion Theorem 19.1) we must show that !X,Y is C1(M)-
linear. For this we compute:

!X,Y (fZ) =
1

2

⇣

X hY, fZi+ Y hfZ,Xi � fZ hX, Y i

� h[Y, fZ], Xi+ h[fZ,X], Y i+ h[X, Y ], fZi
⌘

= f!X,Y (Z) +
1

2

⇣

X(f) hY, Zi+ Y (f) hZ,Xi
�X(f) hY, Zi � Y (f) hX,Zi �

= f!X,Y (Z) + 0.

Since !X,Y is a one-form, by Problem R.2 there is a unique well-defined vector field
(!X,Y )] on M obtained via the musical isomorphism with respect to m. Then

rX(Y ) = (!X,Y )
]. (45.3)

Since (!X,Y )] is defined independently of r, this establishes uniqueness.
For existence, we simply turn this argument on its head and define r by (45.3).

For this to make sense we need to prove that does indeed define a torsion-free con-
nection which is Riemannian with respect to m. This is a series of straightforward,
but rather lengthy computations. We must verify:

(i) rfX(Y ) = frX(Y ),

(ii) rX(fY ) = X(f)Y + frX(Y ),

(iii) rX(Y )�rY (X) = [X, Y ],

(iv) hrX(Y ), Zi+ hY,rX(Z)i = X hY, Zi,
as the remaining conditions are all trivial.

For (i), observe that

2 hrfX(Y ), Zi = fX hY, Zi+ Y hZ, fXi � Z hfX, Y i
� h[Y, Z], fXi+ h[Z, fX], Y i+ h[fX, Y ], Zi

= f
⇣

X hY, Zi � Y hZ,Xi � Z hX, Y i
� h[Y, Z], Xi+ h[Z,X], Y i+ h[X, Y ], Zi

⌘

+ Y (f) hZ,Xi � Z(f) hX, Y i+ Z(f) hX, Y i � Y (f) hX,Zi
=2f hrX(Y ), Zi+ 0.
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To prove (ii), we see that

2 hrX(fY ), Zi = X hfY, Zi+ fY hZ,Xi � Z hX, fY i
� h[fY, Z], Xi+ h[Z,X], fY i+ h[X, fY ], Zi

= f
⇣

X hY, Zi � Y hZ,Xi � Z hX, Y i
� h[Y, Z], Xi+ h[Z,X], Y i+ h[X, Y ], Zi

⌘

+X(f) hY, Zi � Z(f) hX, Y i+ Z(f) hY,Xi+X(f) hY, Zi
= 2f hrX(Y ), Zi+ 2X(f) hY, Zi .

To prove (iii), we compute

2 hrX(Y ), Zi � 2 hrY (X), Zi = X hY, Zi � Y hZ,Xi � Z hX, Y i
� h[Y, Z], Xi+ h[Z,X], Y i+ h[X, Y ], Zi
� Y hX,Zi+X hZ, Y i+ Z hY,Xi
+ h[X,Z], Y i � h[Z, Y ], Xi � h[Y,X], Zi

=� h[Y, Z], Xi � h[X,Z], Y i+ h[X, Y ], Zi
+ h[X,Z], Y i+ h[Y, Z], Xi+ h[X, Y ], Zi

= 2 h[X, Y ], Zi ,
and hence rX(Y )�rY (X) = [X, Y ].

Finally, to prove (iv) we compute

2 hrX(Y ), Zi+ 2 hY,rX(Z)i = X hY, Zi+ Y hZ,Xi � Z hX, Y i
� h[Y, Z], Xi+ h[Z,X], Y i+ h[X, Y ], Zi
+X hZ, Y i+ Z hY,Xi � Y hX,Zi
� h[Z, Y ], Xi+ h[Y,X], Zi+ h[X,Z], Y i

= 2X hY, Zi .
This completes the proof of existence.

We can use (45.2) to express the Levi-Civita connection in local coordinates.
Suppose � : U ! O is a chart on M with local coordinates (xi). Then we can write

m = mij dx
i ⌦ dxj

on U , where
mij : U ! R, mij := h@i, @ji

Note that the matrix (mij(x))1i,jn is symmetric and positive definite for every
x 2 U .

Lemma 45.2. Let (Mn,m) be a Riemannian manifold and let r denote the Levi-
Civita connection of m. Let � : U ! O denote a chart on M with local coordinates
xi. Then the Christo↵el symbols of r are given by

�k
ij =

1

2
mkl (@imjl + @jmli � @lmij) ,

where (mij)1i,jn is the inverse matrix to (mij)1i,jn.
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Proof. Firstly we have (this is true for any connection)

2 hr@
i

(@j), @li = 2
⌦

�k
ij@k, @l

↵

= 2�k
ijmkl.

Now by (45.2) we have

2 hr@
i

(@j), @li = @i h@j, @li+ @j h@l, @ii � @l h@i, @ji
= @imjl + @jmli � @lmij,

since the Lie bracket terms [@i, @j] all vanish by Problem D.3. Thus

2�k
ijmkl = @imjl + @jmli � @lmij,

Multiply both sides by 1
2
mpl and sum over1 l to get

�k
ijmklm

pl =
1

2
mpl (@imjl + @jmli � @lmij) . (45.4)

But
mklm

lp = �pk.

(this is the definition of the inverse matrix) and hence the left-hand side of (45.4)
is

�k
ijmklm

pl = �k
ij�

p
k.

Thus in particular taking p = k on the right-hand side of (45.4) gives

�k
ij =

1

2
mkl (@imjl + @jmli � @lmij)

as desired.

Corollary 45.3. Let (M,m) be a Riemannian manifold and let r denote the
Levi-Civita connection of m. For any point x 2 M there exists a chart � about x
with local coordinates (xi) such that {@i|x} is an orthonormal basis at x and such
that the Christo↵el symbols vanish at x: �k

ij(x) = 0 for all i, j, k.

Such coordinates are called normal coordinates at x.

Proof. Choose an orthonormal basis {vi} of TxM and apply Corollary 44.11.

Remark 45.4. One can alternatively characterise normal coordinates in terms of
the first derivatives of the metric. Indeed, in any local coordinates (xi) one has

@kmij = @k h@i, @ji
(†)
= hr@

k

(@i), @ji+ h@i,r@
k

(@j)i
=
⌦

�l
ki@l, @j

↵

+
⌦

@i,�
l
kj@l
↵

= �l
kimlj + �

l
kjmil,

where (†) used the Ricci identity. Thus coordinates (xi) are normal at x if and only
if {@i|x} is an orthonormal basis at x and

@kmij(x) = 0, 8 i, j, k. (45.5)
1The summation over l is forced by the Einstein Summation Convention.
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Remark 45.5. If (xi) are normal coordinates at x and v = ai @i is a tangent vector
at TxM then the unique geodesic �x,v with �x,v(0) = x and �0x,v(0) = v is given by

�x,v(t) = ��1(ta1, . . . , tan),

for all t su�ciently small, where � is the chart corresponding to (xi). This follows
from the proof of Proposition 44.11.

The next result shows how the Levi-Civita connection behaves nicely with re-
spect to pullbacks.

Proposition 45.6. Let (N,m) be a Riemannian manifold, and let r denote the
Levi-Civita connection. Suppose ' : M ! N is a smooth map. Then for X, Y, Z 2
X(M) the pullback connection satisfies

hrX(D'[Y ]), D'[Z]i = 1

2

⇣

X hD'[Y ], D'[Z]i+ Y hD'[Z], D'[X]i
� Z hD'[X], D'[Y ]i � ⌦D'⇥[Y, Z]⇤, D'[X]

↵

+
⌦

D'
⇥

[Z,X]
⇤

, D'[Y ]
↵

+
⌦

D'
⇥

[X, Y ]
⇤

, D'[Z]
↵

⌘

.

Proof. The pullback connection satisfies the Ricci Identity by Corollary 36.16. Thus
the claim follows from the uniqueness of the Levi-Civita connection on (N,m) and
Proposition 44.8.

In Proposition 45.6 the domain M of ' is not endowed with a Riemannian
metric (only the target N is). Next lecture we will see that a stronger result holds
if M is also Riemannian and ' preserves the metrics. For now we conclude this
lecture by briefly discussing Riemannian holonomy groups.

Definition 45.7. Let (Mn,m) be a connected Riemannian manifold. We define
the holonomy group of m, written as Hol(m), to be the holonomy group Holr(x),
where r is the Levi-Civita connection of m. As in Corollary 32.12, we think of
Hol(m) as a subgroup of GL(n), which is defined only up to conjugation. Similarly
we define the restricted holonomy group of m, written Hol0(m).

It follows from Problem R.1 that Hol(m) is actually a subgroup of O(n) (and
thus Hol0(m) is a subgroup of SO(n)). On Problem Sheet U you will extend this
to the following statement:

Proposition 45.8. Let Mn be a connected manifold and suppose r is a torsion-
free connection on M . Then r is the Levi-Civita connection of a Riemannian
metric m on M if and only if Holr is conjugate in GL(n) to a subgroup of O(n).

The following statement is much more di�cult, and its proof goes beyond the
scope of this course. It uses the Lie-theoretic fact that every connected Lie subgroup
of SO(n) that acts irreducibly on Rn is in fact closed in SO(n).

Theorem 45.9. Let (Mn,m) be a connected Riemannian manifold. Then Hol0(m)
is a closed connected subgroup of SO(n).

Theorem 45.9, together with Theorem 44.16 (and lots and lots and lots of work)
gives the following amazing result.
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Theorem 45.10 (The Berger Classification Theorem2). Let Mn be a simply con-
nected manifold and suppose m is an irreducible non-symmetric3 Riemannian met-
ric on M . Then exactly one of the following options holds for the holonomy group
Hol(m):

(i) Hol(m) = SO(n).

(ii) n = 2k for k � 2 and Hol(m) = U(k) ⇢ SO(2k).

(iii) n = 2k for k � 2 and Hol(m) = SU(k) ⇢ SO(2k).

(iv) n = 4k for k � 2 and4 Hol(m) = Spc(k) ⇢ SO(4k).

(v) n = 4k for k � 2 and Hol(m) = Sp(2k) · Spc(1) ⇢ SO(4k).

(vi) n = 7 and5 Hol(m) = G2 ⇢ SO(7).

(vii) n = 8 and6 Hol(m) = Spin(7) ⇢ SO(8).

Moreover all of these groups can occur as the holonomy group of an irreducible
non-symmetric Riemannian metric.

As the name suggests, the fact that these are the only options is due to Berger
in 1955. The proof that all of these groups really do occur took thirty more years to
complete, and is the work of various mathematicians. This culminated in the work
of Joyce, who in 1996 constructed compact Riemannian manifolds with holonomy
the two so-called exceptional holonomy groups G2 and Spin(7).

2This is the only result in the course where even the statement is non-examinable!
3As with Theorem 44.16, I won’t define precisely what this means, as doing so would take us

too far afield.
4Here Spc(k) is the compact symplectic group, which is defined to be Spc(k) := Sp(2k;C)\

U(2k). One can think of Spc(k) as the quaternionic unitary group. In particular, Spc(1) can be
identified with SU(2).

5This Lie group is a little harder to concisely define—so I refer you to Wikipedia.
6The group Spin(n) is the double cover of SO(n) (recall ⇡1(SO(n)) = Z2). For n � 3 the

group Spin(n) is simply connected, and thus is also the universal cover of SO(n).
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LECTURE 46

Isometric maps and natural Riemannian
connections

In this lecture we study isometric maps, which are maps between Riemannian
manifolds that preserve the metrics. Recall from Definition 36.10 that a vector
bundle morphism between two Riemannian vector bundles is said to be an isometric
vector bundle morphism if it preserves the Riemannian metrics. The following
definition specialises this to Riemannian metrics on manifolds.

Definition 46.1. Let (M,m1) and (N,m2) be Riemannian manifolds. A smooth
map ' : M ! N is said to be isometric if D' : TM ! TN is an isometric vector
bundle morphism in the sense of Definition 36.10. Explicitly, if we write h·, ·i for
(both) metrics, then ' is isometric if and only if

hv, wi = hD'(x)[v], D'(x)[w]i , 8 x 2M, v, w 2 TxM.

Equivalently, this means that the metric m1 is equal to the pullback tensor '?(m2)
from Definition 18.7. Note that any isometric map is necessarily an immersion.

If ' is in addition a di↵eomorphism, we say that ' is an isometry1.

Definition 46.2. We denote by Iso(M,m) ⇢ Di↵(M) the subgroup of isometries.

(|) Remark 46.3. If M has finitely many components then Iso(M,m) is itself a
Lie group, which moreover is compact if M is. This is the content of the famous2

Myers-Steenrod Theorem from 1939, which sadly we will not have time to prove in
the course. We will however prove a simple result in this direction later this lecture
(Corollary 46.22).

(|) Remark 46.4. Riemannian manifolds form a category Riem. The objects of
this category are pairs (M,m) whereM is a manifold andm is a Riemannian metric
on M . The morphisms in this category are the isometric maps. The isomorphisms
in this category are the isometries. There is a forgetful functor Riem ! Man
(where Man is the category of manifolds, cf. Example 14.20) that simply “forgets”
the Riemannian metric.

As already remarked, any isometric map between Riemannian manifolds is nec-
essarily an immersion. In fact, there is a partial converse to this, as we now explain.

Suppose (N,m) is a Riemannian manifold and ' : M ! N is a smooth map.
Consider the pullback tensor '?(m) 2 T 0,2(M). In general this will not define a
metric on M—it will always be symmetric, but it need not be positive definite (for

Will J. Merry, Di↵. Geometry II, Spring 2019, ETH Zürich. Last modified: June 28, 2019.
1Pay attention to the di↵erence between “isometric” and “isometry”.
2There is another result in Riemannian Geometry often called the Myers-Steenrod Theorem—

we state this in Theorem 52.13 (see also Remark 52.14).

1

https://www.jstor.org/stable/1968928?seq=1#metadata_info_tab_contents
https://www.merry.io


example, if ' is constant it is identically zero). If however ' is an immersion then
'?(m) is positive definite, and hence a Riemannian metric on M . This proves the
following useful statement.

Lemma 46.5. Let (N,m) be a Riemannian manifold and suppose ' : M ! N is
an immersion. Then '?(m) is a Riemannian metric on M , and ' : (M,'?(m)) !
(N,m) is an isometric map. Moreover '?(m) is the unique Riemannian metric on
M with this property.

Definition 46.6. Let (N,m) be a Riemannian manifold. An embedded submani-
fold M of N is said to be a Riemannian submanifold if M is endowed with the
pullback Riemannian metric ı?(m) (where ı : M ,! N denote the inclusion).

Example 46.7. The standard Riemannian metric mEucl on Rn is given by

hJx(v),Jx(w)iiEucl := hv, wiEucl , x, v, w 2 Rn,

where h·, ·iEucl on the right-hand side denotes the Euclidean dot product. Let
ı : Sn ! Rn+1 denote the inclusion, and let mround := ı?(mEucl). Then mround is
a Riemannian metric on Sn which we call the round metric (since the sphere
looks “round” in this metric). This is the unique metric on Sn that makes Sn into
a Riemannian submanifold of Rn+1. Our favourite connection on Sn (introduced
originally in Problem N.3) is in fact the Levi-Civita connection by Problem U.1.

If ' : M ! N is an immersion then necessarily dimM  dimN . If dimM =
dimN then there are essentially two cases of interest:

(i) If ' is an injective immersion and dimM = dimN then it follows from Propo-
sition 5.6 and the Inverse Function Theorem 5.2 that ' is automatically3 an
embedding onto its image. Such a map is often called an open embedding,
since '(M) is then open in N .

(ii) The other main case of interest is when ' is a smooth covering map. This
means that ' is surjective, and moreover4 every point y 2 N has a neigh-
bourhood Uy such that ' maps each component of '�1(Uy) di↵eomorphically
onto Uy.

Covering maps are important in Algebraic Topology. We will not really have any
cause to use them, other than to note they provide us with further examples of
isometric maps.

Definition 46.8. ARiemannian covering ' : (M,m1)! (N,m2) is an isometric
map between Riemannian manifolds which is in addition a smooth covering map.
Note this necessarily implies dimM = dimN .

3Compare this to Problem C.4, which gives another (entirely unrelated) condition for an
injective immersion to automatically be an embedding.

4Unlike in case (i), this really is an extra condition—not every surjective submersion between
manifolds of the same dimension is a smooth covering map. Exercise: Find an example of this!
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Recall a covering map5 f : X ! Y between topological spaces is normal if
f?(⇡1(X, x)) is a normal subgroup of ⇡1(Y, f(x)). In particular, a universal cover is
always normal. It is a standard result in covering space theory that a covering is
normal if and only if the deck transformation group acts transitively on the fibres.
If ' : M ! N is a smooth normal covering map then ' is necessarily a submersion,
and the deck transformations are di↵eomorphisms of M . The proof of the next
result is deferred to Problem Sheet U.

Proposition 46.9. Let ' : M ! N be a smooth normal covering map and letm be
a Riemannian metric on M which is invariant under all deck transformations. Then
there is a unique Riemannian metric on N such that ' is a Riemannian covering.

Example 46.10. We can think of the torus T n as the quotient Rn
�

Zn, and in fact
this is the universal cover. By Proposition 46.9 there is a unique Riemannian metric
on T n such that the quotient map Rn ! T n is a Riemannian covering, where Rn

is equipped with its standard Euclidean metric mEucl. We call this metric the flat
metric on the torus and write it as mflat.

Remark 46.11. Warning: Take n = 2. Then one can embed T 2 into R3 (think
of a (hollow) doughnut). If ı : T 2 ! R3 denotes the inclusion then ı?(mEucl) is
another Riemannian metric on T 2. As we will see next lecture, mflat is not the same
Riemannian metric as ı?(mEucl). In fact, it is not possible to embed (T 2,mflat) into
R3.

Example 46.12. The projection map Sn ! RP n is a smooth normal covering.
Thus there is a unique Riemannian metric m on RP n such that (Sn,mround) !
(RP n,m) is a Riemannian covering.

Remark 46.13. Immersions are dual to submersions, and thus it won’t surprise
you to learn that there is a dual notion of a Riemannian submersion which
allows for the case dimM � dimN . We won’t have cause to study these in general
(and they are a little messier to define), although see Problem U.5 for an important
special case.

Suppose now that ' : (M,m1)! (N,m2) is an isometric map between Rieman-
nian manifolds. Recall from the discussion just before Proposition 44.8 that if X
is a vector field on M then D'[X] is a vector field along ', i.e. an element of
�'(TN). In a similar vein, if # 2 �'(T ⇤N) is a one-form along ' then there is a
well-defined one-form '?(#) given by

'?(#)|x(v) := #|x(D'(x)[v]), x 2M, v 2 TxM.

Warning: Despite the fact that we are using the same notation, this is not quite
the same as the usual pullback operation '? : ⌦1(N)! ⌦1(M) from Definition 19.6.

We can also define a musical isomorphism between vector fields along ' and
one-forms along ':

W 2 �'(TN) 7! W [ 2 �'(T ⇤N), W [|x(v) := hW (x), vi , v 2 T'(x)N,

5Don’t worry if you are unfamiliar with covering space theory—we will not actually use any
of this, it is just for interest.
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and

# 2 �'(T ⇤N) 7! #] 2 �'(TN),
⌦

#](x), v
↵

= #|x(v), v 2 T'(x)N.

Consider now the following picture6:

X(M) ⌦1(M)

�'(TN) �'(T ⇤N)

X 7!D'[X]

]

[

# 7!'?(#) (46.1)

where the upper sharp refers to the metric m1 on M , and the lower flat refers to
the metric m2 on N .

It is important to realise that going all the way round the square7 is not the
identity operator if dimM < dimN . This is because when dimM < dimN the
vertical maps are not invertible. Thus the following definition makes sense:

Definition 46.14. Let ' : (M,m1) ! (N,m2) be an isometric map between Rie-
mannian manifolds. If W 2 �'(TN) is a vector field along ' then we define the
tangential component of W to be the vector field W> 2 �'(TN) obtained from
W by going all the way round the square (46.1):

W> := D'
⇥

('?(W [))]].

If dimM = dimN then, as remarked above, going all the way around the
diagram (46.1) is in this case the identity (as the vertical maps are then also iso-
morphisms), and thus

W> = W, if dimM = dimN. (46.2)

Since W and W> are both sections of the same vector bundle, we can subtract
them:

Definition 46.15. We define the orthogonal component of W to be the vector
field W? := W �W>.

The next lemma is immediate, since the composition and di↵erence of point
operators is a point operator.

Lemma 46.16. Let ' : (M,m1) ! (N,m2) be an isometric map between Rieman-
nian manifolds. Then the two operators

(·)> : �'(TN)! �'(TN), (·)? : �'(TN)! �'(TN)

are both point operators.

6I confused many of you in lecture here, so I removed some of the arrows in the diagram to
make it clearer. Written like this, it doesn’t make sense to say that diagram commutes (or does
not commute)—indeed, the statement “the diagram commutes” has no meaning, since there is
only one way to pass from any given vertex to itself.

7Just to make things even more confusing: if one starts in the top left-hand corner and goes all
the way round the square then one does get the identity operator—the reason for this is explained
in Lemma 46.17 below.
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Lemma 46.16 implies that we can speak of w> and w? for a single vector w 2
T'(x)N . On Problem Sheet U you will prove the following result, which gives the
geometric intuition behind the name “tangential component”.

Lemma 46.17. Let ' : (M,m1) ! (N,m2) be an isometric map between Rieman-
nian manifolds. Then for x 2 M the restriction of (·)> to T'(x)N is the orthog-
onal projection onto D'(x)[TxM ]. Thus if dimM = dimN then w> = w for all
w 2 TN |'(M).

Proposition 46.18. Let ' : (M,m1) ! (N,m2) be an isometric map between
Riemannian manifolds. Let r1 denote the Levi-Civita connection of (M,m1), and
let r2 denote the Levi-Civita connection of (N,m2), and let 1 : TTM ! TM and
2 : TTN ! TN denote the associated connection maps. Then:

(i) If ⇣ 2 T(x,v)TM then

D'(x)[1(⇣)] =
�

2
�

D(D'(x))(v)[⇣]
��>

,

whereD(D'(x))[v] denotes the di↵erential of the mapD'(x) : TxM ! T'(x)N
at v 2 TxM .

(ii) If in addition dimM = dimN then the same holds without the “>”:
D'(x)[1(⇣)] = 2

�

D(D'(x))(v)[⇣]
�

,

and hence the following commutes:

TTM TTN

TM TN

D(D')

1 2

D'

Proof. Since ' is isometric, it follows from (45.2) and Proposition 45.6 that for
X, Y, Z 2 X(M) that

⌦r2
X(D'[Y ]), D'[Z]

↵

=
⌦r1

X(Y ), Z
↵

.

Moreover as ' is isometric we have
⌦r1

X(Y ), Z
↵

=
⌦

D'
⇥r1

X(Y )
⇤

, D'[Z]
↵

,

which implies that
�r2

X(D'[Y ])
�>

= D'
⇥r1

X(Y )
⇤

(both sides are elements of �'(TN)). This proves (i). The second statement is
immediate from this and (46.2).

Corollary 46.19. Let ' : (M,m1)! (N,m2) be an isometric map between Rie-
mannian manifolds of the same dimension. Let r1 denote the Levi-Civita connec-
tion of (M,m1), and let r2 denote the Levi-Civita connection of (N,m2). Let Rr1

and Rr2
denote their curvature tensors. Then for all x 2M and all u, v, w 2 TxM ,

one has

D'(x)
⇥

Rr1

(u, v)(w)] = Rr2

(D'(x)[u], D'(x)[v])(D'(x)[w]).
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Proof. This follows from part (ii) of Proposition 46.18 together with Proposition
34.11.

Definition 46.20. Let (M,m) be a Riemannian manifold. The exponential map
of m is by definition the exponential map of the geodesic spray of the Levi-Civita
connection of m.

The next result shows isometric maps between Riemannian manifolds of the
same dimension behave similarly to Lie group homomorphisms for the exponential
map of a Riemannian metric (compare this with Proposition 10.12).

Proposition 46.21. Let ' : (M,m1) ! (N,m2) be an isometric map between
Riemannian manifolds of the same dimension. Let r1 denote the Levi-Civita con-
nection of (M,m1), and let r2 denote the Levi-Civita connection of (N,m2). Let
exp1 and exp2 denote the associated exponential maps. Then

exp2 �D' = ' � exp1

Proof. It follows from part (ii) of Proposition 46.18 that if c is a parallel vector
field along a curve � in M then D'[c] is a parallel vector field along ' � � in N .
Taking c = �0 shows that ' maps geodesics in M to geodesics in N . The claim now
follows from the uniqueness part of Proposition 42.7.

The next corollary shows how restrictive the condition of being an isometric
map is when the manifolds have the same dimension.

Corollary 46.22. Let ', : (M,m1) ! (N,m2) be two isometric maps between
Riemannian manifolds of the same dimension. Assume M is connected and that
there exists x 2M such that '(x) =  (x) and D'(x) = D (x). Then ' =  .

Proof. Let
A := {y 2M | '(y) =  (y) and D'(y) = D (y)} .

Then A is non-empty as x 2 A. Moreover A is closed as TM is Hausdor↵ and
D' and D are continuous (actually, smooth). If y 2 A then by part (ii) of
Theorem 43.3 there exists a neighbourhood Vy of 0y 2 TyM such that exp1

y maps
Vy di↵eomorphically onto its image. If v 2 Vy then by Proposition 46.21 we have

'(exp1
y(v)) = exp2

'(y)(D'(y)[v])

= exp2
 (y)(D (y)[v])

=  (exp1
y(v)),

and hence on Vy one has (as smooth maps)

' � exp1
y =  � exp1

y,

which in particular implies that exp1y(Vy) ⇢ A. Since exp1
y(Vy) is open and y was

arbitrary, it follows that A is also open, and hence A = M as M is connected.
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The rest of this lecture gives the necessary definitions required in order to state8

a theorem of Epstein, which, roughly speaking, proves the converse to Proposition
46.18.

Definition 46.23. A natural Riemannian connection is an assignment of a
connection rM,m to every Riemannian manifold (M,m) which is natural in the
following sense: If ' : (M,m1) ! (N,m2) is an injective isometric map between
Riemannian manifolds of the same dimension (i.e. an isometric open embedding)
then

'?(rN,m2) = rM,m1 .

We denote such a natural connection by r. A natural Riemannian connection is
said to be homogeneous if it is invariant under scaling:

rM,m = rM,cm

for any c > 0.

This is easiest to explain with an example.

Example 46.24. The assignment rLC that assigns to each Riemannian manifold
(M,m) its Levi-Civita connection is a natural Riemannian connection by Proposi-
tion 46.18. It is clear from (45.2) that the Levi-Civita connection is homogeneous.

(|) Remark 46.25. The definition of a natural Riemannian connection can be
phrased more concisely using categorical language. Here are the details. Consider
the category OpenEmb whose objects are smooth manifolds and whose morphisms
are open embeddings, i.e. embeddings that are di↵eomorphisms onto their images
(this is a subcategory of the category Man from Example 14.20—note there are
no morphisms from M to N in this category if dimM 6= dimN). Consider the
contravariant functor R on OpenEmb that assigns to a manifold M the space9 R(M)
of all Riemannian metrics on M , and assigns to an open embedding ' : M ! N
the induced map

'? : R(N)! R(M), m 7! '?(m).

In a similar vein there is a contravariant functor C on OpenEmb that assigns to M
the space C(M) of all connections on M , and on morphisms operates by pullback.
Then a natural Riemannian connection r is exactly a natural transformation from
R to C.

Definition 46.26. Suppose r is a natural Riemannian connection. We say that
r is of polynomial type if for each n � 0 there exist polynomials P k

ij for 1 
i, j, k  n such that: For any n-dimensional Riemannian manifold (M,m), and for
any chart � : U ! O on M with local coordinates xi, the Christo↵el symbols �k

ij

are given as polynomials in the components mij of m relative to xi, together with
their inverse mij, and all derivatives of mij up to some finite order d, i.e.

�k
ij = P k

ij

✓

mpq;m
rs;

@|↵|

@x↵
mhl

◆

,

8Yes, only “state”! The proof goes well beyond the scope of this course; merely stating it
accurately is a task in itself.

9The space R(M) is actually an infinite-dimensional (locally) Fréchet manifold, but we won’t
need or use this fact.
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where ↵ is any multi-index of degree at most d.

Again, this is easiest to explain with an example.

Example 46.27. The natural Riemannian connection rLC is a polynomial con-
nection by Lemma 45.2 (with d = 1).

Here now is our promised theorem. One should think of it as a far-reaching
complement of Theorem 45.1 (which in fact deserves the name “The Fundamental
Theorem of Riemannian Geometry much better!)

Theorem 46.28 (Epstein, 1978). Let r be a homogeneous natural Riemannian
connection. Assume r is of polynomial type. Then r = rLC is the Levi-Civita
connection.
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LECTURE 47

Sectional curvature and Schur’s Theorem

In this lecture we investigate various other curvatures that can be associated to a
Riemannian manifold. In doing so we will finally make contact with the geometric
intuition of the word “curvature”: as we will see, the sphere Sn thought of as a
Riemannian submanifold of Rn+1 is positively curved, whereas the hyperbolic plane
with its natural metric (see Definition 49.6) is negatively curved.

Firstly, we show how a Riemannian metric allows us to view the curvature as a
tensor of type (0, 4) instead of type (1, 3).

Definition 47.1. Let (M,m = h·, ·i) denote a Riemannian manifold, and suppose
r is a connection on M (not necessarily torsion-free or Riemannian with respect
to m). Then Rr 2 T 1,3(M). We use m to define a new tensor Rr

m 2 T 0,4(M) by

Rr
m(W,Z,X, Y ) :=

⌦

Rr(X, Y )(Z),W
↵

, 8X, Y, Z,W 2 X(M).

Warning: Pay attention1 to the ordering of W,Z,X and Y on the left-hand side!

Suppose � : U ! O is a chart on M with local coordinates (xi). Then we can
write

Rr = Rl
ijk @l ⌦ dxi ⌦ dxj ⌦ dxk

and
Rr

m = Rijkl dx
i ⌦ dxj ⌦ dxk ⌦ dxl

where Rl
ijk and Rijkl are smooth functions on U given by

Rl
ijk = dxl

�

Rr(@i, @j)(@k)
�

and
Rijkl := Rr

m(@i, @j, @k, @l).

If we write m = mij dxi ⌦ dxj then

Rijkl := hR (@k, @l) (@j) , @ii =
⌦

Rh
klj@h, @i

↵

= mhiR
h
klj. (47.1)

The next lemma clarifies the symmetries of Rr
m.

Lemma 47.2 (Symmetries of Rr
m). Let (M,m) be a Riemannian manifold and let

r be a connection on M . Then for any X, Y, Z,W 2 X(M):

(i) Rr
m(W,Z, Y,X) = �Rr

m(W,Z,X, Y ).

Will J. Merry, Di↵. Geometry II, Spring 2019, ETH Zürich. Last modified: June 28, 2019.
1Also: Be aware that practically all permutations of the indices are someone’s favourite sign

conventions! Thus when consulting textbooks, make sure you are aware which convention the
author favours.
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(ii) If r is Riemannian with respect to m then

Rr
m(Z,W,X, Y ) = �Rr

m(W,Z,X, Y ).

(iii) If r is torsion-free then

Rr
m(W,Z,X, Y ) +Rr

m(W,X, Y, Z) +Rr
m(W,Y, Z,X) = 0.

(iv) If r is the Levi-Civita connection of m then

Rr
m(W,Z,X, Y ) = Rr

m(X, Y,W,Z).

Proof. Property (i) is clear as Rr is alternating. Property (ii) is a restatement of
Proposition 36.18. Property (iii) is a restatement of part (i) of Proposition 44.12.

Finally, property (iv) is an algebraic consequence of the other properties. In-
deed,

Rr
m(W,Z,X, Y ) = �Rr

m(W,Z, Y,X)

= Rr
m(W,Y,X, Z) +Rr

m(W,X,Z, Y )

and also

Rr
m(W,Z,X, Y ) = �Rr

m(Z,W,X, Y )

= Rr
m(Z,X, Y,W ) +Rr

m(Z, Y,W,X)

and so

2Rr
m(W,Z,X, Y ) = Rr

m(W,Y,X, Z)+Rr
m(W,X,Z, Y )+Rr

m(Z,X, Y,W )+Rr
m(Z, Y,W,X).

Similarly

2Rr
m(X, Y,W,Z) = Rr

m(X,Z,W, Y )+Rr
m(X,W, Y, Z)+Rr

m(Y,W,Z,X)+Rr
m(Y, Z,X,W ).

Then using

Rr
m(X,Z,W, Y ) = (�1)2Rr

m(Z,X, Y,W ),

Rr
m(X,W, Y, Z) = (�1)2Rr

m(W,X,Z, Y ),

Rr
m(Y,W,Z,X) = (�1)2Rr

m(W,Y,X, Z),

Rr
m(Y, Z,X,W ) = (�1)2Rr

m(Z, Y,W,X),

we see that
2Rr

m(X, Y,W,Z) = 2Rr
m(W,Z,X, Y ),

and this completes the proof.

2



Let r be a torsion-free connection on M . Fix x 2 M and let (xi) be local
coordinates about x such that the Christo↵el symbols vanish at x (possible by
Proposition 44.11). The following computation is only valid at the point x, but to
keep the notation simple in the following computation we omit the x from both
sides:

�r@
i

Rr�(@j, @k)(@l)
(†)
= r@

i

�

Rr(@j, @k)
�

(@l)�Rr�r@
i

@j, @k
�

(@l)�Rr�@j,r@
i

@k
�

@l

= r@
i

�

Rr(@j, @k)
�

(@l) + 0
(‡)
= r@

i

�

Rr(@j, @k)@l
��Rr(@j, @k)

�r@
i

@l
�

= r@
i

�

Rh
jkl@h

�

+ 0

= @i
�

Rh
jkl

�

@h +Rh
jklr@

i

(@h)

= @i
�

Rh
jkl

�

@h + 0,

where (†) used the definition of the induced connection on the tensor bundle
T 1,3(TM)!M and (‡) used the definition of the induced connection on T 1,1(TM)
(cf. Problem P.2). Thus part (ii) of Proposition 44.12 tells us that in these coordi-
nates we have

@i
�

Rh
jkl

�

(x) + @j
�

Rh
kil

�

(x) + @k
�

Rh
ijl

�

(x) = 0. (47.2)

Now suppose m is a Riemannian metric on m and r is the Levi-Civita connection
of m. Assume the (xi) are normal coordinates at x. Then by Remark 45.4 we have
@imjk(x) = 0 and hence

@iRhljk(x) = @i
�

mphR
p
jkl

�

(x)

= @imph(x)R
p
jkl(x) +mph(x)@i

�

Rp
jkl

�

(x)

= @i
�

Rh
jkl

�

(x).

Thus by (47.2) we see that

@iRhljk(x) + @jRhlki(x) + @kRhlij(x) = 0. (47.3)

This formula will be used in the proof of Schur’s Theorem 47.14 below.

From now on we will work exclusively with the Levi-Civita connection. This
isn’t strictly necessary, but it simplifies the discussion (and the notation), and is
by far the most important case. Our next notion of curvature corresponds to the
geometric intuition behind the word.

Definition 47.3. Let (M,m) be a Riemannian manifold. Let r denote the Levi-
Civita connection of m, and fix x 2 M . Given two linearly independent tangent
vectors v1, v2 2 TxM we define the sectional curvature of the 2-plane ⇧ =
span{v1, v2} ✓ TxM to be

sectm(x;⇧) :=
Rr

m(v1, v2, v1, v2)

hv1, v1i hv2, v2i � hv1, v2i2
. (47.4)

Note that this depends only on the 2-plane ⇧ and not the choice of basis {v1, v2},
since both Rr

m and m are linear and thus both the numerator and denominator of
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(47.4) are homogeneous of degree two. In particular, if {e1, e2} are orthonormal,
and ⇧ := span{e1, e2} then

sectm(x;⇧) = Rr
m(e1, e2, e1, e2).

Remark 47.4. If dimM = 2 then there is only one two-plane in each tangent space
(namely, the entire tangent space), and thus in this case the sectional curvature is
simply a function sectm : M ! R. For historical reasons in this case the sectional
curvature is often called the Gaussian curvature.

Definition 47.5. Let (M,m) be a Riemannian manifold and let  2 R. We say
that (M,m) has constant curvature  if

sectm(x;⇧) = , 8 x 2M, 8 2-planes ⇧ ⇢ TxM.

Example 47.6. If we consider Rn with its standard Euclidean metric (Example
46.7) then Rn has constant curvature with  = 0.

Example 47.7. If we consider the sphere Sn as a Riemannian submanifold of Rn+1

then it follows from Problem P.4 that Sn has constant curvature with  = 1. More
generally, if Sn(r) denotes the sphere of radius r > 0 then the same argument
shows that Sn(r) (as a Riemannian submanifold of Rn+1) has constant curvature
with  = 1

r2 .

We will discuss the case of  < 0 in Lecture 48.

Remark 47.8. The argument from Problem R.6 easily adapts to show that if M
is any manifold that admits a metric of constant curvature then pr(TM) = 0 for
all r > 0.

In fact, the sectional curvature determines the full Riemannian curvature tensor.
In order to prove this, we need the following algebraic lemma.

Lemma 47.9. Let V be a vector space and R1, R2 : V ⇥ V ⇥ V ⇥ V ! R two
quadrilinear maps such that for all w, x, y, z 2 V and i = 1, 2:

(i) Ri(w, z, y, x) = �Ri(w, z, x, y),

(ii) Ri(z, w, x, y) = �Ri(w, z, x, y),

(iii) Ri(w, z, x, y) +Ri(w, x, y, z) +Ri(w, y, z, x) = 0.

(iv) Ri(w, z, x, y) = Ri(x, y, w, z).

Then if for all x, y 2 V we also have R1(x, y, x, y) = R2(x, y, x, y), then in fact
R1 ⌘ R2.

Proof. It su�ces to show that if a quadrilinear map R satisfies the four conditions
of the lemma and in addition satisfies R(x, y, x, y) = 0 for all x, y 2 V then R ⌘ 0.
So suppose this is the case. Then

0 = R(x, y + z, x, y + z)

= R(x, y, x, y) +R(x, z, x, y) +R(x, z, x, z) +R(x, y, x, z)

= R(x, z, x, y) +R(x, y, x, z) + 0

= 2R(x, y, x, z),
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and hence R is alternating with respect to the first and third variables. Similarly
R is alternating with respect to the second and fourth variables. Then

0 = R(w, z, x, y) +R(w, x, y, z) +R(w, y, z, x)

= R(w, z, x, y)�R(w, z, y, x)�R(w, y, x, z)

= 3R(w, z, x, y).

This completes the proof.

Corollary 47.10. The sectional curvatures determine the full curvature tensor.

The next corollary tells us that if the sectional curvatures at a given point
are independent of the choice of two-plane then the full curvature tensor takes a
particularly nice form. First, a definition:

Definition 47.11. Let (M,m) denote a Riemannian manifold. Define a tensor
Sm 2 T 0,4(M) by

Sm(W,Z,X, Y ) := hW,Xi hZ, Y i � hW,Y i hZ,Xi .

Corollary 47.12. Suppose that (M,m) is a Riemannian manifold and r is the
Levi-Civita connection on M . Suppose there exists x 2M and  2 R such that

sectm(x;⇧) = , 8 2-planes ⇧ ⇢ TxM.

Then for all W,X, Y, Z 2 X(M) one has

Rr
m(W,Z,X, Y )(x) = Sm(W,Z,X, Y )(x). (47.5)

Proof. Apply Lemma 47.9 to Rr
m|x and Sm|x.

If M is 2-dimensional then the hypotheses of Corollary 47.12 are automatically
satisfied (cf. Remark 47.4), and hence we obtain:

Corollary 47.13. Let (M2,m) be a two-dimensional Riemannian manifold, and
let r denote the Levi-Civita connection of m. Then

Rr
m = sectm Sm,

where sectm 2 C1(M) denotes the sectional (or Gaussian) curvature.

In higher dimensions the situation dramatically changes: if M is connected then
the hypotheses of Corollary 47.12 force m to have to constant curvature.

Theorem 47.14 (Schur’s Theorem). Let (M,m) be a connected Riemannian man-
ifold of dimension n � 3. Suppose there exists a function f 2 C1(M) such that
sectm(x;⇧) = f(x) for all 2-planes ⇧ ✓ TxM . Then f is a constant function, and
hence (M,m) is a space of constant curvature.
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Proof. Let x 2 M , and (xi) be normal coordinates on a neighbourhood U of x.
Applying Corollary 47.12 to the coordinate vector fields @i we see that on U we
have

Rijkl(y) = f(y)
�

mikmjl �milmjk

�

.

Now by (47.3) and the fact that mij = �ij, we obtain

@f

@xh
(x) (�ik�jl � �il�jk) + @f

@xk
(x) (�il�jh � �ih�jl) + @f

@xl
(x) (�ih�jk � �ik�jh) = 0.

Since n � 3, given h we can find i, j such that i, j, h are all distinct. Setting
k = i, l = j it then follows from the above that @f

@xh

(x) = 0. Since h was arbitrary,
it follows df |x = 0. Since x was arbitrary, it follows that f is locally constant. Since
M is connected, f is constant. This completes the proof.
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LECTURE 48

Three equivalent definitions of the
Laplacian

This lecture is an analytic “interlude”. We introduce the divergence of a vector field
and the gradient, Hessian, and Laplacian of a function on an oriented Riemannian
manifold. These generalise the corresponding notions you learnt in multivariate
calculus. Next lecture we will use this to investigate how the sectional curvature of
an oriented two-dimensional Riemannian manifold behaves when we multiply the
metric by a smooth function1, which will naturally lead us to the hyperbolic metric.

Recall a manifold Mn is oriented if and only if there exists a volume form, i.e. a
di↵erential form µ 2 ⌦n(M) which is nowhere vanishing (cf. Corollary 20.23). The
volume form is not unique—if f : M ! (0,1) is any positive smooth function then
fµ is another volume form which moreover defines the same orientation. However
a choice of Riemannian metric on M gives us a way to normalise the volume form.

Definition 48.1. Let (Mn,m) be an oriented Riemannian manifold. The Rie-
mannian volume form of m is the unique volume form µm 2 ⌦n(M) with the
property that if {vi} is any positively oriented orthonormal basis of TxM then

µm|x(v1, . . . , vn) = 1.

The notation µm is a little misleading, since µm depends both on the metric m and
on the choice of orientation on M .

Remark 48.2. If M is not orientable, then it is still possible to define a Rieman-
nian density (instead of a Riemannian volume form), which enjoys most of the
same properties. This allows for nearly all of what we cover in this lecture to go
through for non-orientable manifolds too. However, for simplicity we will restrict
ourselves to the orientable case.

Now that the volume form is uniquely determined, we can integrate functions2

on M .

Definition 48.3. Let (M,m) be an oriented Riemannian manifold with Rieman-
nian volume form µm. If f 2 C1

c (M) is a function with compact support we define
the integral of f as

Z

M,m

f :=

Z

M

fµm.

Will J. Merry, Di↵. Geometry II, Spring 2019, ETH Zürich. Last modified: June 28, 2019.
1This is of course not the most direct method for defining the hyperbolic plane! Nevertheless

we will use the gradient and the Hessian multiple times during the rest of the course, and no
course on di↵erential geometry would be complete without at least defining the Laplacian.

2Compare this discussion to Problem L.7, which carries out the same idea for compact Lie
groups.
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We can use
R

M,m to obtain an inner product on the space of smooth functions.

For simplicity we will define this only in the case where M is compact3.

Definition 48.4. Let (M,m) be a compact oriented Riemannian manifold. We
define an inner product �·, ·� on the vector space C1(M) by setting

�f, h� := Z
M,m

fg

Warning: This does not turn C1
c (M) into a Hilbert space! This is because

C1
c (M) is not complete under the norm kfk := p�f, f�. This annoyance can be

overcome with a little bit of functional analysis (see Remark 48.6 below).

Definition 48.5. Let (M,m) be an orientable Riemannian manifold with Rie-
mannian volume form µm. A di↵eomorphism ' : M ! M is volume preserving
if '?(µm) = µm. We let Di↵vol(M,µm) ⇢ Di↵(M) denote the volume preserving
di↵eomorphisms.

Any isometry is automatically volume-preserving, but the converse is not nec-
essarily true, as you will prove on Problem Sheet V.

(|) Remark 48.6. This remark uses a bit of measure theory and functional anal-
ysis. It can be ignored if you are not familiar with this material. For simplicity let
us assume M is compact. The operation

Z

M,m

: C1(M)! R, f 7!
Z

M,m

f

extends uniquely4 to an linear operator
Z

M,m

: C0(M)! R, h 7!
Z

M,m

h,

which is positive in the sense that if h � 0 then
R

M,m h � 0. This means that
R

M,m is a positive Radon measure on M . As such, by the Riesz-Markov-Kakutani
Representation Theorem we get a Borel measure volm on M such that

Z

M,m

h =

Z

M

h d volm,

where the integration on the right-hand side should be interpreted in the usual
measure-theoretic sense (Lebesgue integration). The advantage of this viewpoint is
that volm can eat any measurable subset of M , and

R

M h d volm is defined for any
measurable function h on M . This allows us to define the volume of a measurable
set A ⇢M to be volm(A). Then

volm(A) =

Z

M

1A d volm,

3This is mainly due to how we defined integration last semester. With a bit of work it can be
dropped. Alternatively, one can equally well work with compactly supported functions here too.

4This is because C1(M) is dense in C0(M)
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where 1A : M ! {0, 1} is the characteristic function of A, i.e.

1A(x) :=

(

1, x 2 A,

0, x 62 A.

We define L2(M,m) to be those measurable functions with �f, f� < 1. Then
L2(M,m) is a Hilbert space under �·, ·�, and C1(M) is a dense subspace. A
volume-preserving di↵eomorphism preserves the measure volm, i.e.

volm(A) = volm('
�1(A)), 8A ⇢M measurable.

This motivates the name “volume-preserving”. Much of the material you learnt
in your elementary measure theory courses can now be extended to Riemannian
manifolds—for example, there is a Fubini Theorem for Riemannian submersions.
We will not need any of this, however.

If (xi) are local coordinates on U ⇢M then any volume form µ can be written
as µ = fdx1 ^ · · · ^ dxn for some function f 2 C1(U). The next lemma identifies
this function when µ = µm is the Riemannian volume form.

Lemma 48.7. Let (Mn,m) be an oriented Riemannian manifold, and let (xi) be
positively oriented local coordinates (cf. Definition 20.22) on an open set U ⇢ M .
Then on U ,

µm =
p
detAdx1 ^ · · · ^ dxn,

where A = (mij)1i,jn.

Proof. Suppose (v1, . . . , vn) is a positively oriented orthonormal basis of TxM . By
(15.8) we have

�

dx1 ^ · · · ^ dxn
�|x(v1, . . . , vn) = detB,

where B is the matrix
�

dxi|x(vj)
�

1i,jn
. Thus

µm =
1

detB
dx1 ^ · · · ^ dxn. (48.1)

Note that if we write
vi = bji@j

then B is the matrix (bji )1i,jn. Now observe

�ij = hvi, vji =
⌦

bki @k, b
l
j@l
↵

= bki b
l
jmkl,

which tells us that (as matrices)

I = BABT.

Taking determinants gives p
detA =

1

detB
,

which combined with (48.1) completes the proof.
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As a sanity check, let us observe that Lemma 48.7 does indeed specify a well-
defined global n-form. Suppose (xi) are positively oriented local coordinates over
U ✓M and (yi) are positively oriented local coordinates over V ⇢M with U \V 6=
;. Let

mij :=

⌧

@

@xi
,
@

@xj

�

, m0
ij :=

⌧

@

@yi
,
@

@yj

�

,

and let A := (mij)1i,jn and A0 := (m0
ij)1i,jn. Define µU 2 ⌦n(U) and µV 2

⌦n(V ) by

µU :=
p
detAdx1 ^ · · · ^ dxn, µV :=

p
detA0dy1 ^ · · · ^ dyn.

We must show that
µU |U\V = µV |U\V .

Write

F i
j =

@xi

@yj
, Hj

i =
@yj

@xi
;

note that F = H�1. Then

dxi = F i
jdy

j,
@

@xi
= Hj

i

@

@yj
.

and
dx1 ^ · · · ^ dxn = detF dy1 ^ · · · ^ dyn.

Moreover since

mij =

⌧

@

@xi
,
@

@xj

�

= Hk
i H

l
j

⌧

@

@yk
,
@

@yl

�

= Hk
i m

0
klH

j
l

we have
A = HA0HT,

and thus
p
detAdx1 ^ · · · ^ dxn =

p
detHA0HT detF dy1 ^ · · · ^ dyn

=
p
detA0 dy1 ^ · · · ^ dyn,

since detHHT = 1
(detF )2

.

Remark 48.8. The same argument as in the proof of Lemma 48.7 shows that if
(xi) are any local coordinates on U ⇢ M (i.e. not necessarily positively oriented)
then on U

µm =
p

| detA| dx1 ^ · · · ^ dxn,

where as before A = (mij)1i,jn.

Next, we move onto the divergence of a vector field.

Definition 48.9. Let (M,m) be an oriented Riemannian manifold with Rieman-
nian volume form µm. Let X 2 X(M). We define the divergence of X to be the
smooth function divm(X) : M ! R defined by requiring that

divm(X)µm = LX(µm).
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Let ✓t denote the flow of X. Then by Problem L.5 we have

d

dt

�

�

�

t=t0
✓?t (µm) = ✓?t0(LX(µm)),

and hence the flow ✓t is volume-preserving if and only if X is divergence-free
(meaning that divm(X) = 0).

Theorem 48.10 (The Divergence Theorem). Let (M,m) be an oriented Rieman-
nian manifold. Then

Z

M,m

divm(X) = 0, 8 X 2 X(M) with compact support.

Proof. We use Cartan’s Magic Formula (Theorem 20.6):

divm(X)µm = LX(µm) = diX(µm) + iXdµm = diX(µm) + 0,

since dµm = 0 as µm is a top-dimensional form. Thus
Z

M,m

divm(X) =

Z

M

d(iX(µm)) = 0

by Stokes’ Theorem.

Remark 48.11. There is also a version of the Divergence Theorem for manifolds
with boundary—see Problem V.2.

If f is a function on M then df is a one-form, and hence df ] is a vector field.

Definition 48.12. Let (M,m) be a Riemannian manifold. Let f 2 C1(M). The
gradient of f is the vector field gradm(f) := df ]. In local coordinates (xi) if we
write df = @jf dxj then

gradm(f) = (mij@jf)@i. (48.2)

Warning: It is very common to use the notation “rf” to denote the gradient of
f . This is rather misleading, since it clashes with our notation for the connection
r.

The divergence of the gradient is the Laplacian:

Definition 48.13 (First definition of the Laplacian). Let (M,m) be an orientable
Riemannian manifold. Given f 2 C1(M), we define the Laplacian of f to be the
smooth function

�m(f) := divm(gradm(f)).

We will shortly prove that for M an open subset of Rn this coincides with the
“usual” definition of the Laplacian.

Lemma 48.14. Suppose f 2 C1(M) and X 2 X(M). Then

divm(fX) = df(X) + f divm(X).
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Proof. Both sides are functions, and thus it is su�cient to verify the identity point-
wise. Thus fix x 2 M . If X(x) = 0 then both sides are zero. Otherwise, choose
a neighbourhood U of x such that TM |U is trivial (for instance, the domain of a
chart). After shrinking U , we may assume that X is never zero on U . Thus we may
pick a local frame (X = X1, X2, . . . , Xn). Let µm|U := µU . Then for any 1-form
! 2 ⌦1(U) we have

(! ^ iXµU)(X1, X2, . . . , Xn) = !(X)iXµU(X2, . . . , Xn)

= (!(X)µU)(X1, X2, . . . , Xn).

Since (Xi) is a local frame, we conclude

! ^ iXµU = !(X)µU .

The result follows by applying this to ! = df , and using the fact that µU(x) 6= 0.

In a similar vein to Definition 48.4 we can define an inner product on ⌦1(M).
As before, we will only make this definition in the compact case.

Definition 48.15. Let (M,m) be a compact oriented Riemannian manifold. We
define an inner product(also denoted by) �·, ·� on ⌦1(M) by setting

�!,#� := Z
M,m

⌦

!],#]
↵

Definition 48.16. Let (M,m) be a compact oriented Riemannian manifold. The
adjoint5 of the exterior derivative d : C1(M) ! ⌦1(M) with respect to �·, ·� is
the map �m : ⌦1(M)! C1(M) defined according to the recipe

�f, �m(!)� = �df,!� .
This gives us a second way of defining the Laplacian. This definition will ulti-

mately prove more useful for us when we discuss Hodge theory. A disadvantage is
(at least as we have defined things) this one only works when M is compact6.

Definition 48.17 (Second definition of the Laplacian). Let (M,m) be a compact
oriented Riemannian manifold. Given f 2 C1(M), define the Laplacian

�m(f) := ��m(df).
Of course, it must be proved that Definition 48.13 is equivalent to Definition

48.17. We will do this shortly.

Lemma 48.18. It holds that

�m(!) = � divm(!
]).

5Strictly speaking, this is only a “formal” adjoint as C1(M) and ⌦1(M) are not Hilbert
spaces under �·, ·� (see Remark 48.6). This can be rectified as follows: The exterior derivative
extends to a linear operator from between the Hilbert space of L2-functions on M to the Hilbert
space of di↵erential forms of class L2. The adjoint �

m

is then the usual adjoint in the functional
analysis sense.

6Actually as mentioned earlier, with a bit more work this still makes sense in the non-compact
case too.
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Proof. We show �df,!� = �f,� divm(!
])� .

For this one observes that

df(!]) + f divm(!
]) = divm(f!

])

by Lemma 48.14 and hence

�df,!�� �f,� divm(!
])� = Z

M,m

divm(f!
]) = 0

by the Divergence Theorem 48.10.

Corollary 48.19. WhenM is compact Definition 48.13 is equivalent to Definition
48.17.

We now define the Hessian of a smooth function, which will lead us to a third
equivalent definition of the Laplacian. This definition works for an arbitrary con-
nection on an arbitrary manifold (not necessarily Riemannian).

Definition 48.20. Let M be a smooth manifold and let r denote a connection
on M . Let f 2 C1(M). We define the Hessian Hessr(f) of f to be the tensor of
type (0, 2) defined by

Hessr(f)(X, Y ) := rX(df)(Y )

= X(Y (f))� df(rX(Y )).

In general the Hessian Hessr(f) depends on the choice of connection r on M .
However at a point x 2M such that df |x = 0 (such x is called a critical point of
x), the operator Hessr(f)|x is clearly independent of r. The next lemma clarifies
this.

Lemma 48.21. Let M be a smooth manifold and let r denote a connection on M .
Let f 2 C1(M). Fix a point x 2 M and assume (xi) are local coordinates about
x. Write

Hessr(f) = Hij dx
i ⌦ dxj.

Assume that either:

(i) x is a critical point of f , or

(ii) r is the Levi-Civita connection of some Riemannian metric m on M , and the
(xi) are normal coordinates about x.

Then
Hij = @ijf,

i.e. the Hessian is the matrix of second partial derivatives of f .

Proof. We have
Hessr(f)(@i, @j) = @ijf � df(r@

i

@j).

In both cases the second term vanishes at x.
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Next, we define the trace of a tensor. This again works for an arbitrary smooth
manifold (compare to Proposition 36.3).

Definition 48.22. Let M be a smooth manifold and let T 2 T 1,1(M) denote a
tensor of type (1, 1). The trace of T is the smooth function tr(T ) 2 C1(M) =
T 0,0(M) obtained by taking the usual trace pointwise

tr(T )(x) = trace(Tx : TxM ! TxM).

More generally, if T is a tensor of type (r + 1, s + 1), we can define the trace of T
to be the tensor tr(T ) of type (r, s) by requiring that

tr(T )(!1, . . .!r, X1, . . . , Xs) = tr
�

T (⇤,!1, . . .!r,⇤, X1, . . . , Xs)
�

,

which makes sense as T (⇤,!1, . . .!r,⇤, X1, . . . , Xs) is a tensor of type (1, 1).

If we start with a Riemannian manifold, we can take other traces:

Definition 48.23. Let (M,m) be a Riemannian manifold. We define

trm : T 0,2(M)! C1(M)

by first using the musical isomorphism to convert a tensor of type (0, 2) into a
tensor of type (1, 1), and then taking the trace as above. Explicitly, if x 2 M and
(Xi) is a local orthonormal frame of TM about x then near x we have

trm(T ) =
n
X

i=1

T (Xi, Xi). (48.3)

A similar construction gives traces T r,s+2(M)! T r,s(M) and T r+2,s(M)! T r,s(M).

We now present our third (and final) definition of the Laplacian. This definition
does not use orientability of M , but we include it anyway to be consistent with the
other definitions (cf. Remark 48.2).

Definition 48.24 (Third definition of the Laplacian). Let (M,m) be an oriented
Riemannian manifold. Given f 2 C1(M), define the Laplacian

�mf := trm
�

Hessr(f)
�

,

where r is the Levi-Civita connection of m.

In order to see the equivalence of Definition 48.24 with the other two definitions,
we use the following lemma.

Lemma 48.25. Let �m be defined as in Definition 48.13 (our original definition).
Then in local coordinates (xi) on U ✓M we have

�m(f) = mij@ijf + lower order terms.

where as usual (mij)1i,jn is the inverse matrix to A := (mij)1i,jn.
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Proof. For convenience, put a :=
p
detA so that

µU = adx1 ^ · · · ^ dxn

by Lemma 48.7. Then if X = hi @i is any vector field we have

iX(µU)(@1, . . . , b@i, . . . , @n) = µU(X, @1, . . . , b@i, . . . , @n)

= (�1)i�1µU(@1, . . . , @i�1, X, @i+1, . . . @n),

where as usual thebmeans we omit that entry. The last term is equal to (�1)i�1ahi,

since all the other terms die. Since {dx1 ^ · · ·^ cdxi ^ · · ·^ dxn} forms a local frame
for ⌦n�1(M) we conclude that

iX(µU) =
n
X

i=1

(�1)i�1ahi dx1 ^ · · · ^ cdxi ^ · · · ^ dxn,

and thus

d(iX(µU)) =
n
X

i,j=1

(�1)i�1@j(ah
i)dxj ^ dx1 ^ · · · ^ cdxi ^ · · · ^ dxn

= @i(ah
i)
1

a
µU .

Thus

divm(X) =
1

a
@i(ah

i).

Now take X = df ] and use (48.2) to obtain

�m(f) = divm(gradm(f)) =
1

a
@i(am

ij@jf) = mij@ijf + lower order terms.

This completes the proof.

Corollary 48.26. Definition 48.24 is equivalent to Definition 48.13.

Proof. Apply Lemma 48.25 in the special case where the (xi) are normal coordinates
at a point x 2 M , so mij(x) = �ij, and hence in this case the lemma simplifies to
give

divm(gradm(f))(x) =
n
X

i=1

@iif(x),

which is also equal to tr(Hessr(f))(x) in these coordinates by Lemma 48.21. (Note
this last expression also connects the Laplacian with the “usual” definition of the
Laplacian of a smooth function.)
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LECTURE 49

Ricci curvature and Einstein metrics

In this lecture we first investigate how the sectional curvatures change when one
changes the metric. This will lead us to the hyperbolic plane.

Definition 49.1. Let M be a smooth manifold. Two Riemannian metrics m1 and
m2 on M are conformally equivalent if there exists a smooth positive function
f : M ! (0,1) such that m2 = f m1.

Let us now compute how the Levi-Civita connection and its curvature tensor
change under conformal equivalence. In the following we let m = h·, ·i denote a
Riemannian metric on M and we let m̃ = f m denote a conformally equivalent
metric. Let

h := log
p

f so that m̃ = e2h m

Lemma 49.2. Let r be the Levi-Civita connection of m and let r̃ denote the
Levi-Civita connection of m̃. Then for X, Y 2 X(M) one has

r̃X(Y )�rX(Y ) = X(h)Y + Y (h)X � hX, Y i gradm(h).

Note that if h is a constant function then r̃ = r—this once again shows that
the Levi-Civita connection is homogeneous in the sense of Definition 46.23. Next,
we have:

Lemma 49.3. Let Rr be curvature tensor of the Levi-Civita connection r of m
and let Rr̃ denote the curvature tensor of the Levi-Civita connection r̃ of m̃. Then
for X, Y, Z 2 X(M) one has

Rr̃(X, Y )(Z)�Rr(X, Y )(Z) = hrX(gradm(h)), ZiY � hrY (gradm(h)), ZiX
� hX,ZirY (gradm(h))� hY, ZirX(gradm(h))

+ Y (h)Z(h)X � hY, Zi | gradm(h)|2X
�X(h)Z(h)Y + hX,Zi | gradm(h)|2Y
+X(h) hY, Zi gradm(h)� Y (h) hX,Zi gradm(h).

The proof of Lemma 49.3 is an easy, albeit lengthy computation; I leave it to
the conscientious reader as a wholesome exercise.

Corollary 49.4. Let x 2 M and let ⇧ = span{e1, e2} ⇢ TxM , where the ei are
orthonormal with respect to m. Then

f(x) sectm̃(x;⇧)� sectm(x;⇧) =� hre1(gradm(h)), e1i � hre2(gradm(h), e2i
� | gradm(h)(x)|2 + e1(h)

2 + e2(h)
2.

In dimension 2 the formula is simpler.

Will J. Merry, Di↵. Geometry II, Spring 2019, ETH Zürich. Last modified: June 28, 2019.
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Corollary 49.5. Suppose dimM = 2. Then as functions on M ,

f sectm̃� sectm = ��m(h).

Proof. The right-hand side of the formula from Corollary 49.4 reduces to� tr(Hessr(h)).

Recall our notation for a half-space from Definition 21.2.

Definition 49.6. Let Hn := Rn
xn>0. We equip Hn with the metric mhyp := f mEucl

where f is the smooth positive function f(x) = 1
(xn)2

. Thus h = log 1
xn

and Corollary
49.4 becomes

f sectmhyp
(x;⇧)� 0 = �f.

Thus (Hn,mhyp) is a space with constant curvature  = �1. We call (Hn,mhyp)
the n-dimensional hyperbolic plane. More generally if we take f = r2

(xn)2
then we

get a space with constant curvature  = � 1
r2 . We denote this metric by mhyp;r.

We conclude the our discussion on sectional curvature with the following theo-
rem. In the following we say a Riemannian manifold (M,m) is complete1 if the
Levi-Civita connection r of m is complete in the sense of Definition 42.9.

Theorem 49.7 (Killing-Hopf). Let (M,m) be a connected, simply connected and
complete Riemannian metric with constant curvature . Then (M,m) is isometric
to exactly one of the following three manifolds:

(i) (Rn,mEucl) if  = 0,

(ii) (Sn(r),mround) if  > 0, where r := 1p
 .

(iii) (Hn,mhyp;r) if  < 0, where r := 1p� .

Sadly we won’t have enough time to prove Theorem 49.7. We will however prove
several related results in Lecture 52, starting with the famous Cartan-Hadamard
Theorem (Theorem 53.14).

Instead for now we move onto our next variant of the curvature tensor. For this
consider the trace operator

tr : T 1,3(M)! T 0,2(M)

from Definition 48.22.

Definition 49.8. Let (M,m) be a Riemannian manifold with Levi-Civita connec-
tion r. The Ricci tensor of m is the (0, 2)-tensor Ricm obtained by taking the
trace of Rr:

Ricm(X, Y ) := tr(u 7! Rr(u,X)(Y )), X, Y 2 X(M).

1In Lecture 52 we will see that this is equivalent to asking that M is complete as a metric
space.
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Assume dimM = n. Take an orthonormal basis {e1, . . . , en} of TxM and let
v, w 2 TxM . Then we have2

Ricm(v, w) =
n
X

i=1

⌦

Rr(ei, v)(w), ei
↵

=
n
X

i=1

Rr
m(ei, w, ei, v)

=
n
X

i=1

Rr
m(ei, v, ei, w),

where the last line used the symmetries of Rr
m from Lemma 47.2. This proves:

Lemma 49.9. The Ricci tensor is symmetric.

Moreover, the computation above shows that we can view Ricm as being ob-
tained by taking the trace of Rr

m over the first and third variables, i.e. under the
map trm : T 0,4(M)! T 0,2(M) from Definition 48.23:

Ricm = trm(Rr
m)

In local coordinates (xi) we can write

Ricm = rij dx
i ⌦ dxj,

where rij = Ricm(@i, @j). If the (xi) are normal coordinates at x 2 M then we can
choose {@i|x} as our orthonormal basis of TxM . Then by (47.1) we have at x:

rjl(x) =
n
X

i=1

Rijil(x) =
n
X

i=1

mhi(x)R
h
ilj(x) = Ri

ilj(x) = Ri
ijl(x). (49.1)

Remark 49.10. Unlike the sectional curvatures, if dimM � 4, the full curvature
tensor Rr

m is in general not completely determined by the Ricci tensors. This
should not surprise you, as one typically not recover a matrix from its trace. When
dimM = 2 or dimM = 3 however it is possible to recover Rr

m from Ricm, as you
show on Problem Sheet V.

The Ricci tensor is a symmetric tensor of type (0, 2). The metric is another
symmetric tensor of type (0, 2), and it therefore makes sense to ask whether the
two are related. In general the answer is “no”: for instance, there is no reason why
Ricm should be positive definite.

Definition 49.11. We say that a metric m is an Einstein metric on M if there
exists a constant � 2 R such that

Ricm = �m.

2As you will see, the summation signs invariably need writing when discussing the Ricci tensor,
since all expressions have a sum over e

i

but both instances of the index i appear on the bottom.
This is a general feature of taking the (0,�2)-trace of a tensor.

3



We will discuss the motivation for this condition (together with an explanation
of the name) at the end of the lecture. However let us note now that this notion
is only interesting when dimM � 4. Indeed, on Problem Sheet V you will prove
that if dimM = 2 or dimM = 3 then a metric m is Einstein if and only if m has
constant curvature.

Definition 49.12. For any non-zero v 2 TxM the Ricci curvature in the di-
rection v is defined by

ricm(v) :=
Ric(v, v)

|v|2 .

If kvk = 1 then ricm(v) = Ricm(v, v). Moreover if kvk = 1 we may extend {v}
to an orthonormal basis {e1 = v, e2, . . . , en} of TxM . Then

ricm(v) =
n
X

i=1

Rr
m(ei, v, ei, v) =

n
X

i=2

Rr
m(ei, v, ei, v),

since Rr
m(e1, e1, e1, e1) = 0, and thus ric

m

(v)
n�1

is an average of sectional curvatures
sectm(x;⇧i) where

⇧i = span {v, ei} , i � 2.

The next lemma is analogous to Corollary 47.12.

Lemma 49.13. The Ricci curvatures at x are all equal to a constant (say �) if and
only if Ricm = �m at x (i.e. m is Einstein “at x”).

Proof. One way is clear. For the converse, we simply note that the Ricci curvatures
all being equal to � imply that for any non-zero v 2 TxM we have Ricm(v, v) =
� hv, vi. Since Ricm(·, ·) is a symmetric bilinear form the standard polarisation
identity gives

2Ricm(v, w) = Ricm(v + w, v + w)� Ricm(v, v)� Ricm(w,w)

= � hv + w, v + wi � � hv, vi � � hw,wi
= 2� hv, wi ,

since the polarisation identity also applies to the symmetric bilinear form h·, ·i.
We obtained the Ricci curvature by tracing the full curvature, thus reducing a

tensor of type (0, 4) to one of type (0, 2). We can repeat the process to obtain a
tensor of type (0, 0) (i.e. a smooth function). This function gets its own name:

Definition 49.14. The scalar curvature scalm 2 C1(M) is the trace of the Ricci
curvature:

scalm := trm(Ricm) = trm � trm(Rr
m).

Fix x 2M . If {e1, . . . , en} is an orthonormal basis of TxM then we have

scalm(x) =
n
X

i=1

ricm(ei).
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Thus scal
m

(x)
n is an average of Ricci curvatures at x. Moreover if (xi) are normal

coordinates at x then by (48.3) and (49.1) we have (writing the summation signs
for clarity):

scalm(x) =
n
X

i=1

n
X

j=1

Rijij(x).

The following theorem is in a similar vein to Schur’s Theorem 47.14.

Theorem 49.15 (The Ricci curvature version of Schur’s Theorem). Let (M,m) be
a connected Riemannian manifold of dimension n � 3. Then if the Ricci curvatures
of M are pointwise constant, that is, ricm(v) = �(x) for all v 6= 0 2 TxM , where
� 2 C1(M), then � is a constant function, and hence m is an Einstein metric.

Proof. Fix x 2M and let (x1, . . . , xn) be normal coordinates about x. By Lemma
49.13 and the assumption we have

rij(x) = �(x)mij(x).

In what follows, everything is to be evaluated at x; for notational simplicity however
we will omit this from the notation. We will also once again suspend our use
of the summation convention, as it will prove confusing in this proof. Fix some
p 2 {1, . . . , n}. Then by (47.3),

@pRhjhi + @iRhjph + @hRhjip = 0. (49.2)

Using (49.1) together with the fact that the first derivatives of mij vanish at x (i.e.
(45.5)) we obtain

�ij = @prij =
X

h

Rhihj

and hence for any 1  i  n,

@p� =
X

h

@pRhihi. (49.3)

Thus setting i = j in (49.2) and summing over h we have

@p�+
X

h

@iRhiph +
X

h

@hRhiip = 0,

and so summing both sides over i,

n@p�+
X

h

X

i 6=p

@iRhihp +
X

h

@pRhpph +
X

h 6=p

X

i

@hRihpi +
X

i

@pRpiip = 0. (49.4)

Now
X

h

X

i 6=p

@iRhihp = �
X

h 6=p

X

i

@hRihpi,

and
X

h

@pRhpph = �@p� =
X

i

@pRpiip

we see that (49.4) becomes
(n� 2)@p� = 0.

Since p was arbitrary we conclude d�|x = 0; thus � is locally constant. Since M is
connected, � is constant.
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(|) Remark 49.16. In several reasonable senses, Einstein metrics are the “best”
sort of Riemannian metric a manifold can carry. Here are three explanations as to
why:

(i) A naive guess as to what a “best” metric might look like would be to ask that
m has constant curvature. But Theorem 49.7 (together with the Cartan-
Hadamard Theorem 53.14) shows that this is too restrictive, in the sense
that many manifolds M cannot admit such a metric. Indeed, if the universal
cover fM of M is not di↵eomorphic to Rn or Sn, then no such metric exists.
On the other hand, asking for a metric to have constant scalar curvature is
not restrictive enough: one can show that if M is any compact manifold of
dimension n � 3 thenM admits an infinite dimensional family of metrics with
constant scalar curvature. However the Einstein condition is “just right”,
in the sense that when Einstein metrics exist, they always occur in finite-
dimensional families. It is known that some compact manifolds admit no
Einstein metrics, but it is hoped that “most” high-dimensional manifolds do
admit them. This is an active field of current research,

(ii) Consider the space R1(M) of all Riemannian metrics m on M with volume
1 (i.e. metrics m such that volm(M) = 1). This space can be seen as an
infinite-dimensional Fréchet manifold. Now consider the functional

S : R1(M)! R, S(m) :=

Z

M,m

scalm .

This functional is di↵erentiable, and with a little bit of work one can show
that a metric m is a critical point of S (dS|m = 0) if and only if m is an
Einstein metric. Thus Einstein metrics are obtained by doing calculus of
variations on the space of metrics.

(iii) The name “Einstein metric” comes from physics (no surprises there!) In
general relativity, one posits that physical spacetime is a four-dimensional
manifold equipped with a Lorentz metric (this is like a Riemannian metric,
apart from instead of being positive definite, it has signature (3, 1)—it is
negative definite on the time direction). The Einstein Field Equation
states that

Ricm�1

2
scalm m = T, (49.5)

where T is the so-called stress-energy tensor. If T ⌘ 0 then we obtain the
Einstein field equation in a vacuum. In fact in this case one necessarily
has scalm = 0, and thus the Einstein field equation in a vacuum is equivalent
to asking that Ricm = 0. However from a mathematical point of view, it is
then a natural generalisation the vacuum version of (49.5) to look at what
we have deemed Einstein metrics.

A wonderful book on this subject (and a gateway to advanced Riemannian geometry
in general) is the monograph Einstein Manifolds by Besse. I highly recommend it.
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LECTURE 50

Jacobi fields and the Gauss Lemma

In this lecture we study Jacobi fields. These are an essential tool in Riemannian
geometry, and much of the rest of the course will be devoted to exploiting them.
For instance, next lecture we will use Jacobi fields to deduce that geodesics are
locally length-minimising, thus finally justifying the name “geodesic”.

Throughout this lecture we assume that M is a smooth manifold of dimension
n, that m is a Riemannian metric on M , and that r is the Levi-Civita connection
of m. We let T denote the vector field @

@t 2 X(R). Thus a curve � is a geodesic
in M if and only if rT (�0) = 0. Throughout this lecture we will implicitly assume
that all geodesics �(t) are defined on their maximal interval of definition (and thus
in particular for t = 0). The exception to this is Proposition 50.13 below, where
we need to restrict to a compact interval of definition.

Definition 50.1. Let � be a geodesic in M . A vector field c along � is called a
Jacobi field along � if

rT (rT (c)) +Rr(c, �0)(�0) = 0. (50.1)

We let Jac(�) denote the space of all Jacobi fields along �.

The motivation for the Jacobi equation will become clear by the end of the
lecture (see Proposition 50.11).

It is clear that Jac(�) is a vector space, since if c1, c2 2 Jac(�) and a 2 R then
by linearity one immediately sees that ac1+c2 also satisfies (50.1). A priori however
it is not clear that this vector space is finite-dimensional (or, going the other way
round, non-trivial!) We will shortly prove in Corollary 50.9 below that Jac(�) is a
vector space of dimension 2n. Let us first observe that Jac(�) is non-trivial.

Example 50.2. The simplest example of a Jacobi field is �0 itself. Indeed, � is
a geodesic if and only if rT (�0) = 0. and thus certainly rT (rT (�0)) = 0 for � a
geodesic. Since Rr is alternating, it follows that �0 satisfies (50.1). More generally,
any linear multiple c(t) := a�0(t) for a 2 R is a Jacobi field.

Example 50.3. The second simplest example of a Jacobi field is c(t) := t�0(t).
Indeed, in this case by the Leibniz rule (part (iv) of Definition 31.8)we haverT (c) =
T (t)�0 + trT (�0) = �0, and so rT (rT (c)) = rT (�0) = 0. Since Rr is a point
operator we have Rr(c, �0)(�0) = tRr(�0, �0)(�0) = 0, and thus c satisfies (50.1) as
claimed. More generally, any linear multiple c(t) := at�0(t) for a 2 R is a Jacobi
field.

Example 50.2 and Example 50.3 produce a 2-dimensional subspace of Jac(�)
(unless �0 = 0). Since these Jacobi fields always occur, when studying Jacobi fields
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it is useful to separate o↵ these examples and look only at Jacobi fields that are
not of this form. This will take a little bit of work to set up.

Lemma 50.4. Let � be a geodesic and suppose c1, c2 2 Jac(�). Then the function

t 7! hrT (c1)(t), c2(t)i � hc1(t),rT (c2)(t)i
is constant.

Proof. Let f(t) := hrT (c1)(t), c2(t)i�hc1(t),rT (c2)(t)i. Then by the Ricci Identity
for pullback bundles (Corollary 36.16) we have

f 0 = T hrT (c1), c2i � T hc1,rT (c2)i
= hrT (rT (c1)), c2i+ hrT (c1),rT (c2)i � hc1,rT (rT (c2))i � hrT (c1),rT (c2)i
= hrT (rT (c1)), c2i � hc1,rT (rT (c2))i (50.2)

But by the Jacobi equation (50.1) we have

hrT (rT (c1)), c2i = �
⌦

Rr(c1, �0)(�0), c2
↵

= �Rr
m(c2, �

0, c1, �0).

Part (iv) of Lemma 47.2 tells us that

Rr
m(c2, �

0, c1, �0) = Rr
m(c1, �

0, c2, �0),

and thus
hrT (rT (c1)), c2i � hc1,rT (rT (c2))i = 0.

Combining this with (50.2) completes the proof.

Corollary 50.5. Let c denote a Jacobi field along �. Then the function

t 7! hc(t), �0(t)i
is a�ne.

Proof. Since rT (�0) = 0 the previous Lemma tells us that the function

t 7! hrT (c)(t), �
0(t)i

is constant. By the same argument we have

d

dt
hc(t), �0(t)i = hrT (c)(t), �

0(t)i ,

and thus
d2

dt2
hc(t), �0(t)i = 0,

which is what we wanted to show.

Thus for any Jacobi field c along �, we can write

hc(t), �0(t)i = at+ b (50.3)

for constants a, b 2 R. In fact, we may take

a =
d

dt

�

�

�

t=0
hc(t), �0(t)i , b = hc(0), �0(0)i . (50.4)
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Definition 50.6. We define the space Jac?(�) of Jacobi fields that are orthogonal
to �0 as

Jac?(�) := {c 2 Jac(�) | hc(t), �0(t)i = 0, 8 t} .
Thus a Jacobi field belongs to Jac?(�) if and only if the constants a and b from

(50.3) and (50.4) are both zero. Thus the Jacobi fields �0 and t�0 from Examples
50.2 and 50.3 do not belong to Jac?(�). In fact, we will prove shortly that

Jac(�) = Jac?(�)� span{�0, t�0}, (50.5)

and that Jac?(�) is (2n� 2)-dimensional.

Remark 50.7. If � is a geodesic, we can consider the domain of � as a one-
dimensional Riemannian manifold, under the usual Euclidean metric1. Thus if c is
a Jacobi field then its tangential component c> (Definition 46.14) and orthogonal
component c? := c � c> (Definition 46.15) both make sense. Using Lemma 46.17
we see that

c> = hc, �0i �0 = (a+ bt)�0

where a, b are as in (50.3) and (50.4). As we have already observed in Examples 50.2
and 50.3, c> satisfies the Jacobi equation 50.1. Thus as Jac(�) is a vector space,
the orthogonal component c? is also a Jacobi field, which in fact lies in Jac?(�0).

Proposition 50.8. Let � be a geodesic in M , and let t0 belong to the domain of
�. Let v, w 2 T�(t0)M . There exists a unique Jacobi field c 2 Jac(�) such that

c(t0) = v, rT (c)(t0) = w.

An immediate corollary of Proposition 50.8 is:

Corollary 50.9. The space Jac(�) is a 2n-dimensional vector space. Moreover
Jac?(�) is a subspace of codimension 2, i.e. (50.5) holds.

Proof. For any t0 in the domain of � the map

Jac(�) 7! T�(t0)M ⇥ T�(t0)M, c 7! �

c(t0),rT (c)(t0)
�

is a linear isomorphism by Proposition 50.8.

The proof of Proposition 50.8 is by construction:

Proof of Proposition 50.8. Wemay assume �0(t) is non-zero for every t, as otherwise
� is a constant curve and the claim is trivial (cf. Remark 51.3). Let e1 := �0 and ex-
tend {e1} to a parallel local frame {e1, . . . , en} along � such that {e2(t0), . . . en(t0)}
form an orthonormal basis of the orthogonal complement �0(t0)? ⇢ T�(t0)M (such
a frame exists by Lemma 31.5—note e1 = �0 is parallel by assumption, since �0 is a
geodesic.) Since rm = 0 we also have that {e2(t), . . . en(t)} form an orthonormal

1Actually the choice of metric doesn’t really matter: any two metrics on R are isometric, and
the only Riemannian invariant of a circle S1 is its length.
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basis of the orthogonal complement �0(t)? ⇢ T�(t)M for all t in their domain. Thus
if c 2 ��(TM) then we can write

c = f i ei, where f i =

(

1
|�0|2 hc, �0i , i = 1,

hc, eii , 2  i  n.

Since each ei is parallel we have rT (rT (c)) = f̈ i ei, where as in (42.2) we tem-
porarily use the dot notation for the derivative of the real-valued function f i. Given
1  i, j  n set

hj
i :=

(

0, , i = 1,

hj
i := Rr

m(ej, �
0, ei, �0), 2  i  n.

Then c satisfies the Jacobi equation (50.1) if and only if

f̈ j + f ihj
i = 0, 1  j  n. (50.6)

The equations (50.6) are a homogeneous system of n linear second-order ordinary
di↵erential equations, and thus for a given set of initial conditions (on f j and ḟ j)
there is a unique solution.

Remark 50.10. Suppose m has constant curvature . Then the Jacobi fields are
easy to write down explicitly. Consider the ordinary di↵erential equation

f̈ + f = 0. (50.7)

Let a(t) and b(t) denote the unique solutions of (50.7) with

�

a(0), ȧ(0)
�

= (1, 0),
�

b(0), ḃ(0)
�

= (0, 1).

Thus for instance if  = 1 then a1 = cos and b1 = sin. Suppose � is a geodesic.
Given v, w 2 T�(0)M such that hv, �0(0)i = hw, �0(0)i = 0, let ev and ew denote the
unique parallel sections along � with ev(0) = v and ew(0) = w. Then it follows from
the proof of Proposition 50.8 that the unique Jacobi field c with initial conditions
c(0) = v and rT (c)(0) = w is given by

c = a ev + b ew.

Proposition 50.8 implies that the Jacobi equation (50.1) is interesting in its
own right. But it does not explain the motivation behind the equation—why, for
instance, do we study (50.1) and not rT (rT (c)) � R(c, �0)(�0)? The next result
clarifies this

Proposition 50.11. The Jacobi equation (50.1) is the linearisation of the geodesic
equation.

For this to make sense, we should define precisely what “linearisation” means.

Definition 50.12. Let � : [a, b] ! M be a smooth curve. A variation of � is a
smooth map � : (�", ")⇥ [a, b]!M such that �(0, t) = �(t).
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Thus a variation is simply a homotopy of curves. The reason for the name
“variation” rather than “homotopy” is that one usually regards a homotopy as
running from one curve to another, whereas for a variation we regard the original
curve � as lying in the “middle” of the homotopy. In general we will write a the
coordinates of a variation � as (s, t); thus s is the homotopy parameter and t is the
curve parameter. Observe that

@t�(0, t) = �0(t).

Suppose now that � is a variation of a geodesic � which in addition has the property
that t 7! �(s, t) is a geodesic for all s 2 (�", "). In this case we call � a varia-
tion of geodesics. Proposition 50.11 is equivalent (by definition) to the following
statement:

Proposition 50.13. Let � : [0, r] ! M be a geodesic and let � be a variation of
geodesics along �. Then @s�(0, t) is a Jacobi field along �. Moreover if c is any
Jacobi field along � then there exists2 a variation � of geodesics along � such that
c = @s�(0, ·).
(|) Remark 50.14. A more satisfying definition of the word “linearisation” will be
given next lecture (see Remark 51.19). This uses a little bit of infinite-dimensional
di↵erential geometry.

Proof of Proposition 50.13 (and Proposition 50.11). We prove the result in two steps.
1. Suppose � : (�", ")⇥ [0, r]!M is a variation along �. Set c := @s�(0, t). In

this step we show that if � is a variation of geodesics then c := @s�(0, t) is a Jacobi
field along �.

Consider the pullback connection (also denoted by) r:
r : X((�", ")⇥ [0, r])⇥ ��(TM)! ��(TM).

Let S = @
@s and T = @

@t , so that

@s� = D�[S], @t� = D�[T ].

By assumption
rT (@t�) = 0

(because � is a variation of geodesics). Next, since [S, T ] = 0, by Proposition 44.8
we have

rS(D�[T ])�rT (D�[S]) = Tr(D�[S], D�[T ]) = 0. (50.8)

Thus

Rr(@s�, @t�)(@t�) = rS(rT (@t�)�rT (rS(@t�))�r[S,T ](@t�)

= 0�rT (rS(D�[T ])� 0
(†)
= �rT (D�(rT (S))

= �rT (rT (@s�)),

where (†) used (50.8). If we evaluate both sides at s = 0 this gives

Rr(c, �0)(�0) = �rT (rT (c)),

and thus c is a Jacobi field.
2This variation is not unique!
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2. Now for the converse direction. We denote by exp: S ! M the exponential
map of m (Definition 46.20), and given y 2 M we let Sy := S \ TyM denote the
domain of expy. Thus Sy is star-shaped neighbourhood of 0y (part (i) of Theorem
43.3).

Suppose � : [0, r]!M is a geodesic and c 2 Jac(�). Set x := �(0) and consider
the three tangent vectors u, v, w 2 TxM defined by

u := �0(0), v := c(0), w := rT (c)(0).

Let � : (�", ") ! M denote any3 smooth curve such that �(0) = x and �0(0) = v.
Let eu and ew be parallel vector fields along � such that eu(0) = u and ew(0) = w.
Note that u 2 Sx (since �(t) = expx(tu)). Since S is open in TM it follows that
for " > 0 su�ciently small one has

t(eu(s) + sew(s)) 2 S�(s), 8 (s, t) 2 (�", ")⇥ [0, r]

We now define
�(s, t) := exp�(s)

�

t(eu(s) + sew(s))
�

.

For any fixed s the curve t 7! �(s, t) is a geodesic by the definition of the exponential
map. For s = 0 we have

�(0, t) = exp�(0)(teu(0)) = expx(tu) = �(t).

Thus by Step 1 the vector field c̃(t) := @s�(0, t) is a Jacobi field along �. To
complete the proof we show that c̃ = c. By Proposition 50.8 we need only check
that

c̃(0) = v, rT (c̃)(0) = w.

The first equality is clear, since

c̃(0) = @s�(0, 0) = �0(0) = v.

To see the second equality we compute

rT (c̃)(0) = rT (D�[S])(0, 0) = rS(D�[T ])(0, 0) = ew(0) = w,

where the second equality used the same argument as (†) in the computation from
Step 1. This completes the proof.

The proof of Step 2 of Proposition 50.13 yields the following statement, which
is useful in its own right.

Corollary 50.15. Let � be a geodesic with �(0) = x and fix v 2 TxM . The
unique Jacobi field c along � with c(0) = 0x and rT (c)(0) = v is given by

c(t) = D expx(t�
0(0))

⇥

tJt�0(0)(v)
⇤

Before stating today’s final result, we need one more definition,

3Any smooth curve satisfying these conditions will do. This shows why the variation we build
is not unique.
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Definition 50.16. Letm be a Riemannian metric onM . Given x 2M the tangent
space TxM is a vector space, and thus also a smooth manifold. We now turn TxM
into a Riemannian manifold by defining a Riemannian metric mT

x

M = h·, ·iT
x

M .
The idea is exactly the same as in Example 46.7, only instead of the Euclidean dot
product we use the inner product coming from the metric m:

hJu(v),Ju(w)iT
x

M := hv, wi , u, v, w 2 TxM.

We conclude this lecture with the following application of Jacobi fields, which
is one of many di↵erent theorems across mathematics that bears Gauss’ name.

Theorem 50.17 (The Gauss Lemma). Fix x 2 M and suppose v 2 TxM belongs
to the domain Sx of expx. Let w 2 TxM denote any other tangent vector. Then

hD expx(v)[Jv(v)], D expx(v)[Jv(w)]i = hJv(v),Jv(w)iT
x

M . (50.9)

In particular
�

�D expx(tv)[Jv(v)]
�

� = |v| (50.10)

and
D expx(tv)[Jv(v)] ? D expx(tv)[Jv(w)] if v ? w. (50.11)

Theorem 50.17 shows that the exponential map at a point is “radially” isometric.
It does not claim that expx : (Sx,mT

x

M)! (M,m) is an isometry, since we are only
allowed to feed D expx(v) the tangent vector Jv(v) in the first variable, rather than
an arbitrary tangent vector Jv(u).

Proof. The right-hand side of (50.9)is equal to hv, wi by definition of the metric
mx. Meanwhile if we let � denote the geodesic expx(tv) and let c denote the Jacobi
field along � with c(0) = 0 and rT (c)(0) = w then the left-hand side is exactly
h�0(1), c(1)i by Corollary 50.15. By (50.3) and (50.4) we have

hc(t), �0(t)i = t hv, wi ,

and thus taking t = 1 completes the proof.
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LECTURE 51

The length and energy functionals of a
Riemannian manifold

In this lecture we introduce the length and energy functionals of a Riemannian
manifold. We show how geodesics can be detected via calculus of variations. This
leads to a new viewpoint on Jacobi fields.

Throughout this lecture, (M,m) is a Riemannian manifold of dimension n, r
denotes the Levi-Civita connection of m, and exp: S !M denote the exponential
map of m. We denote by T the vector field @

@t . In contrast to last lecture however,
today we will restrict our attention to curves defined on compact intervals [a, b].
We begin by defining the length of a curve.

Definition 51.1. Let � : [a, b]!M denote a smooth curve. We define the length
of � as

Lm(�) : =

Z b

a

|�0(t)| dt.

It is also useful to consider the arc-length ↵ of a curve � : [a, b]!M :

↵ : [a, b]! [0,1), ↵(t) :=

Z t

a

|�0(t)| dt,

so that ↵(a) = 0 and ↵(b) = Lm(�). Let us say a curve � is regular if �0(t) 6= 0 for
all t. If � is regular then its arc-length is a strictly monotone increasing function
since

↵0(t) = |�0(t)| > 0.

In this case the inverse function �(t) is well-defined. The new curve

�(t) : [0,Lm(�)]!M, �(t) := �(�(t))

then satisfies
|�0(t)| = |�0(t)�0(�(t))| = |�0(t)↵0(�(t))| = 1.

Thus in particular
Lm(�) = Lm(�). (51.1)

We say that a curve � is of constant speed if |�0(t)| is constant, and of unit
speed if this constant is equal to one. We have thus proved:

Lemma 51.2. If � is any regular curve then we can reparametrise � so that it is of
unit speed.

Will J. Merry, Di↵. Geometry II, Spring 2019, ETH Zürich. Last modified: June 28, 2019.
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Remark 51.3. Any geodesic � has constant speed. Indeed

d

dt
|�0|2 = T h�0, �0i = 2 hrT (�

0), �0i = 0,

and thus also t 7! |�0(t)| is constant. Thus if � is a geodesic then either � is a
constant curve or � is regular.

Remark 51.4. Recall the notion of a piecewise smooth curve from Lecture 32
(defined just before Example 32.6). It is useful to also have a notion of length for
such a curve. If � : [a, b]!M is a piecewise smooth curve and a = a0 < a1 < · · · <
ak = b are such that �|[a

i�1,ai] is smooth for each i = 1, . . . , k then we can define
the length1 of � as

Lm(�) :=
k
X

i=1

Lm

�

�|[a
i�1,ai]

�

.

Time for some more notation.

Definition 51.5. Let us abbreviate

P([a, b]) := {� : [a, b]!M | � is piecewise smooth} ,

and
P :=

[

all compact intervals [a,b]

P([a, b])

Moreover given x, y 2M we set

Pxy([a, b]) := {� 2 P([a, b]) | �(a) = x, �(b) = y} ,

and
Pxy :=

[

all compact intervals [a,b]

Pxy([a, b])

We will use the letter C instead of P when we want to restrict to genuine smooth
curves (rather than just piecewise smooth curves). Thus for instance Cxy is the
space of all smooth curves � in M that start at x and end at y. The spaces Cxy are
all collectively referred to as the path spaces of M .

We can regard Lm as a functional

Lm : P ! [0,1)

Lemma 51.6. The length functional Lm : P ! [0,1) satisfies:

(i) Lm(�) = 0 if and only if � is a constant curve.

(ii) If the concatenation � ⇤ � (Example 32.6) of two curves �, � 2 P is defined
then

Lm(� ⇤ �) = Lm(�) + Lm(�).

1Exercise: Why is this independent of the choice of a
i

?

2



(iii) If h : [a1, b1]! [a, b] is a monotone piecewise smooth map then

Lm(�) = Lm(� � h)

for all � 2 P([a, b]). In particular

Lm(�) = Lm(�
�),

where �� is the reverse curve.

The proof of Lemma 51.6 is easy. For example, part (ii) is an application of the
usual change of variables formula for integration. (Note (51.1) was a special case.)
This also shows that—as far as Lm is concerned—without loss of generality we may
restrict attention to [a, b] = [0, 1].

There is another functional which is usually more useful than the length func-
tional.

Definition 51.7. We define the energy functional Em : P ! [0,1) by

Em(�) :=
1

2

Z b

a

|�0(t)|2 dt, � 2 P([a, b]).

Unlike the length functional, the energy functional is not invariant under reparametri-
sation.

Lemma 51.8. For any � 2 P([a, b]) we have

Lm(�) 
p

2(b� a)Em(�)

with equality if and only if � has constant speed.

Proof. Apply the Cauchy-Schwarz inequality.

The fact that the length functional is invariant under reparametrisation and
the energy functional is not may seem to indicate the length functional is “better”.
Actually the converse is true, as we explain in Remark 51.25 at the end of the
lecture.

Definition 51.9. Fix � 2 Cxy([a, b]). We define

T�Cxy([a, b]) := {c 2 ��(TM) | c(a) = 0x, c(b) = 0y} (51.2)

Thus T�Cxy([a, b]) is the space of vector fields c along � which vanish at the end-
points.

Why the tangent space notation?

Theorem 51.10. The space Cxy([a, b]) is an infinite dimensional (Fréchet) manifold.
The tangent space to Cxy([a, b]) at � is given by (51.2).

3



Since we have not even defined infinite dimensional manifolds properly, we can-
not (of course) prove Theorem 51.10. But let us at least observe that the description
of the tangent space from Definition 51.9 is reasonable. Firstly, T�Cxy([a, b]) is an
infinite dimensional vector space, so it at least plausibly might be a tangent space
to an infinite dimensional manifold. Secondly, if c 2 T�Cxy([a, b]) then just as in
the proof of Proposition 50.13, for |s| su�ciently small the curve

� : (�", ")⇥ [a, b]!M, �(s, t) := exp�(t)(sc(t)) (51.3)

is well-defined. Moreover

�(0, t) = �(t), @s�(0, t) = c(t),

and since c vanishes at the endpoints,

�(s, a) = �(a), �(s, b) = �(b).

Thus we can think of � as a map

�̃ : (�", ")! Cxy([a, b]), �̃(s)(t) := �(s, t),

i.e. a curve in the manifold Cxy([a, b]), and the tangent vector of this curve is

�̃0(0) = @s�(0, ·) = c.

Thus elements of T�Cxy([a, b]) are tangent vectors to curves in Cxy([a, b]), and so
Theorem 51.10 makes sense. In a similar vein, we define the piecewise-smooth
version:

Definition 51.11. Let � 2 Pxy([a, b]). Define

T�Pxy([a, b]) := {c a piecewise smooth vector field along � with c(a) = 0x, c(b) = 0y} .
Warning: The “tangent space” notation T�Pxy([a, b]) should be taken with a

grain of salt. Indeed, in contrast to Theorem 51.10, the space Pxy([a, b]) typically
does not admit the structure of an infinite-dimensional manifold.

If c 2 T�Pxy([a, b]) then just as (51.3) we can consider the (now only piecewise
smooth) variation �(s, t) = exp�(t)(sc(t)).

Definition 51.12. The di↵erential of the energy functional at � 2 Pxy([a, b]) is
the linear map

dEm|� : T�Pxy([a, b])! R
given by

dEm|�(c) := d

ds

�

�

�

s=0
Em(�(s, ·))

Again, the word “di↵erential” is a little naughty, since as Pxy([a, b]) is not a
manifold it does not make sense to say that the function Em is (or is not) di↵eren-
tiable, and thus its di↵erential is not defined. In fact, even if we replace Pxy([a, b])
by Cxy([a, b]) then Definition 51.12 can only be understood formally, since the func-
tional Em is typically not actually di↵erentiable (!) with respect to this Fréchet
manifold structure. This can be rectified by working with curves of lower regular-
ity, as we explain in Remark 51.24 at the end of the lecture.

Let us now compute the di↵erential of Em. We first give the result in the smooth
case.
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Proposition 51.13. Let � 2 Cxy([a, b]) and c 2 T�Cxy([a, b]). Then

dEm|�(c) = �
Z b

a

hc(t),rT (�
0)(t)i dt.

Proof. Let �(s, t) = exp�(t)(sc(t)) be as in (51.3). As in the proof of Proposition

50.13 we let S denote the vector field @
@s . Then by di↵erentiating under the integral

sign we compute

d

ds
Em(�(s, ·)) = 1

2

Z b

a

S h@t�, @t�i dt

=

Z b

a

hrS(@t�), @t�i dt
(†)
=

Z b

a

hrT (@s�), @t�i dt

=

Z b

a

T h@s�, @t�i dt�
Z b

a

h@s�,rT (@t�)i dt
(‡)
= 0�

Z b

a

h@s�,rT (@t�)i dt,

where (†) used rT (S) = rS(T ) and (‡) used the fact that

�(s, a) = exp�(a)(sc(a)) = �(a), �(s, b) = exp�(b)(sc(b)) = �(b)

for all s so that
@s�(s, a) = @s�(s, b) = 0.

Evaluating at s = 0 gives

dEm|�(c) = �
Z b

a

hc,rT (�
0)i dt

as required.

In the piecewise smooth case the formula is a little less pleasant. Indeed, suppose
� : [a, b]!M is a piecewise smooth curve. Let a = a0 < a1 < · · · < ak = b be such
that �|[a

i�1,ai] is smooth for each i = 1, . . . , k. The two tangent vectors

(�|[a
i�1,ai]

�0
(ai) and (�|[a

i

,a
i+1]

�0
(ai) (51.4)

will typically not be the same. Thus the line (‡) in the proof of Proposition 51.13 is
no longer true: when performing the integration by parts one gets additional error
terms and we obtain

dEm|�(c) = �
Z b

a

hc(t),rT (�
0)(t)i dt (51.5)

+
k�1
X

i=1

D

c(ai), (�|[a
i�1,ai]

�0
(ai)� (�|[a

i

,a
i+1]

�0
(ai)
E

.
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Corollary 51.14. A curve � 2 Pxy([a, b]) is a critical point of Em (i.e. dEm|� = 0)
if and only if � is a geodesic (and thus in particular is smooth, not just piecewise
smooth).

Proof. It is clear from Proposition 51.13 that if � 2 Cxy([a, b]) then � is a critical
point of Em if and only if � is a geodesic. Thus we need only show that if � 2
Pxy([a, b]) is a critical point of Em then � is smooth. Using the notation from
(51.4), we need to prove that in this case the two tangent vectors are the same. For
this choose a smooth function f : [a, b] ! R such that f(ai) = 0 for each ai and
f(t) > 0 for t 6= ai. Then set c(t) := f(t)rT (�)(t). By (51.5) we obtain that

0 = dEm|�(c) = �
Z b

a

f(t)|rT (�
0)(t)|2 dt+ 0,

and thus we conclude that rT (�0)|[a
i�1,ai] = 0 for each i. Now choose a vector field

c̃ 2 T�P�([a, b]) such that

c̃(ai) = (�|[a
i�1,ai]

�0
(ai)� (�|[a

i

,a
i+1]

�0
(ai).

Then by (51.5) again we get

0 = dEm|�(c̃) = 0�
k�1
X

i=1

|(�|[a
i�1,ai]

�0
(ai)� (�|[a

i

,a
i+1]

�0
(ai)|2

which implies that

(�|[a
i�1,ai]

�0
(ai) = (�|[a

i

,a
i+1]

�0
(ai), 8 1  i  k � 1

and hence � is of class C1 and satisfies the geodesic equation rT (�0) = 0 on all of
[a, b]. But clearly any C1 solution of the geodesic is automatically of class C1.

What happens if we di↵erentiate again? For this we need the notion of a
two-parameter family of variations. For this let � 2 Pxy([a, b]) and let c1, c2 2
T�Pxy([a, b]). For |r|, |s| su�ciently small the map

�(r, s, t) := exp�(t)
�

rc1(t) + sc2(t)
�

(51.6)

is well-defined. Note @r�(0, 0, ·) = c1 and @s�(0, 0, t) = c2.

Definition 51.15. Let � 2 Cxy([a, b]) be a geodesic. The Hessian of Em is the
symmetric bilinear form

Hess(Em)(�) : T�Pxy([a, b])⇥ T�Pxy([a, b])! R

given by

Hess(Em)(�)(c1, c2) :=
d2

drds

�

�

�

r=s=0
Em(�(r, s, ·)),

where � is defined as in (51.6).
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This is (formally) consistent with Definition 48.20—we are only defining the
Hessian at a critical point of Em, and thus we do not need to choose a connection
on the infinite dimensional manifold Cxy([a, b]). Then analogously to Proposition
51.13 we have the following computation, whose proof is deferred to Problem Sheet
W.

Proposition 51.16. Let � 2 Cxy([a, b]) be a geodesic and let c1, c2 2 T�Cxy([a, b]).
Then

Hess(Em)(�)(c1, c2) = �
Z b

a

⌦rT (rT (c1)) +Rr(c1, �0)(�0), c2
↵

dt.

If instead we only require c1, c2 2 T�Pxy([a, b]) then we have

Hess(Em)(�)(c1, c2) = �
Z b

a

⌦rT (rT (c1)) +Rr(c1, �0)(�0), c2
↵

dt (51.7)

+
k�1
X

i=1

⌦rT (c1)|[a
i�1,ai](ai)�rT (c1)|[a

i

,a
i+1](ai), c2(ai)

↵

,

where a = a0 < a1 < · · · < ak = b is any subdivision of [a, b] such that c1|[a
i�1,ai] is

smooth for each i = 1, . . . , k.

Definition 51.17. Let � 2 Cxy([a, b]) be a geodesic. We say an element c 2
T�Pxy([a, b]) belongs to the null-space of Hess(Em)(�) if

Hess(Em)(�)(c, c̃) = 0 8c̃ 2 T�Pxy([a, b]).

Corollary 51.18. Let � 2 Cxy([a, b]) be a geodesic. An element c 2 T�Pxy([a, b])
belongs to the null-space of Hess(Em)(�) if and only if c is a Jacobi field along �
which vanishes at the endpoint (and thus in particular c is smooth).

Proof. As with the proof of Corollary 51.14, if c is smooth then it is clear from
Proposition 51.16 that c belongs to the null-space of the Hessian if and only if c is a
Jacobi field along � which vanishes at the endpoints. Thus we need only show that
any element piecewise smooth element c of the null-space is in fact, smooth. For
this assume a = a0 < a1 < · · · < ak = b is a subdivision of [a, b] such that c1|[a

i�1,ai]

is smooth for each i = 1, . . . , k. Let f : [a, b] ! R be a smooth function such that
f(ai) = 0 for each i and f(t) > 0 for t 6= i. Let

c1(t) := f(t)
�rT (rT (c)) +Rr(c, �0)(�0)

�

.

Then from (51.7) we obtain

0 = Hess(Em)(�)(c, c1) = �
Z b

a

f(t)|rT (rT (c)) +Rr(c, �0)(�0)|2dt,

which shows that c satisfies the Jacobi equation on each interval [ai�1, ai]. In
particular for each i = 1, . . . , k � 1 we have

rT

�rT

�

c|[a
i�1,ai]

��

(ai) = �Rr(c(ai), �0(ai))(�0(ai)) = rT

�rT

�

c|[a
i

,a
i+1]

��

(ai).
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Now choose c2 2 T�Pxy([a, b]) such that c2(a) = c2(b) = 0 and such that for each
i = 1, . . . , k � 1 we have

c2(ai) = rT

�

c|[a
i�1,ai]

�

(ai)�rT

�

c|[a
i

,a
i+1]

�

(ai).

Then from (51.7) we obtain

0 = Hess(Em)(�)(c, c2) =
k�1
X

i=1

|rT

�

c|[a
i�1,ai]

�

(ai)�rT

�

c|[a
i

,a
i+1]

�

(ai)|2

and hence for each i = 1, . . . , k � 1 we have

rT

�

c|[a
i�1,ai]

�

(ai) = rT

�

c|[a
i

,a
i+1]

�

(ai).

We conclude that c satisfies the Jacobi equation on [a, b] and is of class C2. It thus
follows from Proposition 50.8 that c is of class C1. This completes the proof.

Remark 51.19. As promised in Remark 50.14, one can think of Corollary 51.14
and Corollary 51.18 as giving a less ad-hoc definition of the word “linearisation”.

Definition 51.20. Let � 2 Cxy([a, b]) be a geodesic. Set

null(�) := {c 2 Jac(�) | c(a) = 0x, c(b) = 0y} .
Thus by Corollary 51.18 the space null(�) can be identified with the null-space of
Hess(Em)(�).

If � is a regular geodesic then the Jacobi fields from Examples 50.2 and 50.3
never have this property, and thus

dimnull(�)  2n� 2.

We say that a geodesic � is non-degenerate if dimnull(�) = 0, and degenerate if
dimnull(�) > 0. It is of interest to know when a geodesic first becomes degenerate.
This motivates the following definition.

Definition 51.21. Let � : [0, b] ! M be a regular geodesic. A point t0 2 (0, b] is
said to be a conjugate point of � if there exists a non-trivial Jacobi field c 2 Jac(�)
such that c(0) = c(t0) = 0.

Example 51.22. Assume m has constant curvature . Then from Remark 50.10
we see that a regular geodesic � has a conjugate point at ⇡p

 if  > 0, meanwhile if
  0 then no regular geodesic has conjugate points.

This is particularly illustrative for the sphere (Sn,mround), which has  = 1.
From Problem (ii) the geodesics are the great circles, and thus we see that the first
conjugate point occurs at the antipodal point.

One can also connect the notion of a conjugate point with the exponential map.
The next result is also on Problem Sheet W you will prove:

Proposition 51.23. Let � : [0, b]!M be a regular geodesic. A point t0 2 (0, b] is
a conjugate point of � if and only if exp�(t0) does not have maximal rank at t0�0(0).
In fact,

dimkerD exp�(0)(t0�
0(0)) = dimnull(�|[0,t0]).

8



We conclude this lecture with a couple of non-examinable remarks concerning
regularity.

(|) Remark 51.24. Whilst Cxy([a, b]) admits the structure of an infinite dimen-
sional manifold, it is only a Fréchet manifold. Without going into details, these
are a rather badly behaved class of infinite dimensional manifolds (for example, the
Implicit Function Theorem is not true for Fréchet manifold). A much better be-
haved class of infinite dimensional manifolds are Banach manifolds (or better still,
Hilbert manifolds). We can turn Cxy([a, b]) into a Hilbert manifold by relaxing the
regularity assumption. For this let

W1,2
xy ([a, b])

denote the set of absolutely continuous curves � : [a, b]!M such that |�0| is square
integrable (in other words, the set of maps � : [a, b]!M that are of Sobolev class
W 1,2. ThenW1,2

xy ([a, b]) is a Hilbert manifold with tangent space T�W1,2
xy ([a, b]) equal

to those sections c along � that vanish at the endpoints and are also of Sobolev
class W 1,2.

Whilst working with curves of lower regularity might seem like we are making
life harder for ourselves, in fact things get much simpler. For instance, if we regard
the energy functional as being defined on this space

Em : W1,2
xy ([a, b])! [0,1)

then one can show that Em is a di↵erentiable function of class C2, and in this case
its di↵erential dEm|� at � 2 W1,2

xy ([a, b]) is indeed given by the expression from
Definition 51.12, and the Hessian of Em (defined as in Definition 48.20) at a critical
point � is indeed given by Definition 51.15. Moreover, since the geodesic equation
rT (�0) = 0 is an elliptic equation, one can use a powerful technique known as
elliptic regularity to prove that if � is a curve of Sobolev class W 1,2 such that
rT (�0) = 0 then � is automatically smooth. Thus the critical points of Em when
regarded as a functional on W1,2

xy ([a, b]) are the same as the critical points of Em on
Cxy([a, b]), i.e. the geodesics.

Finally let us justify why the energy functional is “better” than the length
functional.

(|) Remark 51.25. The length functional Lm is less well-behaved for two reasons:

(i) Since Lm is invariant under reparametrisation, critical points of Lm come in
infinite-dimensional families. Indeed, a similar computation to Proposition
51.13 shows that � 2 Pxy([a, b]) is a critical point of Lm if and only if � is the
reparametrisation of a geodesic. This is “bad”: in general when one wants
to do calculus of variations it is better to have as “few” critical points as
possible.

(ii) Secondly, even if we consider Lm as a functional on the Hilbert manifold
W1,2

xy ([a, b]), it is not di↵erentiable. (This is because t 7! pt is not di↵eren-
tiable at t = 0.) One could fix this by restricting Lm to the submanifold of
regular curves inside W1,2

xy ([a, b]), since on such a curve Lm is di↵erentiable.
However, this creates additional technical complications elsewhere.
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LECTURE 52

The metric structure of a Riemannian
manifold

In this lecture we finally make good on our claim (Remark 42.6) that geodesics
on a Riemannian manifold really can be thought of—at least locally—as length-
minimising curves (and thus the name “geodesic” coincides with standard meaning
outside of mathematics).

Throughout this lecture, (M,m) is a Riemannian manifold of dimension n, r
is the Levi-Civita connection of m, and exp: S !M is the exponential map of m.
Here is our key definition for today:

Definition 52.1. Given x, y 2M we define the m-distance between x and y by

dm(x, y) := inf {Lm(�) | � 2 Pxy([0, 1])} ,
where by convention the infimum of the empty set is defined to be 1.

If M is connected then Pxy([0, 1]) 6= ; for all x, y, and thus dm(x, y) <1. Note
that since Lm is invariant under reparametrisations we could equally as well define

dm(x, y) := inf {Lm(�) | � 2 Pxy} .
In fact, we can even restrict to smooth curves, as the next lemma shows.

Lemma 52.2. Let � 2 P([a, b]). Then there exists an increasing di↵eomorphism
h : [a, b]! [a, b] such that � � h 2 C([a, b]).
Proof. Let a = a < a1 < · · · < ak = b denote a subdivision such that �|[a

i�1,ai]

is smooth for each i = 1, . . . , k. Let fi : [a, b] ! R denote a smooth increasing
function1 such that

fi(t) =

(

0, a  t  ai�1,

1, ai  t  b.

Then set

h(t) := a+
k
X

i=1

(ai � ai�1)fi(t).

This is a smooth strictly increasing function such that h(ai) = ai and such that
h0(ai) = h00(ai) = h000(ai) = · · · = 0 for each i = 0, . . . , k. Thus � � h is smooth at
each point ai, and hence smooth everywhere.

Corollary 52.3. One has

dm(x, y) = inf {Lm(�) | � 2 Cxy([0, 1])}
Will J. Merry, Di↵. Geometry II, Spring 2019, ETH Zürich. Last modified: June 28, 2019.

1The existence of such a smooth function was proved in Step 1 of Lemma 3.11.
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Here is today’s first main result.

Theorem 52.4. Let (M,m) be a connected Riemannian manifold. Then the func-
tion

dm : M ⇥M ! [0,1)

is a metric in the sense of point-set topology. Moreover the topology that dm induces
on M is the same as the original topology on M .

The key to proving Theorem 52.4 is to first consider the case whereM is a vector
space and the metric comes from an inner product. This is completely trivial, but
for completeness we spell out all the details.

So suppose V is a vector space and h·, ·i is an inner product on V . We can
define a Riemannian metric mV = h·, ·iV on V by declaring that

hJx(v),Jx(w))iV := hv, wi , 8 x, v, w 2 V.

We have already met two instances of this construction:

• The Euclidean metric mEucl on Rn is the special case where V = Rn and h·, ·i
is the standard Euclidean dot product.

• If (M,m) is a Riemannian manifold then the Riemannian structure mT
x

M on
the tangent space from Definition 50.16 corresponds to the case V = TxM
and h·, ·i = m|x.

Suppose ⌘ : [a, b] ! V is a smooth curve. Let us temporarily write ⌘̇ for the
derivative of ⌘ in the sense of multivariate calculus. Thus ⌘̇ : [a, b]! V is another
smooth curve in V and2 one has

⌘0 = J⌘(⌘̇).
Set

r(t) := |⌘(t)|. (52.1)

If r(t) 6= 0 then we can uniquely write

⌘(t) = r(t)e(t)

where e : [a, b]! V is a smooth curve such that

|e(t)| = 1.

The Leibniz rule gives us

⌘0(t) = J⌘(t)(⌘̇(t))
= J⌘(t)(ṙ(t)e(t) + r(t)ė(t))

= ṙ(t)J⌘(t)(e(t)) + r(t)J⌘(t)(ė(t))
def
= ⌘0rad(t) + ⌘0pol(t).

2I really should have thought of this notation earlier. . . It would have made things far less
confusing at the beginning of Di↵erential Geometry I. Oh well. Note to self: Implement this
change before I lecture the course again.
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As the notation suggests, we call ⌘0rad(t) the radial component of ⌘0(t) and ⌘0pol(t)
the polar component of ⌘0(t). Note that

|⌘0rad(t)|2V = |ṙ(t)|2 ⌦J⌘(t)(e(t)),J⌘(t)(e(t))
↵

V
= |ṙ|2 he(t), e(t)i = |ṙ(t)|2. (52.2)

Moreover

⌦

⌘0rad(t), ⌘
0
pol(t)

↵

= r(t)ṙ(t)
⌦J⌘(t)(e(t)),J⌘(t)(ė(t))

↵

= r(t)ṙ(t) he(t), ė(t)i .

But

0 =
d

dt
he(t), e(t)i = 2 he(t), ė(t)i ,

and hence we see that the radial component is orthogonal to the polar component:

⌘0rad(t) ? ⌘0pol(t),

and hence
|⌘0(t)|2V = |⌘0rad(t)|2V + |⌘0pol(t)|2V .

Thus from (52.2) we see that

|⌘0(t)|V � |ṙ(t)|, with equality if and only if ė(t) = 0. (52.3)

The next lemma proves that such a ray is a length-minimising curve in the
Riemannian manifold (V,m).

Lemma 52.5. One has
dm(0, v) = |v|.

Proof. We may assume that v 6= 0. Set ⌘(t) := tv. Then for t > 0 the radial
component is well defined, and in fact in this case one has

⌘0(t) = Jtv(v) = ⌘0rad(t),

and so
|⌘0(t)|V = |v|.

Thus

Lm(⌘) =

Z 1

0

|⌘0(t)|V dt =

Z 1

0

|v| dt = |v|.

Thus dm(0, v)  |v|. Now suppose ⇣ is any curve in C0v([0, 1]). Suppose to begin
with that ⇣(t) 6= 0 for t > 0. Then (52.3) shows that Lm(⇣) � |v|. For the general
case if

a := sup {t > 0 | ⇣(t) = 0} ,
then the argument above shows that

Lm(⇣) � Lm

�

⇣|[a,1]
� � |v|,

where the first equality used part (ii) of Lemma 51.6. This shows that dm(0, v) � |v|,
and hence dm(0, v) = |v|. This completes the proof.
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Corollary 52.6. Theorem 52.4 is true for (V,mV ).

Now as in Definition 50.16, let us take V = TxM , equipped with the inner
product mx. We have just seen that length minimising in TxM passing through
0x are straight lines. We now show that this property is preserved under the
exponential map.

Proposition 52.7. Suppose v 2 Sx. Let ⌘v : [0, 1] ! TxM denote the curve
⌘v(t) := tv. Suppose ⌘ : [0, 1] ! Sx is any other piecewise smooth curve such that
⌘(0) = 0x and ⌘(1) = v. Then

Lm(expx �⌘) � Lm(expx �⌘v).

Moreover this equality is strict if there exists some t 2 [0, 1] such that

D expx(⌘(t))
⇥

⌘0pol(t)
⇤ 6= 0. (52.4)

Proof. By Lemma 52.2 we may assume that ⌘ is smooth. Moreover we may assume
that v 6= 0 and that ⌘(t) 6= 0 for t > 0. By the Gauss Lemma (Theorem 50.17) we
have

|D expx(⌘(t))[⌘
0(t)]|2 (50.11)

= |D expx(⌘(t))[⌘
0
rad(t)]|2 + |D expx(⌘(t))[⌘

0
pol(t)]|2

(†)
� |D expx(⌘(t))[⌘

0
rad(t)]|2

(50.10)
= |⌘0rad(t)|2T

x

M

= |ṙ(t)|2,

where r(t) = |⌘(t)| is defined as in (52.1) and the last line used (52.2). Next, note
that arguing as in the computation of (52.1) we have

d

dt
|⌘(t)| =

⌦

⌘(t),J⌘(t)(⌘̇(t))
↵

|⌘(t)| = |ṙ(t)|.

Thus

Lm(expx �⌘) =
Z 1

0

|D expx(⌘(t))[⌘
0(t)]|2 dt

�
Z 1

0

|ṙ(t)| dt

=

Z 1

0

d

dt
|⌘(t)| dt

= |⌘(1)|
= |v|
= Lm(expx �⌘v)

Finally, the last assertion is clear, as the only inequality was (†) in the equations
above, and (52.4) is exactly the condition for this inequality to be strict.
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Given x 2 M and " > 0 we denote by O(x, ") the open ball about 0x in TxM ,
measured with respect to the metric m|x:

O(x, ") := {v 2 TxM | |v| < "} . (52.5)

We let O(x, ") denote the closure of O(x, "):

O(x, ") := {v 2 TxM | |v|  "} .

Definition 52.8. Fix x 2 M . We denote by sm(x) the maximal radii of such a
ball that lies in the domain of the exponential map:

sm(x) := sup {" > 0 | O(x, ") ⇢ Sx} .

The injectivity radius of x 2M is the defined to be

injm(x) := sup
�

" > 0 | expx |O(x,") is a di↵eomorphism onto its image
 

.

Thus part (ii) of Theorem 43.3 tells us that

0 < injm(x)  sm(x).

Remark 52.9. If m is a complete metric (which by the Hopf-Rinow Theorem 53.7
is equivalent to asking that (M, dm) is a complete metric space) then one can show
that

injm(x) = sup
�

" > 0 | expx |O(x,") is injective
 

.

This is the reason for the name “injectivity radius”. Nevertheless, we will not need
or use this fact.

Proposition 52.7 has the following consequence.

Proposition 52.10. Fix x 2M and choose 0 < " < injm(x). Fix v 2 O(x, "), and
let �v := expx(tv). Set y := �v(1). If � 2 Pxy([0, 1]) then

Lm(�) � Lm(�v),

and the inequality is strict unless � is a reparametrisation of �v.

Proof. Suppose � has image in expx(O(x, ")). Then there exists a unique piecewise
smooth curve ⌘ : [0, 1] ! TxM such that expx �⌘ = �. By Proposition 52.7 in this
case we have Lm(�) � Lm(�v). If equality holds then by Proposition 52.7 again we
have

D expx(⌘(t))
⇥

⌘0pol(t)
⇤

= 0, 8 t 2 [0, 1],

and thus the same argument as in the proof of Proposition 52.7 tells us that for
any a  t0  t1  b one has

Lm

�

�|[t0,t1]
�

= |⌘(t1)� ⌘(t0)|.
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Suppose for contradiction that � is not a reparametrisation of �v. Then there exists
t0 2 [0, 1] such that ⌘(t0) /2 {tv | 0  t  1}. Then by part (ii) of Lemma 51.6 and
the proof of Proposition 52.7 we have

Lm(�) = Lm(�|[0,t0]) + Lm(�|[t0,1])
� |⌘(t0)|+ |v � ⌘(t0)|
> |v|
= Lm(�v),

which contradicts the assumption Lm(�) = Lm(�v). This deals with the case where
� has image inside expx(O(x, ")). If this is not the case, let

a := sup {t | �([0, t]) ⇢ expx(O(x, "))} .

Since v 2 O(x, "), there exists some 0 < b < a such that w :=
�

expx |O(x,")

��1
(�(b))

satisfies |w| > |v|. Then using Proposition 52.7 again we have

Lm(�) � Lm(�|[0,b]) � |w| > |v| = Lm(�v).

This completes the proof.

Remark 52.11. It follows from Proposition 52.7 that every geodesic is locally
length-minimising. We will explore this in more detail next lecture.

With these preparations out of the way we can prove Theorem 52.4 in the
general case. Given x 2M we denote by U(x, ") the set

U(x, ") := {y 2M | dm(x, y) < "} (52.6)

and by U(x, ") the set

U(x, ") := {y 2M | dm(x, y)  "}
Once the proof of Theorem 52.4 is complete, U(x, ") will be the open ball of radius
" about x in the dm-metric, and U(x, ") will be its closure in M . For now however,
these are just sets that will prove useful in the proof of Theorem 52.4.

Proof of Theorem 52.4. We prove the result in three steps.
1. In this step we show that dm is a metric. Since Lm(�) = Lm(��) for any

curve � by part (iii) of Lemma 51.6 it is clear that dm is symmetric. Moreover the
triangle inequality is immediate from part (ii) of the same lemma. It remains to
show that

dm(x, y) = 0 ) x = y.

Choose 0 < " < injm(x). Then we must have y 2 expx(O(x, ")), since any point
z not contained in expx(O(x, ")) has dm(x, z) � " by Proposition 52.10. But also
from the proof of Proposition 52.10 we have

dm(x, z) =
�

�

�

expx |O(x,")

��1
(z)
�

�, 8z 2 expx(O(x, ")). (52.7)

Thus if dm(x, y) = 0 then y = x.
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2. Thus (M, dm) is a metric space. It remains to show that the topology dm
induces on M is the same as the original topology. In this step we show that dm is
continuous as a function M ⇥M ! R. Indeed, if xh ! x then dm(x, xh) ! 0 by

(52.7) and the fact that z 7! �

�

�

expx |O(x,")

��1
(z)
�

� is continuous. Then if (xh, yh)!
(x, y) then by the triangle inequality we have

dm(x, y)� dm(x, xh)� dm(y, yh)  dm(xh, yh)

 dm(xh, x) + dm(x, y) + dm(y, yh)

and thus letting h!1 we see that dm(xh, yh)! dm(x, y).
3. To show that dm induces the same topology on M as we began with we

must show that the balls3 U(x, ") form a basis for the topology of M . Since dm
is continuous each such ball U(x, ") is open in M (with respect to the original
topology on M). Thus we need to show that for any x 2M and any neighbourhood
U of x (with respect to the original topology on M) there exists " > 0 such that
U(x, ") ⇢ U . In fact we will prove that for 0 < " < injm(x) one has

U(x, ") = expx(O(x, ")), (52.8)

which clearly implies the claim. To prove (52.8), first note that (52.7) implies
that expx(O(x, ")) ⇢ U(x, "). Since expx(O(x, ")) is dm-open in U(x, "), which is
connected, it su�ces to show that expx(O(x, ")) is dm-closed in U(x, "). So suppose
yh 2 expx(O(x, ")) with yh ! y. Set

vh :=
�

expx |O(x,")

��1
(yh).

Then (vh) is a bounded sequence in TxM , and hence by passing to a convergent
subsequence if necessary, we may assume vh ! v. Then

|v| = lim
h!1

|vh|
= lim

h!1
dm(x, yh)

= dm(x, y)

< "

by Step 2. Since expx is continuous, we also have y = expx(v), and thus y 2 U(x, ").
This completes the proof.

Since it will be useful later let us state (52.8) again as a corollary.

Corollary 52.12. Let x 2M and 0 < " < injm(x). Then

expx(O(x, ")) = U(x, ")

and expx |O(x,") is a di↵eomorphism

expx |O(x,") : O(x, ")! U(x, ").

3Since we have now proved d
m

is a metric, it is okay to call them “balls”!
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We will examine further properties of the the metric space (M, dm) next lecture.
But let us clear up a potential ambiguity in the terminology. If (X, dX) and (Y, dY )
are two metric spaces then an isometry f : X ! Y is a continuous bijection such
that dX(x, y) = dY (f(x), f(y)) for all x, y 2 X. Any isometry is necessarily a
homeomorphism, and in fact with a bit of work one can show that a continuous
map f : X ! Y is an isometry if and only if f is surjective and distance-preserving.

Thus if (M,m1) and (N,m2) are two Riemannian manifolds, we now have two
possible definitions of the word “isometry”:

(i) A di↵eomorphism ' : M ! N such that '?(m2) = m1 (Definition 46.1),

(ii) A continuous bijection ' : M ! N which is an metric space isometry (with
respect to the metric dm1 on M and the metric dm2 on N).

It is easy to see that an isometry in the sense of (i) is also an isometry in the sense
of (ii). In fact the converse holds too, as the next theorem states.

Theorem 52.13 (Myers-Steenrod). An isometry in the sense of (ii) is also an
isometry in the sense of (i) and hence the two definitions coincide.

This theorem is surprising, since a priori there is no reason why an isometry in
the sense of (ii) should even be di↵erentiable! Sadly we will not have time to prove
Theorem 52.13.

Remark 52.14. Theorem 52.13 is one of two results in Riemannian Geometry often
called the “Myers-Steenrod Theorem”. The other was stated in Remark 46.3. They
are both di�cult, but Theorem 52.13 is the easier of the pair.

We can also define the injectivity radius of a set.

Definition 52.15. If A ⇢ M is an arbitrary subset we define the injectivity
radius of A as

injm(A) := inf {injm(x) | x 2 A} .
In general it is possible for the injectivity radius of a subset to be zero. Never-

theless, the following holds.

Proposition 52.16. If A ⇢ M is compact then injm(A) > 0. In particular, if M
is compact then injm(M) > 0.

Proof. By part (iii) of Theorem 43.3, there exists a neighbourhood V of the zero
section o(M) with the property that (⇡, exp)|V is an embedding4. Since A is com-
pact, there exist finitely many points x1, . . . , xk and "1, . . . , "k > 0 such that

A ⇢
k
[

i=1

U(xi, "i),

and
U(xi, 3"i)⇥ U(xi, 3"i) ⇢ (⇡, exp)(V ), i = 1, . . . , k.

If y 2 A then there exists i such that y 2 U(xi, "i). Moreover expy is an embedding
on O(xi, 3"i). Thus injm(y) � 2"i, and hence injm(A) � min1ik 2"i > 0. This
completes the proof.

4As mentioned in Remark 43.4, this is the only time in the course where we use the full
strength of Theorem 43.3 (i.e. part (iii)) rather than the weaker statement given in part (ii).
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LECTURE 53

The Hopf-Rinow Theorem and its friends

We conclude the course by proving three important foundational results in Rie-
mannian Geometry, each of which is named after a pair of mathematicians:

• The Hopf-Rinow Theorem 53.7,

• The Cartan-Hadamard Theorem 53.14,

• The Bonnet-Myers Theorem 53.15.

Throughout this lecture, (M,m) is a connected Riemannian manifold of dimension
n, r denotes the Levi-Civita connection of m, and exp: S ! M denotes the
exponential map of m. We let O(x, ") and U(x, ") be defined as they were in (52.5)
and (52.6) respectively. Recall that sm(x) is defined to be the maximal " such that
O(x, ") is contained in the domain of expx, and injm(x) is the maximal " such that
expx |O(x,") is a di↵eomorphism.

Definition 53.1. A piecewise smooth curve � : [a, b]!M is said to be minimal
if

dm(�(a), �(b)) = Lm(�).

Minimal curves are geodesics.

Lemma 53.2. Let � : [a, b] ! M be minimal. Then � is (up to reparametrisation)
a geodesic.

Proof. By Proposition 52.7, any minimal curve is locally (and hence also globally)
a reparametrisation of a geodesic.

Remark 53.3. Alternatively one can argue using the analogue of Corollary 51.14 for
Lm instead of Em. This tells us that1 “critical points” of Lm are (up to reparametri-
sation) geodesics. A length-minimising curve is a special type of critical point (a
local minimum), and thus Lemma 53.2 follows.

Moreover the proof of Proposition 52.7 shows that any geodesic is locally min-
imal, in the sense that if � : [a, b] ! M is a geodesic and t 2 (a, b) then there
exists " > 0 such that �|[t�",t+"] is minimal. In general however � need not be
length-minimising on its entire domain.

Example 53.4. Consider (Sn,mround). The geodesics are the great circles by part
(ii) of Problem O.2. Thus all geodesics are defined on all of R. A geodesic is length-
minimising until one reaches the antipodal point—after this, it is no longer length-
minimising, since following the great circle in the opposite direction gives a shorter
curve. The similarity of this example with Example 51.22 is not a coincidence (see
Proposition 53.10 below).

Will J. Merry, Di↵. Geometry II, Spring 2019, ETH Zürich. Last modified: June 28, 2019.
1The quotation marks are there to remind you that L

m

is not actually a di↵erentiable function
on the space of paths, cf. Remark 51.25.
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The next technical result is the main step in the proof of the Hopf-Rinow The-
orem 53.7

Proposition 53.5. If 0 < " < sm(x) then for any y 2 U(x, ") there exists a
minimal geodesic � joining x and y. Thus expx defines a surjective map from
O(x, ") to U(x, ") for all 0 < " < sm(x).

Note that in Proposition 53.5 the only hypothesis is that " < sm(x). We are
not assuming " is less than the injectivity radius injm(x) (in which case the con-
clusion would be immediate from Corollary 52.12). Moreover the proposition is
only asserting the existence of some minimal geodesic � from x to y. This geodesic
will typically not be entirely contained in U(x, "). The following proof is non-
examinable—not because it is particularly hard, but rather because it is somewhat
finnicky2.

(|) Proof. Given 0 < � < ", let

C(x, �) :=
�

y 2 U(x, �) | there exists a minimal geodesic joining x and y
 

.

We will prove in three steps that one has

C(x, �) = U(x, �), (53.1)

from which the result clearly follows.
1. In this first step we show that C(x, �) is a compact subset of M . Since

certainly
C(x, �) ⇢ expx(O(x, ")),

and expx(O(x, ")) is compact, it is enough to show that C(x, �) is closed. So suppose
(yh) is a sequence of points in C(x, �) such that yh ! y. Let vh 2 O(x, �) denote
a vector such that |vh| = dm(x, yh) and such that expx(vh) = yh. Since (vh) is a
bounded sequence, we may assume it converges to some v 2 O(x, "). Then as expx

is continuous we have y = expx(v) and since dm is continuous, dm(x, y) = |v|. Thus
y 2 C(x, �).

2. Let
I :=

�

� 2 (0, ") | C(x, �) = U(x, �)
 

.

Then I is non-empty, since (0, injm(x)) ⇢ I from the proof of Theorem 52.4. In
this step we will show that I is also closed in (0, "). For this suppose �0 2 (0, ")
has the property that � 2 I for all � < �0. Thus C(x, �) = U(x, �) for all � < �0
and hence U(x, �0) ✓ C(x, �0). Since C(x, �0) is compact by Step 1, we have
U(x, �0) ✓ C(x, �0). The reverse inclusion always holds, and hence this establishes
U(x, �0) = C(x, �0). Thus �0 2 I, and so I is closed as desired.

3. In this final step we prove that I is also open in (0, "), from which it follows
that I = (0, ") and (53.1) is proved. Fix �1 2 I. Now let � denote any number such
that

0 < � < min {"� �1, injm(C(x, �1))} . (53.2)

Here we are using Proposition 52.16 (together with Step 1) to guarantee that the
right-hand side of (53.2) is positive. We shall show that �1 + � 2 I. For this it

2And also because I skipped it in class.
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su�ces to show that U(x, �1 + �) ⇢ C(x, �1 + �) as C(x, �1 + �) is closed. Since
�1 2 I we have U(x, �1) = C(x, �1) ⇢ C(x, �1 + �), and thus it su�ces to show that

U(x, �1 + �) \ U(x, �1) ⇢ C(x, �1 + �). (53.3)

Suppose y belongs to the left-hand side of (53.3). By definition of dm as an infimum,
we can find a sequence (�h) ⇢ Pxy([0, 1]) such that

Lm(�h) < dm(x, y) +
1

h
.

By the intermediate value theorem there exists th 2 [0, 1] such that d(x, �h(th)) =
�1. Set zh := �h(th). Since �1 2 I, the set U(x, �1) is compact, and hence up to
passing to a subsequence we may assume that zh ! z. By continuity of dm, we
have dm(x, z) = �1. We will now prove that this point z has the special property
that

dm(x, y) = dm(x, z) + dm(z, y). (53.4)

Since �h is a curve from x to y that passes through zh, we have

dm(x, zh) + dm(zh, y)  Lm(�h) < dm(x, y) +
1

h
. (53.5)

Next, for each h 2 N there exists l(h) > h such that dm(zl(h), z) <
1
h . Then

dm(x, z) + dm(z, y)  dm(x, zl(h)) + dm(zl(h), z) + dm(z, zl(h)) + dm(zl(h), y)

 dm(x, zl(h)) +
2

h
+ dm(zl(h), y)

 dm(x, y) +
3

h
,

where the last line used (53.5) with h = l(h). Since h was arbitrary we conclude

dm(x, z) + dm(z, y)  dm(x, y).

But dm(x, y)  dm(x, z)+dm(z, y) by the triangle inequality for dm, and this proves
(53.4).

Why does this help? Well, since z 2 C(x, �1) there exists a minimal geodesic
�̃0 from x to z. Moreover since dm(z, y) < injm(C(x, �1)) there exists a minimal
geodesic �̃1 from z to y. The composition �̃0 ⇤ �̃1 is a piecewise smooth curve from
x to y with

Lm(�̃0 ⇤ �̃1) = Lm(�̃0) + Lm(�̃1)

= dm(x, z) + dm(z, y)

= dm(x, y)

by (53.4). Thus by Lemma 53.2, �̃0 ⇤ �̃1 is (up to reparametrisation) a minimal
geodesic from x to y. Thus �1 + � 2 I, and hence I is open. This finally completes
the proof.

Let us also note the following corollary from the proof of Proposition 53.5.
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Corollary 53.6. If 0 < " < sm(x) then U(x, ") is compact in M .

Recall a metric space is complete if every Cauchy sequence converges. This leads
to following potential clash of terminology for what it means for a Riemannian
manifold (M,m) to be complete: Does it mean that m is a complete metric, or
that (M, dm) is a complete metric space? Luckily, just as with the Myers-Steenrod
Theorem 52.13, it turns out these two concepts coincide. This statement is usually
referred to as the Hopf-Rinow Theorem, and we prove it next.

Theorem 53.7 (The Hopf-Rinow Theorem). Let (M,m) be a connected Rieman-
nian manifold. The following are equivalent.

(i) The Riemannian metric m is complete, i.e. the domain S of the exponential
map is the entire tangent bundle TM , and hence sm(x) =1 for all x 2M .

(ii) The Riemannian metric m is “complete at a single point”, i.e. there exists a
single point x such that Sx = TxM .

(iii) (M, dm) is a complete metric space.

(iv) Any dm-bounded set A ⇢M has compact closure.

Proof. Firstly, (iv)) (iii) is true of any metric space. Indeed, any Cauchy sequence
is bounded, and so by (iv) it is contained in a compact set. It therefore admits
a convergent subsequence, and hence it converges3. It is obvious that (i) ) (ii).
Next, (ii) ) (iv) by Corollary 53.6, since if A is bounded then if y 2 A and

r := dm(x, y) + sup {dm(y, z) | z 2 A}+ 1

then A ⇢ U(x, r). It remains to show that (iii) ) (i). For this, let S denote the
geodesic spray of m. Fix (x, v) 2 TM and let � denote the maximal integral curve
of S with �(0) = (x, v). Thus

�(t) = (�(t), �0(t)),

where � is the unique geodesic with initial conditions �(0) = x and �0(0) = v, cf.
Theorem 42.14. Let (t�, t+) denote the maximal domain of �. We must show that
t� = �1 and t+ = 1. We do the latter case only, as the former is analogous.
Assume for contradiction that t+ <1, and choose 0 < th < t+ such that th ! t+.
Let yh := ⇡(�(th)). Then

dm(yh, yl) = dm(exp(thv), exp(tlv))  |th � tl||v|,
and thus (yh) is a Cauchy sequence in M . By (iii), yh converges to some point y.
Moreover since

|�(th)| = |�0(th)| = |�0(0)| = v

(as geodesics have constant speed, cf. Remark 51.3), the sequence (�(th)) is con-
tained in the set {w 2 TM | |w| = |v|}. Let C denote any compact neighbourhood
of y. Then for h su�ciently large,

�(th) 2 {w 2 TM | ⇡(w) 2 C and |w| = |v|} .
3Recall if a subsequence of a Cauchy sequence converges then the entire sequence must con-

verge.
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The set on the right-hand side is compact. Thus (�(th)) admits a convergent subse-
quence. Now the argument from the proof of Lemma 8.21 shows that � is actually
defined on (t�, t+ + ") for some small " > 0, which contradicts the maximality of
t0. This completes the proof.

From now on we can therefore use unambiguously use the terminology “complete
Riemannian manifold” to mean any of the conditions in the Hopf-Rinow Theorem.
Here are some easy corollaries.

Corollary 53.8. Let M be a compact manifold. Then every Riemannian metric
m on M is complete.

Proof. Compact metric spaces are always complete.

Corollary 53.9. Let (M,m) be a complete Riemannian manifold. Any two points
in M can be joined by a (not necessarily unique) minimal geodesic.

Proof. Immediate from Proposition 53.5.

We now relate minimality of geodesics with conjugate points.

Proposition 53.10. Let � : [0, b] ! M be a non-constant geodesic, and suppose
there exists a conjugate point 0 < t0 < b. Then � is not minimal.

Warning: The converse to Proposition 53.10 is not true: there are examples of
geodesics with no conjugate points that are not minimal. You are invited to find
such an example on Problem Sheet W.

Proof. By assumption there exists a non-zero Jacobi field c 2 Jac(�) such that
c(0) = 0�(0) and c(t0) = 0�(t0). We will produce from c a new piecewise smooth
vector field c̃ 2 T�P�(0)�(b)([0, b]) which has the property that

Hess(Em)(�)(c̃, c̃) < 0. (53.6)

Suppose for the time being we have constructed such a c̃. Let

�s(t) := exp�(t)(sc̃(t)),

so that d2

ds2

�

�

s=0
Em(�s) < 0. Then by Lemma 51.8 we have for s > 0 su�ciently

small that

Lm(�) = Lm(�0)

=
p

2bEm(�0)

>
p

2bEm(�s)

� Lm(�s),

and hence � is not minimal.
It thus remains to construct such a c̃. Since c is not identically zero, by the

uniqueness part of Proposition 50.8 we must have

v := rT (c)(t0) 6= 0.
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Let e denote a parallel vector field along � with e(t0) = �v. Let f : [0, b] ! R
denote a smooth function such that f(0) = f(b) = 0 and f(t0) = f 0(t0) = 1. Then
given " > 0 set

c̃(t) :=

(

c(t) + "f(t)e(t), 0  t  t0,

"f(t)e(t), t0  t  b.

We claim that for " su�ciently small this choice of c̃ satisfies (53.6). Since the
Hessian is bilinear and c lies in its null-space by Proposition 51.18, it follows from
(51.7) that

Hess(Em)(�)(c̃, c̃) = "2 Hess(Em)(�)(fe, fe) +
⌦rT (c̃|[0,t0])(t0)�rT (c̃|[t0,b]), c̃(t0)

↵

.

Let
C := Hess(Em)(�)(fe, fe).

The precise value of C is not too important. Let us compute the second term.
Since e is parallel,

rT (c̃|[0,t0])(t) = rT (c)(t) + "f 0(t)e(t) + "f(t)rT (e)(t)

= rT (c)(t) + "f 0(t)e(t).

Evaluating at t = t0 gives

rT (c̃|[0,t0])(t0) = (1� ")v,

Similarly
rT (c̃|[t0,b])(t0) = �"v,

and thus
⌦rT (c̃|[0,t0])(t0)�rT (c̃|[t0,b]), c̃(t0)

↵

= �"|v|2.
Hence

Hess(Em)(�)(c̃, c̃) = "2C � "|v|2.
If C  0 then certainly Hess(Em)(�)(c̃, c̃) < 0 (for any " > 0). If instead C > 0
then for

0 < " <
C

|v|2
we still have Hess(Em)(�)(c̃, c̃) < 0. This completes the proof.

We conclude this course by briefly discussing two comparison theorems in
Riemannian geometry. As the name suggests, these sort of results compare a Rie-
mannian manifold with a simpler one (usually one of constant curvature). This
is a vast and fruitful area of research, and we will only scratch the surface. Our
particular plan of attack is the following:

• We saw in Example 51.22 that if m has constant curvature then it is easy to
see when the first conjugate points appear.

• Proposition 53.10 tells us that a geodesic fails to be minimal after the first
conjugate point.
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• Goal: Suppose (M,m) is a Riemannian manifold satisfying

sectm(x;⇧)  , 8 x 2M, 8 2-planes ⇧ ⇢ TxM.

Let (M̃, m̃) denote a Riemannian manifold with constant curvature

sectm̃ ⌘ .

We aim to relate the appearance of conjugate points inM with the appearance
of conjugate points in M̃ .

• Profit: Conclude something non-trivial about minimality of geodesics in M .

To carry out this program, we introduce the following construction. Let (M,m)
and (M̃, m̃) be two Riemannian manifolds of the same dimension n with associated
exponential maps exp and gexp. Fix x 2 M and x̃ 2 M̃ , and let v 2 TxM and ṽ 2
Tx̃M̃ be two vectors of unit norm. Let T : TxM ! Tx̃M̃ be any linear isomorphism
such that Tv = ṽ and such that

hu, wi = hTu, Twi , 8 u, w 2 TxM.

Let �(t) := expx(tv) and �̃(t) :=gexpx̃(tṽ). Let b > 0 be such that both � and �̃ are
defined on [0, b], and set y := �(b) and ỹ := �̃(b). Finally, let

bPm
t : TxM ! T�(t)M, bPm̃

t : Tx̃M̃ ! T�̃(t)M̃

denote the parallel transport isomorphisms along � and �̃ (with respect to the Levi-
Civita connections of m and m̃). For 0  t  b consider the linear isomorphism

Tt : T�(t)M ! T�̃(t)M̃,

defined by
Tt(v) := Pm̃

t � T � (Pm
t )

�1(v).

Define also the map
⌧ : ��(TM)! ��̃(TM̃) (53.7)

using parallel transport:
⌧(c)(t) := Tt(c(t)).

The operator ⌧ is an isomorphism. Indeed, as in the proof of Proposition 50.8, we
can choose a parallel orthonormal frame {�0 = e1, . . . , en} along �. Set ẽi(t) :=
Tt(ei(t)). Then {�̃0 = ẽ1, . . . , ẽn} is a parallel orthonormal frame along �̃. If c 2
��̃(TM) we can write

c = f iei, where f i := hc, eii ,
and similarly for elements of ��̃(TM). The operator ⌧ is then given by

⌧(f iei) = f iẽi,

which is plainly an isomorphism. Note that ⌧ by construction also defines a map

⌧ : T�Pxy([0, b])! T�̃Px̃ỹ([0, b]). (53.8)

We then have the following result, whose proof is deferred to Problem Sheet W.

7



Proposition 53.11. Suppose that for all t 2 [0, b] and for all 2-planes ⇧ ⇢ T�(t)M
one has

sectm(�(t);⇧)  sectm̃
�

�̃(t);Tt[⇧]
�

.

Then for all c 2 T�Pxy([0, b]) one has

Hess(Em)(�)(c, c) � Hess(Em̃)(�̃)(⌧(c), ⌧(c)),

where ⌧ is the map (53.8).

From now on let us write
sectm  

to indicate that sectm(x;⇧)   for all x 2M and all 2-planes ⇧ ⇢ TxM .

Theorem 53.12. Let (M,m) be a Riemannian manifold and let � : [0, b]! M be
a non-constant geodesic. Then:

(i) If sectm  0 then � has no conjugate points.

(ii) If sectm   where  > 0, and Lm(�) <
⇡p
 , then � has no conjugate points.

(iii) If sectm �  > 0 and Lm(�) � ⇡p
 , then � has a conjugate point.

Proof. Statement (i) follows from (ii) by taking  > 0 arbitrarily small. To prove
(ii) we apply Proposition 53.11 with (M̃, m̃) = (Sn(r),mround) for r = 1p

 . The

claim then follows from Example 51.22. Finally the (iii) is proved in the same
fashion as (ii), after reversing the roles of M and M̃ .

Before presenting our final two results, we need one more statement, whose
proof is also deferred to Problem Sheet W.

Proposition 53.13. Let ' : (M,m1) ! (N,m2) be an isometric map between
Riemannian manifolds of the same dimension. If (M,m1) is complete then ' is
automatically a Riemannian covering (Definition 46.8).

The first application of Theorem 53.12 deals with the case where the sectional
curvature is non-positive.

Theorem 53.14 (The Cartan-Hadamard Theorem). Let (Mn,m) be a connected
complete Riemannian manifold with sectm  0. Then the universal cover of M is
di↵eomorphic to Rn.

Proof. We claim that expx : TxM !M is a covering map for any x 2M . By part
(i) of Theorem 53.12, the geodesics of M never have conjugate points, and hence
by Proposition 51.23 the map expx has maximal rank everywhere. Thus we can
define a Riemannian metric m̃ on TxM by pulling back m:

m̃ := exp?x(m).

Then (by definition) expx : (TxM, m̃) ! (M,m) is an isometric map between Rie-
mannian manifolds of the same dimension. Let us prove that m̃ is complete. If
v 2 TxM the ray t 7! tv is mapped onto the geodesic �(t) = expx(tv) in M , and
thus is a geodesic in TxM (cf. Proposition 46.21). Since � is defined for all t 2 R as
M is complete, it follows that all geodesics in TxM passing through 0x are defined
for all t 2 R. Thus (TxM, m̃) is complete by part (ii) of the Hopf-Rinow Theorem
53.7. The claim now follows from Proposition 53.13.
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The second application of Theorem 53.12 deals with the case where the cur-
vature is uniformly positive. We define the diameter of a Riemannian manifold
as

diam(M,m) := sup {dm(x, y) | x, y 2M} .
Theorem 53.15 (The Bonnet-Myers Theorem). Let (Mn,m) be a complete Rie-
mannian manifold with sectm �  > 0. Then diam(M,m)  ⇡p

 . Moreover M is
necessarily compact and has finite fundamental group.

Proof. Since (M,m) is complete, by Corollary 53.9 any two points can be joined
by a minimal geodesic. But from part (iii) of Theorem 53.12, any geodesic � with
Lm(�) � ⇡p

 has a conjugate point, and hence cannot be minimal by Proposition
53.10. Thus in fact any two points can be joined by a minimal geodesic with length
less that ⇡p

 , and hence diam(M,m)  ⇡p
 as claimed. Then by part (iv) of the

Hopf-Rinow Theorem 53.7, M is compact.
Finally, the same argument can be applied to the universal cover ofM , equipped

with the pullback metric. This allows us to conclude that the universal cover of M
is compact, which implies that ⇡1(M) is finite. This completes the proof.

And also the course! Thank you all for attending!
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Problem Sheet A

Problem A.1. Prove that the set GL(n) of invertible n⇥ n matrices is a smooth
manifold of dimension n2.

Problem A.2. Let M and N be two smooth manifolds of dimension n and k
respectively. Prove that M ⇥N is a smooth manifold of dimension n+ k. Deduce
that the n-dimensional torus:

T n := S1 ⇥ · · ·⇥ S1

| {z }

n times

⇢ R2n.

is a compact smooth manifold of dimension n.

Problem A.3. Let RP n denote n-dimensional real projective space, i.e. the space
of lines through the origin in Rn+1. Prove that RP n is a compact smooth manifold
of dimension n.

(|) Problem A.4. Let G(k, n) denote the set of k-dimensional linear subspaces
of Rn. We call G(k, n) a Grassmannian manifold. Prove that G(k, n) is a compact
smooth manifold and compute its dimension.

Problem A.5. Let X denote the union of the x-axis and the y-axis in R2. Prove
that X is not a topological manifold.

Problem A.6. Let Y denote the “pinched 2-dimensional torus”, as shown in Figure
A.1. Prove that Y is not a topological manifold.

Figure A.1: The pinched torus Y .

Problem A.7. Show that the smooth atlas on R consisting of the single chart
� : R ! R given by �(x) = x3 defines a smooth structure that is di↵erent to the
“standard” smooth structure (the latter is the smooth structure containing the
identity map as a chart). Prove however that both the smooth structures belong
to the same di↵eomorphism class.

Will J. Merry, Di↵. Geometry I, Autumn 2018, ETH Zürich. Last modified: June 28, 2019.
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Solutions to Problem Sheet A

Problem A.1. Prove that the set GL(n) of invertible n⇥ n matrices is a smooth
manifold of dimension n2.

Solution. The space {n⇥ n matrices} is homeomorphic to Rn2
, and hence is a

smooth manifold of dimension n2 by Example 1.10. The determinant function

det : {n⇥ n matrices}! R

is continuous, and GL(n) = det�1(R \ {0}) is thus an open subset. The claim
follows from Lemma 1.20.

Problem A.2. Let M and N be two smooth manifolds of dimension n and k
respectively. Prove that M ⇥N is a smooth manifold of dimension n+ k. Deduce
that the n-dimensional torus:

T n := S1 ⇥ · · ·⇥ S1

| {z }

n times

⇢ R2n.

is a compact smooth manifold of dimension n.

Solution. Indeed, if ⌃1 = {�a : Ua ! Oa | a 2 A} and ⌃2 = {⌧b : Vb ! ⌦b | b 2 B}
are smooth atlases on M and N respectively then

⌃1 ⇥ ⌃2 := {(�a, ⌧b) : Ua ⇥ Vb ! Oa ⇥ ⌦b | (a, b) 2 A⇥ B}

is a smooth atlas on M ⇥N , thus proving that M ⇥N is a smooth manifold of the
required dimension1.

Therefore, the n-dimensional torus T n is a smooth manifold as S1 is a smooth
manifold by Proposition 1.21.

Problem A.3. Let RP n denote n-dimensional real projective space, that is, the
space of lines through the origin in Rn+1. Prove that RP n is a compact smooth
manifold of dimension n.

Solution. For convenience we use the definition of RP n via equivalence classes,
i.e. we define

RP n =
�

[x]⇠ | x 2 Rn+1 \ {0} ,

Solutions written by Mads Bisgaard, Francesco Palmurella, Alessio Pellegrini, and Alexandre
Puttick. Last modified: June 28, 2019.

1Strictly speaking we should also check here that M ⇥ N is Hausdor↵, has countably many
connected components, and is paracompact, when endowed with the topology defined by declaring
that all the maps (�a, ⌧b) are homeomorphisms. The first two conditions are obvious, but the fact
that M ⇥ N is necessarily paracompact is less so , since the product of paracompact spaces is
not always paracompact. One way to prove this would be to use the fact that metric spaces are
paracompact (Theorem 1.4), that manifolds are metrisable (part (3) of Remark 1.9), and that the
product of metric spaces is also a metric space.
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where for x, y two elements in Rn+1 \ {0} we define

x ⇠ y : () 9� 2 R \ {0} such that x = �y.

We will also adopt the notation [x] = [x1 : . . . : xn+1] for the equivalence class of
x = (x1, . . . , xn+1). We equip RP n with the final topology of the projection

⇡ : Rn+1 \ {0}! RP n, ⇡(x) = [x]

and define an open cover {Ui}i=1,...,n+1 by setting

Ui = {[x1 : . . . : xn+1] | xi 6= 0},
for all i = 1, . . . , n+ 1. Furthermore, for each i we define functions

�i : Ui ! Rn, [x1 : . . . : xn+1] 7! 1

xi
(x1, . . . , xi�1, xi+1, . . . , xn+1)

and claim that
⌃ := {�i : Ui ! Rn | i = 1, . . . , n+ 1}

defines a smooth atlas on RP n. It is straightforward to show that each �i is well
defined and is a bijection. Continuity of �i can be shown using the universal
property of the final topology on RP n. Thus, in order to conclude that the �i’s are
all homeomorphisms it su�ces to find a continuous inverse ⌧i, which can be defined
as follows

⌧i : Rn ! Ui, ⌧i(x1, . . . , xn) = [x1 : . . . : xi�1 : 1 : xi : . . . : xn].

Note that all the ⌧i’s are indeed continuous, for they can all be written as a compo-
sition of continuous maps. Therefore the �i’s are all homeomorphisms and we are
only left to show the compatibility condition: Let �i and �j be two charts defined
as above and assume without loss of generality that i < j. We need to show that
the transition map

�i � ��1
j : �j(Ui \ Uj)! �i(Ui \ Uj)

is a di↵eomorphism, but plugging in the definitions shows that

�i � ��1
j (x1, . . . , xn) = �i[x1 : . . . : xj�1 : 1 : xj : . . . : xn]

=
1

xi
(x1, . . . , xi�1, xi+1, . . . , xj�1, 1, xj, . . . , xn),

which is clearly a di↵eomorphism. This proves the claim that ⌃ is an atlas. The
easiest way to see why RP n is compact (thus paracompact) and Hausdor↵ is by
viewing RP n as the sphere Sn with the antipodal identification

RP n = Sn/(�x ⇠ x),

which readily finishes the proof.

(|) Problem A.4. Let G(k, n) denote the set of k-dimensional linear subspaces
of Rn. We call G(k, n) a Grassmannian manifold. Prove that G(k, n) is a compact
smooth manifold and compute its dimension.
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Solution. We first determine a model for G(k, n). We choose the obvious ap-
proach: Every element of G(k, n) is given by the image A(Rk) of some injective
linear map Rk ! Rn, represented by a n ⇥ k matrix A of rank k (i.e. maximal
rank). We will denote the space of such matrices A by M(k, n). Of course, for any
invertible k⇥ k matrix B we will have A(Rk) = AB(Rk), so in fact we have a map

M(k, n)/ ⇠ ! G(k, n) (A.1)

[A] 7! A(Rk),

where A ⇠ eA if and only if there exists an invertible k⇥ k matrix B with A = eAB.
We noted above that every element of G(k, n) is in the image of (A.1) and by linear
algebra (A.1) is also injective (think about why this is true). Hence, our model of
G(k, n) will be the space M(k, n)/ ⇠.

Now, for integers 1  i1 < · · · < ik  n we denote by Ui1,...,i
k

⇢M(k, n)/ ⇠ the
set of classes [A] such that the i1’th, i2’th up to ik’th row form a set of linearly in-
dependent vectors in Rk.2 Note that if we equip M(k, n) with the obvious topology
it inherits from Rk·n, and M(k, n)/ ⇠ with the quotient topology, then the Ui1,...,i

k

s
are open subsets (check this). Note also that {Ui1,...,i

k

}1i1<...<i
k

n is an open cover
ofM(k, n)/ ⇠. By Gauss elimination every class ↵ 2 U1,...,k ⇢M(k, n)/ ⇠ contains
a unique element of the form

✓

idk⇥k

Z↵

◆

(A.2)

for some (unique) (n� k)⇥ k matrix Z↵. Hence, we can define a bijective map

�1,...,k : U1,...,k ! Rk(n�k)

↵ 7! Z↵,

which is clearly a homeomorphism. We have a bijection

'i1,...,i
k

: Ui1,...,i
k

! U1,...,k

which is given by permuting the rows of every element of Ui1,...,i
k

with the unique
permutation which takes (i1, . . . , ik) to (1, . . . , k) and preserves the relative order
of {1, . . . , n}\{i1, . . . , ik}. We can then define

�i1,...,i
k

: Ui1,...,i
k

! Rk(n�k)

as the composition �i1,...,i
k

:= �1,...,k � 'i1,...,i
k

, which is again a homeomorphism.
The transition maps

�i1,...,i
k

� ��1
j1,...,j

k

: �j1,...,j
k

(Uj1,...,j
k

\ Ui1,...,i
k

)! �i1,...,i
k

(Uj1,...,j
k

\ Ui1,...,i
k

)

are given by
�1,...,k � 'i1,...,i

k

� '�1
j1,...,j

k

� ��1
1,...,k.

These maps are smooth simply because they are compositions of the following
smooth maps: ��1

1,...,k takes a (n� k)⇥ k matrix Z to the n⇥ k matrix
✓

idk⇥k

Z

◆

.

2Note that U
i1,...,ik is well-defined because one element of a class in M(k, n)/ ⇠ satisfies the

mentioned condition if and only if all elements of that class do.
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The map 'i1,...,i
k

� '�1
j1,...,j

k

simply permutes rows of this matrix to get a matrix

✓

C
D

◆

for an invertible k⇥ k matrix C and a (n� k)⇥ k matrix D. The map ��1
1,...,k sends

this matrix to the matrix
DC�1 2 R(n�k)k,

so it is clearly also smooth.
We now argue that G(k, n) is in fact compact. We do this by induction on k.

Note first that G(1, n) = RP n�1, which was seen to be compact in the previous
exercise. Hence, it su�ces to prove the induction step, i.e. that G(k + 1, n) is
compact if G(k, n) is. For this purpose, define the set3

S :=
[

V 2G(k,n)

(Sn�1 \ V ?)⇥ {V } ⇢ Sn�1 ⇥G(k, n).

S is easily seen to be a compact subset of Sn�1 ⇥G(k, n). In particular, if G(k, n)
is compact then so is S. The map

S ! G(k + 1, n) (A.3)

(v, V ) 7! Rv + V

is both surjective (use the Gram-Schmidt orthogonalization procedure) and contin-
uous. To see the latter, define S to be the preimage of S under the quotient map
M(k, n) !M(k, n)/ ⇠. Then the map (A.3) is the map on the quotient indiced
by the (obviously continuous) composition of maps

S 7!M(k + 1, n)! G(k + 1, n)

(v, A) 7! �

v A
� 7! ⇥�

v A
�⇤

In particular G(k + 1, n) is compact if S is. Since (A.3) is both continuous and
surjective, and S is compact it follows that G(k + 1, n) is compact.

Problem A.5. Let X denote the union of the x-axis and the y-axis in R2. Prove
that X is not a topological manifold.

Solution. SinceX has the subspace topology inherited fromR2, it is clear that any
connected neighbourhood U ⇢ X of (0, 0) intersects both axes and that U \{(0, 0)}
has four connected components. Suppose that X is a topological manifold. Then
X must be 1-dimensional, since every point outside of the origin is contained in a
neighbourhood homeomorphic to an open subset of R. We may thus choose U such
that there exists a homeomorphism � : U

⇠! O ⇢ R1, where O is a connected open
subset of R, i.e., a bounded open interval. But then � induces a homeomorphism
from U \ {(0, 0)} to O \ {�(0, 0)}. Since the former has four connected components
and latter has only two, this yields a contradiction.

3Here V ? ⇢ Rn denotes the set of vectors which are perpendicular to V with respect to the
Euclidean inner product on Rn+1 and Sn�1 ⇢ Rn denotes the set of elements which have length
1.
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Problem A.6. Let Y denote the “pinched torus”. Prove that Y is not a topological
manifold.

Solution. Let y 2 Y denote the “pinched point” on Y . Suppose Y is a topological
manifold. Clearly Y \ {y} is two-dimensional, so Y must be as well. There is
therefore an open neighbourhood U of y which is homeomorphic to an open disc B
in R2. But then U \ {y} is homeomorphic to B minus a point. Since the former is
disconnected and the latter is connected, this is a contradiction.

Problem A.7. Show that the smooth atlas on R consisting of the single chart
� : R ! R given by �(x) = x3 defines a smooth structure that is di↵erent to the
“standard” smooth structure (the latter is the smooth structure containing the
identity map as a chart). Prove however that both the smooth structures belong
to the same di↵eomorphism class.

Solution. To prove that the maps

� : R! R x 7! x3 and ◆ : R! R x 7! x

define charts on R belonging to di↵erent smooth structures, it is su�cient to check
that either � � ◆�1 or ◆ � ��1 are not smooth in the ordinary sense. Since

(◆ � ��1)(x) = x1/3

is not smooth (because its derivative x�2/3/3 is singular at 0), the conclusion is
reached.

To prove that the di↵erentiable structures on R induced by � and ◆, which we
denote by ⌃� and ⌃◆ respectively, belong to the same di↵eomorphism class, we need
to find a di↵eomorphism ' : (R,⌃�)! (R,⌃◆). Since � and ◆ provide global charts
for R, and it is not important which chart is chosen to check di↵erentiability, it is
su�cient to find a bijective map ' : R! R so that ◆ �' � ��1 and � �'�1 � ◆�1 are
smooth in the ordinary sense. By choosing '(x) = x3, we see that

(◆ � ' � ��1)(x) = (x1/3)3 = x and (� � '�1 � ◆)(x) = (x1/3)3 = x

are smooth as required, hence the conclusion is reached.
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Problem Sheet B

Problem B.1. Let {Va | a 2 A} be a family of vector spaces indexed by a set A,
and let W be a fixed set. Suppose that for each a 2 A we are given a bijection
Ta : Va ! W such that for any a, b 2 A, the composition T�1

b � Ta : Va ! Vb is a
linear isomorphism. Prove that there is a unique vector space structure on W such
that each Ta is a linear isomorphism.

Problem B.2. Let M be a smooth manifold of dimension n with maximal smooth
atlas ⌃. Given a point x 2M , let ⌃x ⇢ ⌃ denote the set of charts � 2 ⌃ such that
x lies in the domain of �. Define an equivalence relation on Rn ⇥ ⌃x by saying

(v, �) ⇠ (w, ⌧) , D(⌧ � ��1)(�(x))[v] = w.

(i) Prove that this is indeed a well-defined equivalence relation.

(ii) Let Tx denote the set of equivalence classes. Let � 2 ⌃x. Prove that the map
T� : Rn ! Tx given by

T�v := [(v, �)]

(where [(v, �)] denotes the equivalence class of (v, �)) is a bijection. Deduce
that Tx admits a unique vector space structure such that each T� is a linear
isomorphism.

(iii) Let � be a chart defined on a neighbourhood of x with local coordinates
xi = ui � �. Let1 T̃� : Rn ! TxM denote the linear isomorphism defined by

T̃�ei =
@

@xi

�

�

�

x
.

Prove2 that there exists a linear isomorphism Sx : Tx ! TxM which in addi-
tion satisfies

Sx � T� = T̃�,

for every chart � about x.

Problem B.3. Let V be any vector space of dimension n, endowed with its stan-
dard smooth structure (cf. Example 1.19). Fix x 2 V . Define a map

Jx : V ! TxV, Jx(v) := �0(0), where �(t) := x+ tv.

Prove that Jx is an isomorphism3.

Will J. Merry, Di↵. Geometry I, Autumn 2018, ETH Zürich. Last modified: June 28, 2019.
1This map was denoted by T

x

in (4.3), but here it is important to emphasise the dependence
on � so we use di↵erent notation.

2This provides yet another equivalent way of defining the tangent space.
3This proves that the tangent space to a vector space at any given point is canonically (i.e.

independent of the choice of basis) identified with the vector space itself.
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Problem B.4. Let V and W be vector spaces and assume that T : V ! W is a
linear map. Prove that the following commutes4 for any x 2 V :

V W

TxV TTxW

T

J
x

J
Tx

DT (x)

(|) Problem B.5. Consider the subspace S := R⇥{�1}[R⇥{1} ✓ R2 together
with its subspace topology and define an equivalence on S by setting

(x1, y1) ⇠ (x2, y2) () x1 = x2 and x1, x2 6= 0.

Equip M = S/ ⇠ 5 with the quotient topology and define two functions

�1 : M \ (0,�1)! R and �2 : M \ (0, 1)! R,

by setting �1(x, y) = x and �2(x, y) = x. Show that M is paracompact and that
⌃ = {�1, �2} defines a smooth atlas, but that M is not Hausdor↵.

(|) Problem B.6. Consider R2 as a set and equip it with the topology T gen-
erated by the basis B = {U ⇥ {a} | U ✓ R open, a 2 R}. Define �a : R ⇥ {a} !
R, �a(x, a) = x and set ⌃ = {�a | a 2 R}. Prove that the topological space
(R2, T ) is paracompact and that ⌃ defines a smooth atlas on it, but that it has an
uncountable number of connected components.

4The commutative diagram thus gives a coordinate-free proof of (4.2).
5This topological space is also known as the “line with two origins”. You should convince

yourself that the name makes perfect sense!
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Solutions to Problem Sheet B

Problem B.1. Let {Va | a 2 A} be a family of vector spaces indexed by a set A,
and let W be a fixed set. Suppose that for each a 2 A we are given a bijection
Ta : Va ! F such that for any a, b 2 A, the composition T�1

b � Ta : Va ! Vb is a
linear isomorphism. Prove that there is a unique vector space structure on W such
that each Ta is a linear isomorphism.

Solution. We must define a zero element, addition and scalar multiplication on
W . Let a 2 A. Since we want Ta to be a linear isomorphism, we must do the
following:

• Define 0 2 W via 0 := Ta(0).1

• For each v, w 2 W , define v + w := Ta

�

T�1
a (v) + T�1

a (w)
�

.

• For each � 2 R and v 2 W , define �v := Ta

�

�T�1
a (v)

�

.

This satisfies the axioms of a vector space since Va is itself a vector space. Moreover,
the definitions are forced if we want Ta to be linear, whence the uniqueness of the
resulting vector space structure on W .

It remains to show that the vector space structure on W is independent of the
choice of a 2 A. Let b 2 A. The independence of “+” on F follows from the
following computation:

Ta

�

T�1
a (v) + T�1

a (w)
�

= Ta

�

T�1
a � Tb � T�1

b (v) + T�1
a � Tb � T�1

b (w)
�

= Ta � T�1
a � Tb

�

T�1
b (v) + T�1

b (w)
�

= Tb

�

T�1
b (v) + T�1

b (w)
�

.

The proof that the definition of scalar multiplication on W is also independent from
the choice of a is similar.

Problem B.2. Let M be a smooth manifold of dimension n with maximal smooth
atlas ⌃. Given a point x 2M , let ⌃x ⇢ ⌃ denote the set of charts � 2 ⌃ such that
x lies in the domain of �. Define an equivalence relation on Rn ⇥ ⌃x by saying

(v, �) ⇠ (w, ⌧) , D(⌧ � ��1)(�(x))[v] = w.

(i) Prove that this is indeed a well-defined equivalence relation.

(ii) Let Tx denote the set of equivalence classes. Let � 2 ⌃x. Prove that the map
T� : Rn ! Tx given by

T�v := [(v, �)]

(where [(v, �)] denotes the equivalence class of (v, �)) is a bijection. Deduce
that Tx admits a unique vector space structure such that each T� is a linear
isomorphism.

Solutions written by Mads Bisgaard, Francesco Palmurella, Alessio Pellegrini, and Alexandre
Puttick. Last modified: June 28, 2019.

1Note that the zero element of W is already uniquely determined by the second bullet point
since v + w = v if and only if T�1

a (v) + T�1
a (w) = T�1

a (v). We include its definition for clarity.
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(iii) Let � be a chart defined on a neighbourhood of x with local coordinates
xi = ui � �. Let2 T̃� : Rn ! TxM denote the linear isomorphism defined by

T̃�ei =
@

@xi

�

�

�

x
.

Prove3 that there exists a linear isomorphism Sx : Tx ! TxM which in addi-
tion satisfies

Sx � T� = T̃�,

for every chart � about x.

Solution. We start by showing that ⇠ is an equivalence relation. Reflexivity is
quickly verified:

D(� � ��1)(�(x))[v] = D(id)(�(x))[v] = v.

Assuming that (v, �) ⇠ (w, ⌧), we get symmetry by plugging in w = D(⌧ �
��1)(�(x))[v] and applying the chain rule

D(� � ⌧�1)(⌧(x))[w] = D(� � ⌧�1)(⌧(x)) �D(⌧ � ��1)(�(x))[v]

= D(� � ⌧�1 � ⌧ � ��1

| {z }

=id

)(�(x))[v] = v.

Transitivity follows from a similar chain rule argument. This concludes the proof
of part (i).

For part (ii) it is convenient to invoke the result of (B.1) with A = ⌃x and
F = Tx. Therefore we are only left to show that each T� : Rn ! Tx defines a
bijection and that T�1

⌧ � T� is a linear isomorphism for every �, ⌧ 2 ⌃x. Injectivity
readily follows from the observation

(v, �) ⇠ (w, �) () v = w.

For surjectivity let us pick an arbitrary (w, ⌧) 2 Rn ⇥ ⌃x. Simply setting v :=
D(� � ⌧�1)(⌧(x))w grants (v, �) ⇠ (w, ⌧) and hence

T�(v) = [(v, �)] = [(w, ⌧)].

A similar argument as in the surjectivity proof above shows that

T�1
⌧ � T�(v) = D(⌧ � ��1)(�(x))

| {z }

linear isomorphism

[v].

This proves part (ii).
For part (iii) we make an educated guess for Sx, namely

Sx : Tx ! TxM, [(v, �)] 7!
n
X

i=1

vi
@

@xi

�

�

�

x
,

2This map was denoted by T
x

in (4.3), but here it is important to emphasise the dependence
on � so we use di↵erent notation.

3This provides yet another equivalent way of defining the tangent space.
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where v = (v1, . . . , vn) and xi = ui � � denotes the local coordinates of �. The fact
that Sx is well defined follows immediately from Remark 3.3, but for the sake of
completeness we will carry out the computation. Let (w, ⌧) ⇠ (v, �). Let yi denote
the local coordinates of ⌧ . We then have

@

@yj

�

�

�

x
(xk) = Dj(x

k � ⌧�1)(x) = hek, D(� � ⌧�1)(x)[ej]i,

where h·, ·i denotes the usual Euclidean inner product. Using bilinearity of the
inner product one obtains the identity

X

j

wj @

@yj

�

�

�

x
(xk) = hek, D(� � ⌧�1)(x)[w]i = vk =

X

i

vi
@

@xi

�

�

�

x
(xk),

which proves well-definedness of Sx.
The relation Sx �T� = T̃� is easily verified. The map Sx is a linear isomorphism,

for both T� and T̃� are linear isomorphisms.

Problem B.3. Let V be any vector space of dimension n, endowed with its stan-
dard smooth structure (cf. Example 1.19). Fix x 2 V . Define a map

Jx : V ! TxV, Jx(v) := �0(0), where �(t) := x+ tv.

Prove that Jx is an isomorphism4.

Solution. The smooth structure on V is determined taking a chart which is a
linear isomorphism T : V ! Rn. Let xi = ui � T denote the local coordinates of
such a chart. The map T determines a basis of V , namely wi = T�1ei, and if
one writes an arbitrary vector in V in terms of this basis as w =

Pn
i=1 a

iwi then
ai = xi(w). Now with �(t) := x+ tv one has

Jxv = �0(0)

=
n
X

i=1

�0(0)(xi) · @

@xi

�

�

�

x

=
n
X

i=1

(xi � �)0(0) · @

@xi

�

�

�

x

=
n
X

i=1

xi(v) · @

@xi

�

�

�

x
.

This shows that the matrix of Jx with respect to the basis {wi} of V and
�

@
@xi

�

�

x

 

of TxV is simply given by the map T itself. Since T is an linear isomorphism,
it follows that Jx is too. (Remark: As is common in many arguments in linear
algebra, we chose a basis of V to prove Jx was an isomorphism, although the claim
is then independent of the basis.)

4This proves that the tangent space to a vector space at any given point is canonically (i.e.
independent of the choice of basis) identified with the vector space itself.
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Problem B.4. Let V and W be vector spaces and assume that T : V ! W is a
linear map. Prove that the following commutes5 for any x 2 V :

V W

TxV TTxW

T

J
x

J
Tx

DT (x)

Solution. Fix x, v 2 V . With �(t) = x+ tv we compute:

JTx � Tv = e�0(0),

DT (x) � Jx(v) = DT (x) �D�(0)


@

@t

�

�

�

t

�

= D(T � �)(0)


@

@t

�

�

�

t

�

= b�0(0),

with e�(t) = Tx + tTv and b�(t) = T (x + tv). Note that in the last row of these
equations we make use of the manifold version of the chain rule (Proposition 4.2)
together with Proposition 4.10. Since T is linear we have e�(t) = Tx + tTv =
T (x + tv) = b�(t), so it follows that JTx � T (v) = DT (x) � Jx(v) for all x, v 2 V ,
which exactly says that the diagram commutes.

(|) Problem B.5. Consider the subspace S := R⇥{�1}[R⇥{1} ✓ R2 together
with its subspace topology and define an equivalence on S by setting

(x1, y1) ⇠ (x2, y2) () x1 = x2 and x1, x2 6= 0.

Equip M = S/ ⇠ 6 with the quotient topology and define two functions

�1 : M \ (0,�1)! R and �2 : M \ (0, 1)! R,

by setting �1(x, y) = x and �2(x, y) = x. Show that M is paracompact and that
⌃ = {�1, �2} defines a smooth atlas, but that M is not Hausdor↵.

Solution. Note first of all that for each element of [(x, y)] 2M we have

[(x, y)] =

(

{(x, y), (x,�y)} if x 6= 0,

{(x, y)} if x = 0.

In what follows we denote for every R > 0 the “ball”

�R((0, 1)) = {[(x, y)] 2M | |x| < R, x 6= 0} [ (0, 1),

(here the inverted commas are used since the M does not have the structure of a
metric space - if this were true it would be Hausdor↵, and we are going to disprove
this below), and similarly

�R((0,�1)) = {[(x, y)] 2M | |x| < R, x 6= 0} [ (0,�1).
5The commutative diagram thus gives a coordinate-free proof of (4.2).
6This topological space is also known as the “line with two origins”. Convince yourself that

the name makes perfect sense.
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We claim that it is not possible to separate the points (0, 1) and (0,�1). Indeed,
if U(0,1) is any open neighbourhood of (0, 1) in M , then it must contain, for some
r > 0, the “ball” �r((0, 1)) and similarly if U(0,�1) is any open neighbourhood of
(0,�1) in M , then it must contain, for some ⇢ > 0 the “ball” �⇢((0,�1)). Setting
s = min{r, ⇢}, we deduce in particular that [(s/2, y)] 2 U(0,1) \ U(0,�1) and hence
that U(0,1) and U(0,�1) have nonempty intersection. So M is not Hausdor↵.

Let us prove that M is paracompact (this proof is very similar to the one for
the paracompactness of a general metric space). If {Xa}a2A is an open cover for M ,
we let, for every m 2 N�1, �m = �m((0, 1))[ �m((0,�1)). Since �m is compact, we
choose Cm to be a finite collection of Xa’s that cover �m, and finally C 0

m to be

C 0
m =

(

C1, if m = 1,

{Xa \ �m�1 | Xa 2 Cm}, if m > 1.

We then set C 0 = [m2N�1
C 0
m and we claim that this is a locally finite refinement

of the cover {Xa}a2A. Indeed, each of its element is an open subset of some Xa,
it is by construction locally finite and it covers the whole space M since for every
p 2M there exist some m 2 N�1 so that p 2 �m and hence p is an element of some
set of the collection C 0

m.
Finally, each of the maps �i for i = 1, 2 is a homeomorphism and the transition

map �2 � ��1
1 : R \ {0} ! R \ {0} is the identity map, whence a di↵eomorphism.

Thus ⌃ defines a smooth atlas for M .

(|) Problem B.6. Consider R2 as a set and equip it with the topology T gen-
erated by the basis B = {U ⇥ {a} | U ✓ R open, a 2 R}. Define �a : R ⇥ {a} !
R, �a(x, a) = x and set ⌃ = {�a | a 2 R}. Prove that the topological space
(R2, T ) is paracompact and that ⌃ defines a smooth atlas on it, but that it has an
uncountable number of connected components.

Solution. We claim that the connected components of (R2, T ) are the sets Ra :=
R ⇥ {a} where a 2 R, and in particular they are uncountably many. Indeed, any
such set is open by definition, and since we may write

Ra =
\

b2R\{a}
R⇥ (R \ {b}),

Ra is also closed because each of the R ⇥ (R \ {b})’s is closed. Since the union of
the Ra’s is the total space, this implies the claim.

Paracompactness of (R2, T ) is equivalent to the paracompactness of each of its
connected components. Since each of these is homeomorphic to R, which we know
to be paracompact, we deduce that the space is paracompact.

Finally, two di↵erent charts of above atlas always have disjoint domains, so the
smoothness of the transition functions is trivially satisfied. As a consequence ⌃
defines a smooth atlas for (R2, T ).
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Problem Sheet C

Problem C.1. Let M be a smooth manifold of dimension n. Prove that the
cotangent bundle T ⇤M is naturally a smooth manifold of dimension 2n.

Problem C.2. Let ' : M ! N be a smooth map. Prove that D' : TM ! TN is
also smooth. Prove that if ' : M ! N is an embedding then so is D' : TM ! TN .

Problem C.3. Let M be a smooth manifold of dimension n. Let (xi) be local
coordinates on M , and let1 vi := dxi so that (xi, vi) are local coordinates on TM .
Suppose f : TM ! R is a smooth function. Define the fibrewise derivative of f
at the point (x, v) to be the element

Dfibref(x, v) 2 T ⇤
xM, Dfibref(x, v) :=

n
X

i=1

@

@vi

�

�

�

(x,v)
(f)dxi|x.

Prove that Dfibref is well defined (i.e. independent of the choice of local coordi-
nates).

Problem C.4. Let ' : M ! N be an injective immersion with M compact. Prove
that ' is an embedding. Give an example to show that this need not be true if M
is not compact.

Problem C.5. Let M and N be smooth manifolds. Prove that there is a canonical
isomorphism:

T(x,y)(M ⇥N) = TxM ⇥ TyN, 8 (x, y) 2M ⇥N.

Problem C.6. Let O be an open subset in Rn and suppose f : O ! R is smooth.
Define g : O ! Rn+1 by

g(x) = (x, f(x)).

Prove that g is an smooth embedding, and hence that g(O) is a smooth embedded
n-dimensional submanifold of Rn+1. We call g(O) the graph of f .

Problem C.7. Let ı : Sn ,! Rn+1 denote the inclusion. Prove that:

Dı(x)[TxS
n] = Jx(x

?),

where Jx : Rn+1 ! TxRn+1 was defined in Problem B.3 and

x? :=
�

y 2 Rn+1 | hx, yi = 0
 

,

where h·, ·i is the standard Euclidean dot product.

Will J. Merry, Di↵. Geometry I, Autumn 2018, ETH Zürich. Last modified: June 28, 2019.
1We introduce the new notation vi because we want to think of them as coordinates on TM ,

and thus consider expressions such as @

@v

i

. Without the new notation we would end up with an
expression like @

@(dxi) , which would be horrendously confusing...

1
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(|) Problem C.8. Let Mn be an embedded submanifold of Rk. We define the
normal space to M at x to be the (k�n)-dimensional subspace Normx M ⇢ TxRk

consisting of all vectors that are orthogonal to TxM with respect to the Euclidean
dot product. We define the normal bundle of M as the set

Norm(M) :=
�

(x, v) 2 TRk = Rk ⇥ Rk | x 2M, v 2 Normx M
 

.

Prove that Norm(M) is an embedded k-dimensional submanifold of TRk = R2k.
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Solutions to Problem Sheet C

Problem C.1. Let M be a smooth manifold of dimension n. Prove that the
cotangent bundle T ⇤M is naturally a smooth manifold of dimension 2n.

Solution. This proof is very similar to the tangent bundle proof. It is however
interesting is to compare the behaviour of the transformation laws. We will use the
Einstein Summation Convention. Let {ei} denote the basis of the dual space (Rn)⇤

which is dual to the standard basis {ei}, i.e.
ei(ej) = �ij.

Of course, (Rn)⇤ ⇠= Rn (an isomorphism is provided by ei 7! ei), but in order to
make the formalism work we need to use the dual space1. If � : U ! O is a chart
for M , we build a chart for T ⇤M as follows: if ⇡ : T ⇤M ! M is the canonical
projection, we define �̃ : ⇡�1(U)! �(U)⇥ (Rn)⇤ to be defined as

�̃(x, p) =

✓

�(x), p

✓

@

@xi

�

�

�

�

x

◆

ei
◆

,

This map is a bijection and its image is an open subset of Rn ⇥ (Rn)⇤ ⇠= R2n.
Suppose now that ⌃ := {�a : Ua ! Oa | a 2 A} is an atlas on M . If �a : Ua ! Oa

and �b : Ub ! Ob are charts for M whose domains have nonempty intersection,
denoting by xi and yj the local coordinates induced by �a and �b respectively, if
(z, q = qi ei) 2 �̃a(Ua \ Ub)⇥ (Rn)⇤, then if x := ��1

a (z) we have

�̃�1
a (z, q) =

�

x, qi dx
i
�

�

x

�

,

and hence

�̃b � �̃�1
a (z, q) =

✓

�b(�
�1
a (z)), qi dx

i
�

�

�

x

✓

@

@yj

�

�

�

x

◆

ej
◆

(C.1)

Since

dxi
�

�

�

x

✓

@

@yj

�

�

�

x

◆

=
@xi

@yj

�

�

�

x

by Remark 3.10 (where we are using the convention from Definition 7.4), we have

�̃b � �̃�1
a (z, q) =

✓

�b(�
�1
a (z)), qi

@xi

@yj

�

�

�

x
ej
◆

Now @xi

@yj

�

�

x
is the (i, j)th entry of the matrix D(�a � ��1

b )(�b(x)), again by Remark
3.10, and hence (C.1) shows that

�̃b � �̃�1
a (z, q) =

�

�b � ��1
a (z), D(�a � ��1

b )(�b � ��1
a (z))T [q]

�

,

Solutions written by Mads Bisgaard, Francesco Palmurella, Alessio Pellegrini, and Alexandre
Puttick. Last modified: June 28, 2019.

1An easy way to check whether the formalism is correct is to see whether the Einstein Sum-
mation Convention works. If this indices are not in the correct position (upper versus lower) then
something is wrong.

1

https://sites.google.com/view/madsbisgaard
https://www.math.ethz.ch/the-department/people.html?u=palmuref
https://www.math.ethz.ch/the-department/people.html?u=alessiop
https://www.math.ethz.ch/the-department/people.html?u=putticka
https://www.math.ethz.ch/the-department/people.html?u=putticka


where we denote by AT the transpose of the matrix A (pay attention to the ordering
of a and b on the right-hand side!) Thus the charts {�̃a : ⇡�1(Ua) ! Oa ⇥ (Rn)⇤ |
a 2 A} then induce, thanks to Proposition 1.22, a smooth manifold structure on
T ⇤M .

This computation and that done in the proof of Theorem 4.16 consequently
summarise in the following sentence, somewhat dear to physicists: while changing
charts, (the local representatives of) vectors transform according to the Jacobian
matrix of the transition map, while (the local representatives of) covectors trans-
form according to the inverse-transposed Jacobian matrix of the transition map.

Problem C.2. Let ' : M ! N be a smooth map. Prove that D' : TM ! TN is
also smooth. Prove that if ' : M ! N is an embedding then so is D' : TM ! TN .

Solution. To prove that the derivative of ' is a smooth map, let x be a point in
M , let (UM , �M) be a chart for M around x and let (UN , �N) be a chart around
'(x). If (⇡�1

M (UM), �̃M) and (⇡�1
N (UN), �̃M) are the associated charts for TM and

TN respectively, the local expression for D' with respect to these charts is then

�̃�1
N � ' � �̃�1

M (x, v) =
�

(��1
N � ' � ��1

M )(x), D(��1
N � ' � ��1

M (x)[v]
�

,

which, ' being smooth, is a smooth function of x and v. Hence D' is a smooth
map.

Assume now that dimM = n and dimN = k. If ' is an embedding, '(M) is an
n-dimensional embedded submanifold of N , so in order to simplify the notations,
we will show that if ⌃ is any embedded submanifold of N , then T⌃ is an embedded
submanifold of TN . This will imply the result since D' defines a homeomorphism
of TM onto T ('(M)), where this latter is endowed with the induced topology of
TN .

To say that a subset ⌃ ⇢ N is an n-dimensional embedded submanifold is
equivalent to say that, for every x 2 ⌃, there is a slice chart adapted to ⌃, that is,
a chart (U, �) of N so that

�(U \ ⌃) = �(U) \ (Rn ⇥ {0, . . . , 0}), (C.2)

where the number of zeroes is k � n. Any such slice chart induces a respective
chart (⇡�1

M (U), �̃) for TN , and we claim that this is also a slice chart adapted to
T⌃. Indeed, if xi are the local coordinates relative to �, we can write for any
v 2 TxN ⇢ ⇡�1

M (U),

�̃(x, v) =

✓

�(x),
k
X

i=1

dxi
�

�

x
(v)ei

◆

,

but then condition (C.2) implies that the vector vp is also tangent to ⌃ if and only
if

0 = dxn+1
�

�

x
(v) = dxn+2

�

�

x
(v) = . . . = dxn

�

�

x
(v).

We obtain in other words that

�̃(⇡�1
M (U) \ T⌃) =

�

�(U) \ (Rn ⇥ {0, . . . , 0})�⇥ Rn ⇥ {0, . . . , 0},
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where each of the two chunks of zeroes contains k � n elements. Up to a shift of
the coordinates, this means precisely that we have obtained a slice chart adapted
to T⌃. Since such chart can be produced around any v 2 T⌃, we conclude that
T⌃ is an embedded submanifold of TN by Proposition 5.10.

Problem C.3. Let M be a smooth manifold of dimension n. Let (xi) be local
coordinates on M , and let2 vi := dxi so that (xi, vi) are local coordinates on TM .
Suppose f : TM ! R is a smooth function. Define the fibrewise derivative of f
at the point (x, v) to be the element

Dfibref(x, v) 2 T ⇤
xM, Dfibref(x, v) :=

n
X

i=1

@

@vi

�

�

�

(x,v)
(f)dxi|x.

Prove that Dfibref is well defined (i.e. independent of the choice of local coordi-
nates).

Solution. Choose (⌧, �) = (y1, . . . , yn, w1, . . . , wn) some local coordinates on TM
just as in the statement above, i.e. y are local coordinates on M and wj = dyj,
and denote by ⌧̃ : TU ! R2n the corresponding chart on TM . We also denote
(�,↵) = (x1, . . . , xn, v1, . . . vn) and let �̃ be the corresponding chart in strict analogy
to the above.

Observe that the expression @
@vi

�

�

�

(x,v)
is simply a vector in T(x,v)(TM) viewed as

a derivation at (x, v). The tuple

B(x,v) :=

✓

@

@y1

�

�

�

(x,v)
, . . . ,

@

@yn

�

�

�

(x,v)
,
@

@w1

�

�

�

(x,v)
, . . . ,

@

@wn

�

�

�

(x,v)

◆

forms a basis of the tangent space T(x,v)(TM) and therefore we can express each
@
@vi

�

�

�

(x,v)
in terms of B(x,v) as follows:

@

@vi
=

n
X

j=1

@

@vi
(yj)

@

@yj
+

n
X

j=1

@

@vi
(wj)

@

@wj
.3 (C.3)

We compute the coe�cients

@

@vi
(yj) = Di+n(y

j � �̃�1) = 0, (C.4)

simply because yj � �̃�1 : R2n ! R is constant as a function in the (n+ i)-th entry.
This can be seen as follows: Let z = (z1, . . . , z2n) 2 R2n be an arbitrary vector, fix
x 2 U ✓M and v 2 TxM be the unique vector such that

�

x1(x), . . . , xn(x), v1(x, v) . . . , vn(x, v)
�

= �̃(x, v) = z.

2We introduce the new notation vi because we want to think of them as coordinates on TM ,
and thus consider expressions such as @

@v

i

. Without the new notation we would end up with an
expression like @

@(dxi) , which would be horrendously confusing...
3In order to keep the notation short we omit the basepoints from now on. Also, this expression

follows from Remark (3.10)
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We then observe that
yj � �̃�1(z) = yj(x),

which does not depend on zn+i as we can leave x fixed and vary v to obtain any
real value zn+i = vi(x, v) = dxi|x(v) 2 R. Therefore we conclude

Di+n(y
j � �̃�1)(�̃(x, v)) = 0

as claimed above.
For the second coe�cient we pick x, v and z as above. In view of Remark (4.13)

we identify ↵(x, v) = D�(x)[v] and �(y, w) = D⌧(y)[w]. We compute

(� � �̃�1)z = (� � (D�(x))�1)z

= D⌧(x) �D(��1)(�(x))z

= D(⌧ � ��1)(�(x))z.

This shows that the expression (� � �̃�1) is linear in z 2 R2n (for fixed x) and hence

D(� � �̃�1)(�̃(x, v)) = D(⌧ � ��1)(�(x)).

From this we derive

@

@vi

�

�

�

(x,v)
(wj) = Di(w

j � �̃�1)(�̃(x, v)) (C.5)

= uj �D(� � �̃�1)(�̃(x, v))[ei]

= uj �D(⌧ � ��1)(�(x))[ei]

= Di(y
j � ��1)

=
@

@xi

�

�

�

x
(yj). (C.6)

Using (C.3), (C.4) and (C.5)=(C.6) we finally obtain

Dfibref =
X

i

@

@vi
(f)dxi

=
X

i,j

@

@xi
(yj)

@

@wj
(f)dxi

=
X

j

@

@wj
(f)

X

i

@

@xi
(yj)dxi

| {z }

=dyj

=
X

j

@

@wj
(f) dyj.

Problem C.4. Let ' : M ! N be an injective immersion with M closed. Prove
that ' is an embedding. Give an example to show that this need not be true if M
is not closed.
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Solution. In order to prove that an injective immersion ' : M ! N is an em-
bedding if M closed we need to show that ' is a homeomorphism onto its image
'(M), when the latter is equipped with he subspace topology it inherits form N .
Clearly ' : M ! '(M) is bijective, so it su�ces to show that it and its inverse are
continuous. Given an open subset O ⇢ '(M) there exists an open subset U ⇢ N
such that

O = U \ '(M).

Here we simply use the definition of the subspace topology. Hence, '�1(O) =
'�1(U) ⇢ M is open because ' is assumed to be smooth (and in particular con-
tinuous) when viewed as a map M ! N . This shows that ' : M ! '(M) is
continuous. To see that '�1 : '(M) ! M is continuous it su�ces to show that
('�1)�1(C) = '(C) ⇢ '(M) is closed for every closed subset C ⇢ M . Since M
is compact a closed subset C ⇢ M is also compact (with the subspace topology).
Since ' : M ! '(M) is continuous it maps compact subsets to compact subsets.4

Hence ('�1)�1(C) = '(C) ⇢ '(M) is closed for every closed subset C ⇢ M and
we conclude that ' : M ! '(M) is a homeomorphism which was exactly what we
needed to show.5

The example we consider is that of R immersed (but not embedded!) into
R2. The immersion ' : R ! R2 takes the negative (infinite) end of R to the line
{(0, y) | � 1.5 < y < 1.5}, then “swipes around” and continuously into the curve
{(t, sin(1t ) | 0 < t < 1} (see Figure C.1). It is not di�cult to imagine that this can
be done in such a way that ' is an immersion. Now note that ' : R ! '(R) will
not be a homeomorphism if the latter space is equipped with the subspace topology
from R2. To see this, note that (in this topology) the point (0, 0) 2 '(R) has a
basis of neighbourhoods all of which contain infinitely many connected components.
This is not the case for any element in R...

Problem C.5. Let M and N be smooth manifolds. Prove that there is a canonical
isomorphism:

T(x,y)(M ⇥N) = TxM ⇥ TyN, 8 (x, y) 2M ⇥N.

Solution. Fix (x, y) 2M ⇥N and let ◆M : M !M ⇥N, ◆M(x0) = (x0, y) denote
the obvious inclusion and ⇡M : M ⇥ N ! M the obvious projection. Similarly we
define ◆N : N !M ⇥N, ◆N(y0) = (x, y0), ⇡N : M ⇥N ! N and define

T : TxM ⇥ TyN ! T(x,y) (M ⇥N) , T (v, w) = D◆M(x)[v] +D◆N(y)[w].

To conclude that T is a canonical isomorphism we observe that the composition
with (D⇡M(x, y), D⇡N(x, y)) is simply the identity:

(D⇡M(x, y), D⇡N(x, y)) � T (v, w) = (D⇡M(x, y), D⇡N(x, y)) (D◆M(x)[v] +D◆N(y)[w])

=

0

@D(⇡M � ◆M
| {z }

=id

)(x)[v], D(⇡N � ◆N
| {z }

=id

)(y)[w]

1

A

= (v, w).

4Check this if you don’t remember the reason. Its not di�cult...
5This proof never used the manifold structure. Indeed, it’s a point-set topological fact that any

continuous bijective map from a compact topological space into a Hausdor↵ space is automatically
a homeomorphism.
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R2

Figure C.1: A copy of R immersed in R2.

This forces T to be a linear isomorphism by dimension reasons6 and also shows
that T is canonical.

Problem C.6. Let O be an open subset in Rn and suppose f : O ! R is smooth.
Define g : O ! Rn+1 by

g(x) = (x, f(x)).

Prove that g is an smooth embedding, and hence that g(O) is a smooth n-dimensional
submanifold of Rn+1. We call g the graph of f .

Solution. Define a map � : O ⇥ R! O ⇥ R by

�(x, y) = (x, y � f(x)).

Since f is smooth, it follows that � is as well. Since the inverse

��1(u, v) = (u, v + f(u))

is also smooth, we deduce that � is a di↵eomorphism. We have g = ◆ � ��1,
where ◆ : O ,! O ⇥ R is the inclusion x 7! (x, 0). Since ◆ and � are both smooth
embeddings, so is g. Since �

�

g(O)
�\ (O⇥R) = {(u, v) 2 O⇥R | v = 0}, the map

� also defines an explicit slice chart for g(O) in O ⇥ R.
6We do already know that dim(T(x,y)(M ⇥N)) = dim(M ⇥N) = dim(T

x

M ⇥ T
y

N).
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Problem C.7. Let ı : Sn ,! Rn+1 denote the inclusion. Prove that:

Dı(x)[TxS
n] = Jx(x

?),

where Jx : Rn+1 ! TxRn+1 was defined in Problem B.3 and

x? :=
�

y 2 Rn+1 | hx, yi = 0
 

,

where h·, ·i is the standard Euclidean dot product.

Solution. Previously we defined the isomorphism Jx : Rn+1 ! TxRn+1 by setting
Jx(v) = �0(0) with �(t) = x+ tv, where �0(0) is viewed as a linear derivation on the
space of germs at x. What this is really saying is that the inverse J �1

x : TxRn+1 !
Rn+1 has the following simply description: Given any v 2 TxRn+1 there exists a
smooth curve e� : (�✏, ✏)! Rn+1 such that e�(0) = x and e�0(0) = v. Then

J �1
x (v) = e�0(0),

where we view e�0(0) as an element of Rn+1 in the sense of elementary calculus
(di↵erentiating each coordinate function).

Now fix w 2 TxSn and choose a smooth curve � : (�✏, ✏) ! Sn with �(0) = x
and �0(0) = w. Since Sn = {y 2 Rn+1 | |y| = 1} we have we have |ı(�(t))|2 = 1 for
all t 2 (�✏, ✏). From elementary calculus it now follows that

0 =
d

dt

�

�

�

�

t=0

|ı(�(t))|2 = d

dt

�

�

�

�

t=0

hı(�(t)), ı(�(t))i

= h(ı � �)0(0), ı(�(0))i+ hı(�(0)), (ı � �)0(0)i
= 2h(ı � �)0(0), xi,

where (ı��)0(0) is understood in the sense of elementary calculus. By the manifold
version of the chain rule and the above remark we have (ı��)0(0) = J �1

x �Dı(x)[w].
So, since w 2 TxSn was arbitrary, the above computation implies

Dı(x)[TxS
n] ⇢ Jx(x

?).

Moreover, since both Dı(x)[TxSn] and Jx(x?) are linear subspaces of TxRn+1 of
dimension n it follows from elementary linear algebra that in fact

Dı(x)[TxS
n] = Jx(x

?).

(|) Problem C.8. Let Mn be an embedded submanifold of Rk. We define the
normal space to M at x to be the (k�n)-dimensional subspace Normx M ⇢ TxRk

consisting of all vectors that are orthogonal to M with respect to the Euclidean
dot product. We define the normal bundle of M as the set

Norm(M) :=
�

(x, v) 2 TRk = Rk ⇥ Rk | x 2M, v 2 Normx M
 

.

Prove that Norm(M) is an embedded k-dimensional submanifold of TRk = R2k.
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Solution. Endow Norm(M) ⇢ R2k with the subspace topology. Let x 2M . Since
M is an embedded submanifold of Rk, there exists a slice chart � : U ⇢ Rk ! O
around x with corresponding coordinates yi := ui � � and

M \ U = {y 2 U | yn+1(y) = · · · = yk(y) = 0}.

For each y 2 U , the vectors ej,y := @/@yj|y form a basis of TyRk, with (ej,y)j=1,...,n

forming a basis of the subspace TyM ⇢ TyRk. Let xi denote the standard coordi-
nates on Rk. Then

ej,y =
n
X

i=1

@

@yj

�

�

�

y
(xi) · @

@xi

�

�

�

y
.

Let E(y) =
�

@/@yj|y(xi)
�

ij
denote the corresponding change of basis matrix.

Define a function ⌃ : U ⇥ Rk ! �(U)⇥ Rk by

⌃(y, v) =
�

y1(y), . . . , yk(y), v · e1,y, . . . , v · ek,y
�

,

where v · ej,y is the Euclidean dot product after identifying TyRk with Rk via the
basis (@/@xi|y)i=1,...,k. This means that if v =

Pk
i=1 v

iei, then

v · ej,y =
k
X

i=1

vi
@

@yj

�

�

�

y
(xi).

Since as y varies each partial derivative @/@yj|y(xi) defines a smooth function on
U , it follows that ⌃ is smooth. The total derivative of ⌃ at a point (y, v) is

D⌃(y, v) =

 

⇣

@yi

@xj

(y)
⌘

ij
0

⇤ E(y)

!

.

Since this is invertible, it follows from the Inverse Function Theorem that ⌃ is a
local di↵eomorphism. If ⌃(y, v) = ⌃(y0, v0), then y = y0 because � is injective.
By assumption, we have v · ei,y = v0 · ei,y for each i, which implies that v � v0 is
orthogonal to the span of (e1,y, . . . , ek,y). Since the ei,y form a basis of Rk, it follows
that v � v0 = 0. Thus ⌃ is injective and hence defines a smooth chart on U ⇥ Rk.
By construction, we have (y, v) 2 Norm(M) if and only if ⌃(y, v) is contained in

{(z, w) 2 Rk ⇥ Rk | zn+1 = · · · = zk = 0, w1 = · · · = wn = 0}.

It follows that ⌃ is a slice chart for Norm(M). Proposition 5.10 implies that
Norm(M) is an embedded k-dimensional submanifold of R2k, as desired.
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Problem Sheet D

Problem D.1. Let M be a smooth manifold, let x 2M , and let v 2 TxM . Let U
be any open set containing x. Prove that there exists a vector field X 2 X(U) such
that X(x) = v.

Problem D.2. Let M be a smooth manifold and let W ⇢M be a non-empty open
set. Prove that the Lie bracket [·, ·] on X(W ) satisfies the Jacobi identity.

Problem D.3. Let M be a smooth manifold and let � : U ! O be a chart on M
with local coordinates xi, and let X, Y 2 X(U). Write X = X i @

@xi

and Y = Y i @
@xi

.
Prove that

[X, Y ] =

✓

X i@Y
j

@xi
� Y i@X

j

@xi

◆

@

@xj
,

where @Y j

@xi

and @Xj

@xi

are the functions from Definition 7.4.

Problem D.4. Let M be a smooth manifold and let W ⇢M be a non-empty open
set. Let X, Y 2 X(W ), and let f, g 2 C1(W ). Prove that

[fX, gY ] = fg[X, Y ] + fX(g)Y � gY (f)X.

Problem D.5. Let ' : M ! N be a smooth map. Let X 2 X(M) and Y 2 X(N).
We say that X and Y are '-related if

D'(x)[X(x)] = Y ('(x)), 8 x 2M.

Of course if ' is a di↵eomorphism then any X 2 X(M) is '-related to '?(X).

(i) Prove that X 2 X(M) and Y 2 X(N) are '-related if and only if for every
open set V ⇢ N and every smooth function f 2 C1(V ), one has

X(f � ') = Y (f) � '.
(ii) Let Xi 2 X(M) and Yi 2 X(N) for i = 1, 2 be vector fields. Assume Xi is

'-related to Yi for each i = 1, 2. Prove that [X1, X2] is '-related to [Y1, Y2].

(|) Problem D.6. Let M ⇢ N be an (immersed or embedded) submanifold and
let x 2 M . We say that a vector field Y 2 X(N) is tangent to M at x if
Y (x) 2 TxM ⇢ TxN . We say Y is tangent to M if it is tangent to M at every
point x 2M .

(i) Assume M ⇢ N is an embedded submanifold. Prove that Y 2 X(N) is
tangent to M if and only if (Y f)|M ⌘ 0 for every function f 2 C1(N) such
that f |M ⌘ 0.

(ii) Now assume M ⇢ N is merely an immersed submanifold. Let ı : M ,! N
denote the inclusion. Assume that Y 2 X(N) is tangent to M . Prove there
exists a unique X 2 X(M) such that X is ı-related to Y .

(iii) Continue to assume that M ⇢ N is an immersed submanifold. Suppose
Y1, Y2 2 X(N) are tangent to M . Prove that [Y1, Y2] is tangent to M .

Will J. Merry, Di↵. Geometry I, Autumn 2018, ETH Zürich. Last modified: June 28, 2019.
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Solutions to Problem Sheet D

Problem D.1. Let M be a smooth manifold, let x 2M , and let v 2 TxM . Let U
be any open set containing x. Prove that there exists a vector field X 2 X(U) such
that X(x) = v.

Solution. First consider an arbitrary subset A ⇢ M endowed with the subspace
topology. A smooth vector field along A is a continuous map X : A ! TM
such that

1. the section property ⇡(X(x)) = x holds for all x 2 A, and

2. for each x 2 A, there is a neighbourhood V of x in M and a smooth vector
field X̃ on V that agrees with X on V \ A.

The statement in the exercise follows from the following more general statement:

Lemma. Let A ⇢ M be a closed subset, and let X be a smooth vector field
along A. Given any open subset U ⇢M containing A, there exists a smooth global
vector field X̃ on M such that X̃|A = X and supp X̃ ⇢ U .

Proof. By assumption, for each x 2 A, we may choose a neighbourhood Vx ⇢ U of
x and a smooth vector field X̃x of Vx that agrees with X on Vx\A. Then the family
of sets {Vx | x 2 A} [ {M \ A} is an open cover of M . Let {�x | x 2 A} [ {�0}
be a partition of unity subordinate to this open cover, with supp �x ⇢ Vx and
supp �0 ⇢M \ A.

For each x 2 A, the product �xX̃x is a smooth vector field on Vx. We consider
it as a smooth vector field on M by extending by 0 on M \ supp �x. Consider the
function X̃ : M ! TM defined by

X̃(x) =
X

y2A
�y(x)X̃y(x).

Each term in the above sum is smooth. Since {supp �x | x 2 A} is locally finite,
the sum has only finitely many terms in a neighbourhood of any point of M and
thus defines a smooth function. If x 2 A, then �0(x) = 0 and �y(x)X̃y(x) = X(x)
for each y such that �y(x) 6= 0. Thus

X̃(x) =
X

y2A
�y(x)X(x) =

⇣

�0(x) +
X

y2A
�y(x)

⌘

X(x) = X(x);

hence X̃ is a global smooth vector field extending X. Finally, consider the following
equalities:

supp X̃ =
[

x2A
supp �x =

[

x2A
supp �x ⇢ U.

Thus supp X̃ ⇢ U . This concludes the proof.

Solutions written by Mads Bisgaard, Francesco Palmurella, Alessio Pellegrini, and Alexandre
Puttick. Last modified: June 28, 2019.
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The function X : {x}! TM, x 7! v is a smooth vector field along {x} since it
can be extended, for example, to a constant-coe�cient vector field in a coordinate
neighbourhood of x. We thus obtain the desired result by applying the above
proposition with A = {x} and U = M .

Note that in order to prove the statement in the exercise, one can simply extend
to a constant coe�cient vector field in a coordinate neighbourhood U of x with value
v at x, multiply by a bump function on U , and then extend the resulting vector
field on U by zero to a vector field on M . We include the general statement above
as a nice illustration of the usefulness of partitions of unity, and one can see that
its proof generalises the aforementioned simpler argument.

Problem D.2. Let M be a smooth manifold and let W ⇢M be a non-empty open
set. Prove that the Lie bracket [·, ·] on X(W ) satisfies the Jacobi identity.

Solution. Let X, Y, Z 2 X(W ) and let f 2 C1(W ). We compute:

[X, [Y, Z]] + [Y, [Z,X]] + [Z, [X, Y ]] =X[Y, Z]� [Y, Z]X + Y [Z,X]

� [Z,X]Y + Z[X, Y ]� [X, Y ]Z

=XY Z �XZY � Y ZX + ZY X + Y ZX

� ZXY +XZY + ZXY � ZY X �XY Z + Y XZ.

Note that the product of vector fields in the above equations is given by composition,
i.e., XY := X � Y , where X and Y are viewed as functions from C1(W ) to itself.
In the last expression above, all of the terms cancel in pairs. Thus [X, [Y, Z]] +
[Y, [Z,X]] + [Z, [X, Y ]] = 0 and X(W ) satisfies the Jacobi identity.

Problem D.3. Let M be a smooth manifold and let � : U ! O be a chart on M
with local coordinates xi, and let X, Y 2 X(U). Write X = X i @

@xi

and Y = Y i @
@xi

.
Prove that

[X, Y ] =

✓

X i@Y
j

@xi
� Y i@X

j

@xi

◆

@

@xj
,

where @Y j

@xi

and @Xj

@xi

are the functions from Definition (7.4).

Solution. We recall that the Lie bracket [X, Y ] of two vector fieldsX, Y 2 X(U) is
a derivation defined by [X, Y ] : C1(U)! C1(U), [X, Y ](f) = X(Y (f))�Y (X(f)).
Let us write X = X i @

@xi

and Y = Y j @
@xj

and view them both as derivations. We
pick some arbitrary smooth function f 2 C1(U) and feed it to Y to obtain, for
each x 2 U :

Y (f)(x) =

✓

Y j @

@xj

◆

(f)(x) = Y j(x)
@f

@xj
(x).

Note that in the last step we used the notation introduced in Definition (7.4). For
notations reasons it is convenient to set gj1 =

@f
@xj

2 C1(U). Invoking the derivation
property grants us

X(Y (f))(x) = X i(x)
@

@xi

�

Y j gj
�

(x) (D.1)

= X i(x)

✓

@Y j

@xi
(x) gj(x) +

@gj
@xi

(x)Y j(x)

◆

, (D.2)

1Since we are using the Einstein Summation Convention we are forced to use a lower subscript.
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and by symmetry, after swapping the i’s and j’s indices, we also get

Y (X(f))(x) = Y i(x)
@

@xi

�

Xj gj
�

(x) (D.3)

= Y i(x)

✓

@Xj

@xi
(x) gj(x) +

@gj
@xi

(x)Xj(x)

◆

. (D.4)

Now we compute the di↵erence (D.2)-(D.4):

X(Y (f))� Y (X(f)) =

✓

X i @Y
j

@xi

@f

@xj
� Y i @X

j

@xi

@f

@xj

◆

+

0

B

@

X i @gj
@xi

Y j � Y i @gj
@xi

Xj

| {z }

=0

1

C

A

.

This concludes the proof.

Problem D.4. Let M be a smooth manifold and let W ⇢M be a non-empty open
set. Let X, Y 2 X(W ), and let f, g 2 C1(W ). Prove that

[fX, gY ] = fg[X, Y ] + fX(g)Y � gY (f)X.

Solution. In order to make the next computation more readable we will use dots
“ · ” to emphasise that we are taking the product of two smooth functions on W .
This has the advantage that it becomes very clear where the derivation property
(i.e. the Leibniz-rule) is used.

We pick some h 2 C1(W ) and finish the proof with the following computation:

[f X, g Y ] (h) = f ·X ((g Y )(h))� g · Y ((f X)(h))

= f ·X (g · Y (h))� g · Y (f ·X(h))

= f · {X(g) · Y (h) + g ·X(Y (h))}� g · {Y (f) ·X(h) + f · Y (X(h))}
= (f · g) ([X, Y ] (h)) + f ·X(g) · Y (h)� g · Y (f) ·X(h).

Problem D.5. Let ' : M ! N be a smooth map. Let X 2 X(M) and Y 2 X(N).
We say that X and Y are '-related if

D'(x)[X(x)] = Y ('(x)), 8 x 2M.

Of course if ' is a di↵eomorphism then any X 2 X(M) is '-related to '?(X).

(i) Prove that X 2 X(M) and Y 2 X(N) are '-related if and only if for every
open set V ⇢ N and every smooth function f 2 C1(V ), one has

X(f � ') = Y (f) � '.

(ii) Let Xi 2 X(M) and Yi 2 X(N) for i = 1, 2 be vector fields. Assume Xi is
'-related to Yi for each i = 1, 2. Prove that [X1, X2] is '-related to [Y1, Y2].

Solution.

3



(i) Recall that the derivative of ' satisfies, for every x in M and every neigh-
bourhood V ⇢ N of '(x),

X(f � ')(x) = D'(x)[X(x)](f) for every f 2 C1(V ).

Since two tangent vectors W1,W2 2 T'(x)N coincide if and only if

W1(f) = W2(f) for every f 2 C1(V ),

where V ⇢ N is any (equiv. some) neighbourhood of '(x), we deduce that
the vector field Y is '-related to X if and only if Y (f)�'(x) = X(f �')(x) for
every x 2 M and f 2 C1(V ), where V is any (equiv. some) neighbourhood
of '(x) in N .

(ii) By (i) it su�ces to prove that, for every open set V ⇢ N (so that V \'(M) 6=
;, of course) and every f 2 C1(V ),

[X1, X2](f � ') = [Y1, Y2](f) � '.

Since Yi is '-related to Xi we see that

X1(X2(f � ')) = X1(Y2(f) � ') = Y1(Y2(f)) � ',

and similarly we see that X2(X1(f � ')) = Y2(Y1(f)) � '. Consequently we
deduce that

[X1, X2](f � ') = X1(X2(f � '))�X2(X1(f � '))
= Y1(Y2(f)) � '� Y2(Y1(f)) � '
= [Y1, Y2](f) � ',

as desired.

(|) Problem D.6. Let M ⇢ N be an (immersed or embedded) submanifold and
let x 2 M . We say that a vector field Y 2 X(N) is tangent to M at x if
Y (x) 2 TxM ⇢ TxN . We say Y is tangent to M if it is tangent to M at every
point x 2M .

(i) Assume M ⇢ N is an embedded submanifold. Prove that Y 2 X(N) is
tangent to M if and only if (Y f)|M ⌘ 0 for every function f 2 C1(N) such
that f |M ⌘ 0.

Solution. Let’s define n = dimM and k := dimN so that k � n. We apply
Proposition 5.6, according to which there exists a chart ' : U ! O on N for

every x 2M with x 2 U
open⇢ N and 0 = '(x) 2 O

open⇢ Rk such that

'(M \ U) = O \ (Rn ⇥ {0}k�n).

We will sometime use the notation y = (z1, z2) 2 Rn ⇥ Rk�n = Rk. Now let
Y ' 2 X(O) be the pushforward of Y :

Y '(y) = D'(x)[Y (x)],
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where y = '(x). We can expand Y ' in the basis @
@x1

, @
@x2

, . . . , @
@x

n

:

Y '(y) = Zi(y)
@

@xi

�

�

�

�

y

8 y 2 O.

Here we use the Einstein summation convention and Zi 2 C1(O) for every
i = 1, . . . , k. Clearly Y being tangent to M is equivalent to Zi(z1, 0) = 0 for
all (z1, 0) 2 O and every i = n+ 1, . . . , k.

Assume first that Y is tangent to M , i.e.

Zi(z1, 0) = 0 8 (z1, 0) 2 O, i = n+ 1, . . . , k. (D.5)

If f 2 C1(N) satisfies f |M ⌘ 0 then

f � '�1(z1, 0) = 0 8 (z1, 0) 2 O. (D.6)

In particular we can compute that for x 2M and '(x) = y = (z1, 0):

Y (f)|x = Y '(f � '�1)|(z1,0)

=
n
X

i=1

Zi(z1, 0)
@(f � '�1)

@xi

�

�

�

�

(z1,0)

+
k
X

i=n+1

Zi(z1, 0)
@(f � '�1)

@xi

�

�

�

�

(z1,0)

= 0

The first sum vanishes because of condition (D.6) and the second vanishes
because of condition (D.5).

Assume now that Y (f)|M ⌘ 0 for every f 2 C1(N) with f |M ⌘ 0. We need
to show that Y is tangent to M . We do so by contradiction. Hence, assume
for contradiction that Y were not tangent to M . Then there exists some chart
' as above about x and some l 2 {m+ 1, . . . , n} such that

Z l('(x)) 6= 0.

Now define ef(x1, . . . , xn) = xl. By Lemma 3.2 there exists a compactly
supported function ⌘ 2 C1(O) such that supp(⌘) ⇢ O and ⌘ ⌘ 1 on B ⇢ O,
where B is a small open ball in O containing 0 = '(x) 2 O. The function

f(y) := ⌘(y) ef(y)

is a compactly supported function on O, so by extending f�'|U by 0 outside of
U we can view f�' 2 C1(N). Note that f�'|M ⌘ 0 because ef |Rn�m⇥{0}m ⌘ 0.
Now we can compute

Y (f � ')(x) = Y '(f)('(x)) = Zi('(x))
@f

@xi

�

�

�

�

'(x)

= Zi('(x))
@xl

@xi

�

�

�

�

'(x)

= Z l('(x)) 6= 0.

In this computation we use that f = xl on a neighbourhood of x. This
contradicts our assumption that Y (f)|M ⌘ 0 for all f 2 C1(N) with f |M ⌘ 0
and hence finishes the proof.
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(ii) Now assume M ⇢ N is merely an immersed submanifold. Let ı : M ,! N
denote the inclusion. Assume that Y 2 X(N) is tangent to M . Prove there
exists a unique X 2 X(M) such that X is ı-related to Y .

Solution. That X 2 X(M) and Y 2 X(N) be ı-related means that

Dı(x)[X(x)] = Y (ı(x)) 8 x 2M. (D.7)

Since ı : M ! N is an immersion, Dı(x) : TxM ! Tı(x)N is injective for ev-
ery x 2 M . The assumption that Y is tangent to M means that Y (ı(x)) 2
Image(Dı(x)) for every x 2 M . Hence, (D.7) defines X pointwise uniquely.
That X is smooth (i.e. X 2 X(M)) follows from the Implicit Function The-
orem 5.3.

(iii) Continue to assume that M ⇢ N is an immersed submanifold. Suppose
Y1, Y2 2 X(N) are tangent to M . Prove that [Y1, Y2] is tangent to M .

Solution. [Y1, Y2] being tangent to M is clearly a local property: We need
to show that for a given x 2 M ⇢ N we have [Y1, Y2](x) 2 TxM . Since any
immersion is a local embedding, there exists a neighbourhood O ⇢ M of x
such that O ⇢ N is an embedded submanifold. Since TxO = TxM it su�ces
to show that [Y1, Y2](x) 2 TxO. Given f 2 C1(N) with f |O ⌘ 0 we compute
using (i) and the fact that Y1 and Y2 are tangent to O:

[Y1, Y2](f)(x) = Y1(Y2(f))(x)� Y2(Y1(f))(x)

= Y1(0)(x)� Y2(0)(x) = 0

This shows that [Y1, Y2](x) 2 TxO and thus finishes the exercise.
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Problem Sheet E

Problem E.1. Let ' : M ! N be a smooth map between two smooth manifolds.
Let X 2 X(M) and Y 2 X(N), and assume X and Y are '-related in the sense of
Problem D.5. Let ✓Xt and ✓Yt denote the respective flows, and define Mt ⇢ M and
Nt ⇢ N as Remark 8.11. Prove that '(Mt) ⇢ Nt and that

✓Yt � ' = ' � ✓Xt , on Mt.

Deduce that if ' is a di↵eomorphism then for any vector field X on M one has
✓'?(X)
t = ' � ✓Xt � '�1.

(|) Problem E.2. Let X and Y be vector fields on a smooth manifold M with
flows ✓Xt and ✓Yt respectively. Prove that [X, Y ] ⌘ 0 if and only if the two flows
commute, i.e. ✓Xt � ✓Ys = ✓Ys � ✓Xt for all s, t small.

Problem E.3. Let J0 2 Mat(2n) denote the matrix

J0 :=

✓

0 �I
I 0

◆

,

where I is the n ⇥ n identity matrix. The symplectic linear group Sp(2n)
consists of the matrices A such that ATJ0A = J0. Prove that Sp(2n) is a Lie group.
Compute its dimension, and compute its Lie algebra sp(2n).

(|) Problem E.4. Let G be a Lie group and suppose H is a subgroup of G which
is also an embedded submanifold. Prove that H is closed in G (as a subspace).

Problem E.5. Prove that if Lie group is abelian then its Lie algebra is abelian.
(Remark: On Problem Sheet G you will prove that if a connected Lie group has
abelian Lie algebra, then it is an abelian Lie group.)

Problem E.6. Prove that the Lie bracket on gl(n) is given by matrix commutation,
i.e.

[A,B] = AB � BA, 8A,B 2 gl(n) = Mat(n).

(|) Problem E.7. Let ' : Mn ! Nk be smooth, and let Lr ⇢ N be an embedded
submanifold. We say that ' is transverse and regular at L if

D'(x)[TxM ] + T'(x)L = T'(x)N, 8 x 2 '�1(L).

Prove that if ' is transverse and regular at P then if '�1(L) 6= ; then '�1(L)
is a smooth embedded submanifold of M of dimension n � k + r. (Remark: The
Implicit Function Theorem 5.13 is the special case where L is a point. As a hint,
try to reduce this problem to Theorem 5.13.)

Will J. Merry, Di↵. Geometry I, Autumn 2018, ETH Zürich. Last modified: June 28, 2019.
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Solutions to Problem Sheet E

Problem E.1. Let ' : M ! N be a smooth map between two smooth manifolds.
Let X 2 X(M) and Y 2 X(N), and assume X and Y are '-related in the sense of
Problem D.5. Let ✓Xt and ✓Yt denote the respective flows, and define Mt ⇢ M and
Nt ⇢ N as Remark 8.11. Prove that '(Mt) ⇢ Nt and that

✓Yt � ' = ' � ✓Xt , on Mt.

Deduce that if ' is a di↵eomorphism then for any vector field X on M one has
✓'?(X)
t = ' � ✓Xt � '�1.

Solution. Recall that, by definition, a point x belongs to Mt when the solution
of the Cauchy problem

(

�0x(⌧) = X(�x(⌧)),

�x(0) = x,

is defined for ⌧ = t. If we want to prove that '(x) belongs to Nt we need to show
that the solution of the Cauchy problem

(

⇣ 0x(⌧) = Y (⇣x(⌧)),

⇣x(0) = '(x),
(E.1)

is defined for ⌧ = t. We claim that the solution to such problem is the curve
⇣x(⌧) = '(�x(⌧)). Indeed, there holds ⇣x(0) = '(�x(0)) = '(x), and since X and
Y are '-related, we can compute:

⇣ 0x(⌧) = D'(�x(⌧))[X(�x(⌧))] = Y ('(�x(⌧))) = Y (⇣x(⌧)).

Hence ⌘ is the (unique) solution of (E.1), and, since �x is defined at ⌧ = t, so is ⇣x.
Note moreover, by definition of the flows ✓Xt and ✓Yt , we simply have

✓Xt (x) = �x(t) and ✓Yt ('(x)) = ⇣x(t),

hence since ⇣x(t) = '(�x(t)), we also showed that there holds

(✓Yt � ')(x) = (' � ✓Xt )(x) for x 2Mt.

Finally note that if ' is a di↵eomphism, we can pre-compose on the left both hand-
sides of the above relation with '�1 and notice that Y is '-related to X precisely
if Y = '?(X).

(|) Problem E.2. Let X and Y be vector fields on a smooth manifold M with
flows ✓Xt and ✓Yt respectively. Prove that [X, Y ] ⌘ 0 if and only if the two flows
commute, i.e. ✓Xt � ✓Ys = ✓Ys � ✓Xt for all s, t small.

Solutions written by Mads Bisgaard, Francesco Palmurella, Alessio Pellegrini, and Alexandre
Puttick. Last modified: June 28, 2019.
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Solution. Recall first of all the fundamental identity

[X, Y ](x) = LXY (x) =
d

d"

✓

D(✓X�")(✓
X
" (x))[Y (✓X" (x))]

◆

�

�

�

�

"=0

for x 2M. (E.2)

If the flows of X and Y commute, we deduce that Y is X-invariant, that is, for
every x 2 M and every su�ciently small values s, t so that the expressions below
are defined, we have

D(✓Xs )(x)[Y (x)] =
d

dt
(✓Xs � ✓Yt )(x)

�

�

�

�

t=0

=
d

dt
(✓Yt � ✓Xs )(x)

�

�

�

�

t=0

= Y (✓Xs (x)).

In particular, for any p 2 M , if " is su�ciently small we may choose x = ✓X�"(p)
and thus deduce that

Y (p) = D(✓X�")(✓
X
" (p))[Y (✓X" (p)].

This means that that the vector field on the right-hand-side is independent of
". Since the derivative of a constant function is 0, from (E.2) we deduce that
[X, Y ] = 0.

Conversely, let us assume that the bracket of X and Y vanishes. Let us prove
first that Y is X-invariant, that is, for every x 2M there hols

(✓X" )(x)[Y (x)] = Y (✓X" (x)),

for every su�ciently small value of " so that this expression is defined. Replacing
" with �" and setting p = ✓X" (x), this is equivalent to prove that the vector field

D(✓X�")(✓
X
" (p))[Y (✓X" (p))]

is constant with respect to ". In the computation that follows, we use the so-called
semigroup property of the flow:

✓X⌧+⌘(p) = ✓X⌧ (✓
X
⌘ (p)),

which implies, when di↵erentiated and applied to Y , that

D(✓X⌧+⌘)(p)[Y (p)] = D(✓X⌧ )(✓
X
⌘ (p))[D✓

X
⌘ (p)[Y (p)]],

for every ⌧, ⌘ so that the above expressions are defined. We may then compute:

d

d"

✓

D(✓X�")(✓
X
" (p))[Y (✓X" (p))]

◆

�

�

�

�

"="0

=
d

d"

✓

D(✓X�"�"0)(✓
X
"+"0(p))[Y (✓X"+"0(p))]

◆

�

�

�

�

"=0

=
d

d"

✓

D(✓X�"0)(✓
X
"0(p))

⇥

D(✓X�")(✓
X
�"+"0(p))[Y (✓X"+"0(p))]

⇤

◆

�

�

�

�

"=0

=
d

d"

✓

D(✓X"0(✓
X
" (p))[LXY (✓X"0(p))]

◆

�

�

�

�

"=0

=
d

d"

✓

D(✓X"0(✓
X
" (p))

⇥

[X, Y ](✓X"0(p))
⇤

◆

�

�

�

�

"=0

= 0,
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and hence Y is X-invariant. As a consequence, if for fixed t and p we consider the
curve �(s) = (✓Xt � ✓Xs )(p), di↵erentiating � it with respect to s yields

�0(s) = D(✓Xt )(✓
Y
s (p))[Y (✓Ys (p))]

= Y (✓Xt (✓
Y
s (p)))

= Y (�(s)),

and since �(0) = ✓Xs (p), we deduce that � is the integral curve for Y at the point
✓Xt (p), that is �(s) = ✓Ys (✓

X
t (p)), and from the definition of �, this means precisely

that tha flows of X and Y commute.

Problem E.3. Let J0 2 Mat(2n) denote the matrix

J0 :=

✓

0 �I
I 0

◆

,

where I is the n ⇥ n identity matrix. The symplectic linear group Sp(2n)
consists of the matrices A such that ATJ0A = J0. Prove that Sp(2n) is a Lie group.
Compute its dimension, and compute its Lie algebra sp(2n).

Solution. One way to show that the symplectic linear group defines a Lie group
is by expressing it in terms of a regular level of some smooth function1. First of all
we observe that the matrix ATJ0A is antisymmetric, i.e. its transpose is equal to
minus itself. In other words, the expression ATJ0A lives inside the vector space

Antsym(2n) =
�

B 2 Mat(2n)
�

�BT = �B .
It is straightforward to see that the (real) vector space dimension is given by

dimR Antsym(2n) =
2n(2n+ 1)

2
� 2n =

2n(2n� 1)

2
.

We now define the smooth function

' : Mat(2n)! Antsym(2n), A 7! ATJ0A.

In view of '�1(J0) = Sp(2n), we want to show that J0 is a regular value of ' so
that Sp(2n) inherits a smooth manifold structure by means of the Implicit Function
Theorem, more precisely Theorem (5.2).

Let A0 2 '�1(J0), B 2 Mat(2n) and pick A(t) a smooth path in Mat(2n) such
that

A(0) = A0,
d

dt

�

�

�

t=0
A(t) = B.

Using the chain rule we can compute the di↵erential of ' at A0 evaluated on B:

D'(A0)[B] =
d

dt

�

�

�

t=0
(' � A) (t)

=
d

dt

�

�

�

t=0

�

AT (t)J0A(t)
�

(t)

= BTJ0A0 + AT
0 J0B.

1This is very similar to the proof strategy used in Proposition (9.13)
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For any antisymmetric matrix C we can now define B = �1
2
A0J0C and plug it into

the di↵erential above. Using the fact that A0 = AT
0 J0A0 one then obtains

D'(A0)[B] = C,

which shows that D'(A0) is surjective2 for any element A0 in the preimage '�1(J0)
and equivalently that J0 is a regular value of '. Thus the Implicit Function Theorem
tells us that Sp(2n) is a smooth manifold of dimension

dim(Sp(2n)) = 4n2 � dim(Antsym(2n)) = 4n2 � 4n2 � 2n

2
= 2n2 + n.

Proposition (9.10) tells us that Sp(2n) is automatically a Lie group and therefore
we are only left to compute the Lie algebra sp(2n), but this follows immediately
from Proposition (5.15) and the computation above:

sp(2n) = Te Sp(2n) ⇠= kerD'(e) =
�

B 2 Mat(2n)
�

�BTJ0 + J0B = 0
 

.

(|) Problem E.4. Let G be a Lie group and suppose H is a subgroup of G which
is also an embedded submanifold. Prove that H is closed in G (as a subspace).

Solution. Choose a sequence (hk)k2N such that

hk ! g 2 G

for k !1. We need to show that g 2 H. Since the identity element e 2 H ⇢ G we
can choose a slice chart ' : U ! O with e 2 U ⇢ G and 0 = '(e) 2 O ⇢ Rn. Recall
that this means that '(H \ U) = O \ (Rk ⇥ {0}n�k) for k equal to the dimension
of H (as a submanifold). Choose an open subset e 2 W ⇢ U such that W ⇢ U .
Note that this implies (by the properties of a slice chart) that

W \H is a closed subset of G. (E.3)

Now, since the map f(g1, g2) = g�1
1 g2 is continuous, there exists an open non-empty

set e 2 V ⇢ G such that
V ⇥ V ⇢ f�1(W ).

Now, since f is continuous we have

g�1hk = f(g, hk)
k!1�! e.

In particular, there exists K 2 N such that g�1hk 2 V for all k � K. For j � K
we therefore have

h�1
K hj = (g�1hK)

�1(g�1hj) = f(g�1hK , g
�1hj) 2 W,

which implies
h�1
K g = lim

j!1
h�1
K hj 2 W.

Since each h�1
j hK 2 H (for j � K) it follows from (E.3) that h�1

K g 2 H. In
particular, g = (hK)(h

�1
K g) 2 H which finishes the proof.

2We are implictly using the identification T
J0(Antsym(2n)) ⇠= Antsym(2n) as vector spaces.
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Problem E.5. Prove that if Lie group is abelian then its Lie algebra is abelian.
(Remark: On Problem Sheet G you will prove that if a connected Lie group has
abelian Lie algebra, then it is an abelian Lie group.)

Solution. Let G be an abelian Lie group with Lie algebra g. We first show that
the inversion map i : G! G is a Lie group isomorphism. First, observe that

i(ab) = (ab)�1 = b�1a�1 = a�1b�1 = i(a)i(b),

so i is a group homomorphism; hence a Lie group homomorphism since it is smooth
by assumption. Since i is clearly bijective, it follows from Corollary 9.8 that i is a
Lie group isomorphism, as desired. We now apply Proposition 9.21 to deduce that
Di(e) : g! g is a Lie algebra isomorphism.

Recall that we can identify Te,e(G⇥G) with g� g as in Problem C.5. We need
the following lemma:

Lemma. Let G be a Lie group with multiplication map m : G ⇥ G ! G and
inversion map i : G! G. Then

a) Dm(e, e) : g� g! g is the map (X, Y ) 7! X + Y .

b) Di(e) : g! g is the map X 7! �X.

Proof. Using the fact that Dm(e, e) is linear as well as the chain rule, we obtain

Dm(e, e)(X, Y ) = Dm(e, e)(X, 0) +Dm(e, e)(Y, 0)

= Dm1(e)(X) +Dm2(e)(Y ),

where m1 and m2 are the smooth maps from G to itself defined respectively by
x 7! m(a, e) and b 7! m(e, b). Since m1 = m2 = IdG, this proves a).

Now consider the maps p : G ⇥ G ! G ⇥ G given by p(a, b) = (a, b�1) and
4 : G! G⇥G given by 4(a) = (a, a). Then the composite n := m � p � 4 is the
constant map a 7! e. We thus have

0 = Dn(e)(X)

= Dm(e, e)
⇣

Dp(e, e)
�

D4(e)(X)
�

⌘

= Dm(e, e)
�

Dp(e, e)(X,X)
�

= Dm(e, e)
�

X,Die(X)
�

= X +Di(e)(X),

where we have used a) and the chain rule for manifolds. This proves b).

Using part b) of the lemma and the fact that Di(e) is an isomorphism of Lie
algebras, we obtain

[X, Y ] = [�X,�Y ] = [Di(e)(X), Di(e)(Y )] = Di(e)[X, Y ] = �[X, Y ],

and hence [X, Y ] = 0 for all X, Y 2 g. Thus g is abelian.
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Problem E.6. Prove that the Lie bracket on gl(n) is given by matrix commutation,
i.e.

[A,B] = AB � BA, 8A,B 2 gl(n) = Mat(n).

Solution. Fix A,B 2 Mat(n). Using the canonical map JI from Problem B.3,
we want to prove that

[JI(A),JI(B)] = JI(AB � BA),

where the left-hand side [·, ·] is the Lie bracket in gl(n). Let XA and XB denote the
left-invariant vector fields on GL(n) such that XA(I) = JI(A) and XB(I) = JI(B).
By definition of the Lie bracket on gl(n) one has

[JI(A),JI(B)] = [XA, XB](I).

Fix an arbitrary matrix C 2 GL(n), Since lC : GL(n) ! GL(n) is itself a linear
map, one has XA(C) = JC(CA) by Problem B.4. Now let ui

j : Mat(n)! R denote
the function that assigns to a matrix C its (i, j)th entry. Then

XB(u
i
j)(C) = XB(C)(ui

j) = JC(CB)(ui
j),

which is equal to the (i, j)th entry of CB. Thus as functions we have

XB(u
i
j) = ui

j � rB,
where rB is right-translation by B. Let �(t) = I+ tA, so that JI(A) = �0(0). Then

XA(I)(XB(u
i
j)) = �0(0)(ui

j � rB) =
d

dt

�

�

�

t=0
ui
j(B + tAB),

which is the (i, j)th entry of AB. Thus

[XA, XB](I)(u
i
j) = XA(I)(XB(u

i
j))�XB(I)(XA(u

i
j))

is the (i, j)th entry of AB � BA. This shows that

[JI(A),JI(B)](ui
j) = JI(AB � BA)(ui

j).

Since for any C, one has3

JI(C) = JI(C)(ui
j)

@

@ui
j

,

the claim follows.

(|) Problem E.7. Let ' : Mn ! Nk be smooth, and let Lr ⇢ N be an embedded
submanifold. We say that ' is transverse and regular at L if

D'(x)[TxM ] + T'(x)L = T'(x)N, 8 x 2 '�1(L).

Prove that if ' is transverse and regular at P then if '�1(L) 6= ; then '�1(L)
is a smooth embedded submanifold of M of dimension n � k + r. (Remark: The
Implicit Function Theorem 5.13 is the special case where L is a point. As a hint,
try to reduce this problem to Theorem 5.13.)

3In this formula, in order to make the Einstein Summation Convention work, in the term @

@u

i

j

,

the i is a lower index and the j is an upper index. . .
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Solution. First of all we make the crucial observation that transversality, as well
as regularity, are both local properties. In particular, it su�ces to show the state-
ment for

M = Rn, N = Rk, L =
�

(x1, x2, . . . , xk) 2 N
�

� xr+1 = xr+2 = · · · = xk = 0
 

4.

We define the auxiliary function

⇡ : N ! Rk�r, (x1, . . . , xk) 7! (xr+1, . . . , xk).

The map ⇡ : N ! Rk�r is obviously smooth.
The claim now is that ' : M ! N is transverse to L ⇢ N if and only if the zero

vector 0 2 Rk�r is a regular value of the composition ⇡ � ' : M ! Rk�r. In order
to prove the above claim we first observe that

⇡�1(0) = L,

in particular
(⇡ � ')�1(0) = '�1(⇡�1(0)) = '�1(L).

Furthermore, since we are viewing N as Rk, the di↵erential of ⇡ at any any point
y 2 N is equal to ⇡ again, i.e.

8y 2 N : D⇡(y) = ⇡ : TyN = Rk ! Rk�r.

By applying the chain rule5 we then see that D(⇡ �')(x) = ⇡ �D'(x) : Rn ! Rk�r

is surjective for each x 2 (⇡ � ')�1(0) if and only if the image of the di↵erential
D'(x) contains the subspace

�

(x1, . . . , xk) 2 Rk
�

� xr+1, . . . , xk 2 R
 

, i.e.

D'(x)[Rn] ◆ �(x1, . . . , xk) 2 Rk
�

� xr+1, . . . , xk 2 R
 

.

On the other hand, this is precisely the case whenever one has

D'(x)[Rn] + L = Rk.

This proves the claim.
With the claim at hands plus the transversality assumption, we can invoke

the Implicit Function Theorem (cf. Theorem (5.2)) in order to deduce that (⇡ �
')�1(0) = '�1(L) is an embedded submanifold of M of dimension

dim'�1(L) = n� (k � r) = n� k + r,

which concludes the proof.

4This is the local picture of M,N and L, where for L we are using the slice charts introduced
in Lecture 5.

5For notational simplicity we suppress the maps J
x

: Rn ! T
x

Rn in this proof—this is rela-
tively harmless.
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Problem Sheet F

(|) Problem F.1. Let A 2 gl(n) = Mat(n). Prove that the matrix exponential

exp(A) :=
1
X

h=0

1

h!
Ah

converges and defines an element of GL(n). Prove that A 7! exp(A) is the expo-
nential map of GL(n).

Problem F.2. Let G be a Lie group with Lie algebra g. Given v, w 2 g, let Xv

denote (as usual) the left-invariant vector field on G with Xv(e) = v and let X̃w

denote the right-invariant vector field on G with X̃w(e) = w (cf. Remark 10.7).
Prove that [Xv, X̃w] = 0.

Problem F.3. Let G be a Lie group with Lie algebra g. Prove that for v, w 2 g

one has adv(w) = [v, w].

Problem F.4. Let M be a manifold of dimension n. Assume there exist vector
fields X1, . . . , Xn 2 X(M) such that {Xi(x)} is a basis of TxM for every x 2 M .
Prove that the tangent bundle TM is di↵eomorphic to M ⇥ Rn.

Problem F.5. Let G be a Lie group with Lie algebra g. Prove that TG is di↵eo-
morphic to G⇥ g.

(|) Problem F.6. A topological group G is a topological space that is also a
group in the algebraic sense, with the property that the group multiplication

m : G⇥G! G, m(a, b) = ab,

and group inversion
i : G! G, i(a) = a�1,

are both continuous maps. The goal of this problem is to show that if G is a
topological space that simultaneously carries the structure of a topological manifold
and a topological group, then G admits at most one di↵eomorphism class of smooth
structures1 that turns G into a Lie group.

(i) Let G be a Lie group. Suppose � : R ! G is a continuous group homomor-
phism. Prove that � is necessarily smooth, and hence is a one-parameter
subgroup. Hint: It su�ces to prove that � is smooth on a neighbourhood of
0 2 R. Use the fact that the exponential map of G is a di↵eomorphism from
a neighbourhood of 0 2 g to a neighbourhood of e 2 G (Corollary 10.11.)

Will J. Merry, Di↵. Geometry I, Autumn 2018, ETH Zürich. Last modified: June 28, 2019.
1The converse to this problem was Hilbert’s Fifth Problem, posed originally by David Hilbert

in 1900. It was eventually proved in 1952 by Montgomery and Zippen, although von Neumann
and Pontryagin proved important special cases earlier, and Yamabe proved a stronger result in
1953.

1

https://www.merry.io
https://en.wikipedia.org/wiki/Hilbert%27s_fifth_problem


(ii) Let G and H be Lie groups, and suppose ' : G ! H is a continuous group
homomorphism. Prove that ' is automatically smooth, and hence is a Lie
group homomorphism. Hint: Use the previous part.

(iii) Let G be a topological space which is simultaneously a topological group and
a topological manifold. Prove that G admits at most one di↵eomorphism
class of smooth structures that turns G into a Lie group.

Problem F.7. Let ' : Mn ! Nk be a surjective submersion. Prove that the
connected components of the pre-images '�1(x) as x ranges over N defines an
(n� k)-dimensional foliation of M .

2



Solutions to Problem Sheet F

(|) Problem F.1. Let A 2 gl(n) = Mat(n). Prove that the matrix exponential

exp(A) :=
1
X

h=0

1

h!
Ah

converges and defines an element of GL(n). Prove that A 7! exp(A) is the expo-
nential map of GL(n).

Solution. We first check that the series converges. The norm on gl(n), obtained

via identification with Rn2
, is given by |A| =

q

P

i,j a
2
ij. This is called the Frobenius

norm on gl(n). The norm is submultiplicative, i.e., |AB|  |A||B|, and hence by
induction |Ak|  |A|k. Using this, we apply the Weierstrass M -test to deduce that
the matrix exponential exp(A) converges uniformly on any bounded subset of gl(n),
by comparison with the series

P

k(1/k!)c
k = ec for suitable c 2 R.

Fix A 2 gl(n). The matrix A corresponds to a left-invariant vector field XA 2
X

`(GL(n)). Recall that we can identify the Lie algebra gl(n) = TI GL(n) of GL(n)
with Mat(n) via the canonical isomorphism JI : Mat(n)

⇠! gl(n) from Problem
B.3. The exponential map, which we denote by gexp in order to distinguish it from
the matrix exponential, is defined via gexp

�JI(A)
�

:= �(1), where � is the unique
integral curve of XA at the identity I. The integral curve � is determined by the
initial value problem:

�0(t) = XA(�(t)), �(0) = In. (F.1)

One can show easily that XA(B) = BA for each B 2 GL(n) (after identifying
TB GL(n) with Matn⇥n(R)). Thus (F.1) becomes the matrix equation

�0(t) = �(t)A. (F.2)

We claim that �(t) := exp(tA) satisfies (F.2). To prove the claim, we di↵erentiate
the series exp(tA) formally term-by-term to obtain

�0(t) =
1
X

k=1

k

k!
Ak =

⇣

1
X

k=1

1

(k � 1)!
tk�1Ak�1

⌘

A = �(t)A.

The di↵erentiated series also converges uniformly on bounded sets since it only
di↵ers from the series for �(t) by a factor of A. The term-by-term di↵erentiation
is thus justified, and we see that � satisfies (F.2), as desired.

It only remains to show that �(t) is invertible for all t so that, in particular,
exp(A) 2 GL(n). Define �(t) := �(t)�(�t). Then � is a smooth curve in gl(n) and
satisfies

�0(t) =
�

�(t)A
�

�(�t)� �(t)�A�(�t)� = 0.

Solutions written by Mads Bisgaard, Francesco Palmurella, Alessio Pellegrini, and Alexandre
Puttick. Last modified: June 28, 2019.

1
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It follows that � is the constant curve �(t) = In. It follows that �(t) is invertible
with inverse �(�t). Finally, we have gexp

�JI(A)
�

= �(1) = exp(A) 2 GL(n), as
desired.

Problem F.2. Let G be a Lie group with Lie algebra g. Given v, w 2 g, let Xv

denote (as usual) the left-invariant vector field on G with Xv(e) = v and let X̃w

denote the right-invariant vector field on G with X̃w(e) = w (cf. Remark 10.7).
Prove that [Xv, X̃w] = 0.

Solution. By Problem E.2, we have [Xv, X̃w] = 0 if and only if their flows com-
mute, i.e., for all s and t, we have

✓vt � ✓̃ws = ✓̃ws � ✓vt . (F.3)

Let �v(t) (resp. �̃w(t)) be the unique integral curve of Xv (resp. X̃w) through the
identity. By Proposition 10.6, we have ✓vt = r�v(t) and ✓̃ws = l�̃w(t). Since left and
right multiplication commute, we have the following equality:

r�v(t) � l�̃w(t) = l�̃w(t) � r�v(t).

This is precisely (F.3); hence [Xv, X̃w] = 0, as desired.

Problem F.3. Let G be a Lie group with Lie algebra g. Prove that for v, w 2 g

one has adv(w) = [v, w].

Solution. First note that

adv(w) = D(Ad)(e)[v][w]

=

✓

d

dt

�

�

�

t=0
Ad(exp(tv))

◆

[w]

=
d

dt

�

�

�

t=0
Adexp(tv)(w)

=
d

dt

�

�

�

t=0
D(µexp(tv))(e)[w],

where µa(b) = aba�1. Now writing µa = ra�1 � la and letting Xv and ✓vt be the left-
invariant vector field associated to v and the flow thereof, respectively, we have:

d

dt

�

�

�

t=0
D(µexp(tv))(e)[w] =

d

dt

�

�

�

t=0
Drexp(�tv) �Dlexp(tv)(e)[Xw(e)]

=
d

dt

�

�

�

t=0
Drexp(�tv)[Xw(exp(tv)]

=
d

dt

�

�

�

t=0
D✓v�t(✓

v
t (e))[Xw(✓

v
t (e)]

= LX
v

Xw(e).

where the second equality used the definition of Xw, the third inequality used part
(iii) and the last equality is the definition of the Lie derivative. Then finally by
Theorem 8.25 we have

LX
v

Xw(e) = [Xv, Xw](e) = [v, w].
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Problem F.4. Let M be a manifold of dimension n. Assume there exist vector
fields X1, . . . , Xn 2 X(M) such that {Xi(x)} is a basis of TxM for every x 2 M .
Prove that the tangent bundle TM is di↵eomorphic to M ⇥ Rn.

Solution. For each point in the tangent bundle (x, v) 2 TM we write

v = vi(x)Xi(x) 2 TxM,

where vi(x) 2 R are the unique coordinates of v with respect to the basis {Xi(x)}
of TxM . This allows us to define

' : TM !M ⇥ Rn, (x, v) 7! (x, vi(x) ei).

The smoothness of the map ' is a direct consequence of the smoothness of the
vector fields Xi. Alternatively, one can check directly that this map is smooth,
which boils down to the proof of Theorem 4.16.

In order to see that ' defines a di↵eomorphism we consider the function

 : M ⇥ Rn ! TM, (y, w) = (y, wj ej) 7! (y, wj Xj(x)).

The map  is also smooth (same reason as before) and it is an inverse to ':

( � ')(x, v) =  (x, vj(x) ej) = (x, vj(x)Xj(x)) = (x, v).

Problem F.5. Let G be a Lie group with Lie algebra g. Prove that TG is di↵eo-
morphic to G⇥ g.

Solution. In view of the previous exercise it su�ces to find n-many vector fields
Xi : G! TG that form a basis of TaG at every point a 2 G. We fix a basis

(v1, . . . , vn) ⇢ g = TeG

and set
Xi(a) = Dla(e)[vi],

for all i = 1, . . . , n. Recall that la : G ! G, b 7! ab is a di↵eomorphism, in
particular Dla(e) : TeG ! TaG is a vector space isomorphism and therefore1 our
vector fields do indeed satisfy the assumptions of (F.4). We can also write down
the di↵eomorphism ' from (F.4) explicitly

' : TG! G⇥ g = G⇥ TeG, (a, u) = (a, ui Xi(a)) 7! (a, ui vi).

(|) Problem F.6. A topological group G is a topological space that is also a
group in the algebraic sense, with the property that the group multiplication

m : G⇥G! G, m(a, b) = ab,

and group inversion
i : G! G, i(a) = a�1,

1For more details on why X
i

are vector fields, we refer to the proof of Theorem (9.19) and
notice X

i

= X
v

i

.
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are both continuous maps. The goal of this problem is to show that if G is a
topological space that simultaneously carries the structure of a topological manifold
and a topological group, then G admits at most one di↵eomorphism class of smooth
structures2 that turns G into a Lie group.

(i) Let G be a Lie group. Suppose � : R ! G is a continuous group homomor-
phism. Prove that � is necessarily smooth, and hence is a one-parameter
subgroup. Hint: It su�ces to prove that � is smooth on a neighbourhood of
0 2 R. Use the fact that the exponential map of G is a di↵eomorphism from
a neighbourhood of 0 2 g to a neighbourhood of e 2 G (Corollary 10.11.)

Solution. Let � : R! G be a continuous homomorphism. Then �(0) = e 2
G. If there exists t0 > 0 such that � is smooth on (�t0, t0) then for every
T 2 R, the map

t 7! �(T + t) = �(T )�(t) = l�(T )(�(t))

is also smooth on (�t0, t0), being the composition of smooth maps. I.e., to
show that � is smooth, it su�ces to find t0 > 0 with the above property. Let
U ⇢ g be a neighbourhood of the origin such that exp |U is a di↵eomorphism
onto its image V := exp(U) ⇢ G. We may w.l.o.g. choose such a U which
is convex. We will use the notation TU = {Tv | v 2 U} for T 2 R. Since �
is continuous we can find t0 > 0 such that �(t) 2 exp(U

2
) for all |t|  t0. In

particular there exists a unique v 2 U
2
such that exp(v) = �(t0). We claim

that �(t) = exp( tvt0 ) for all |t|  t0 which proves the claim. By continuity it

in fact su�ces to prove that �(mt0
n ) = exp(mv

n ) for all integers 0  |m| < n.
Since �(mt0

n ) = �( t0n )
m and exp(mv

n ) = exp( vn)
m it in fact su�ces to show that

�( t0n ) = exp( vn) 8 n 2 N.

For a fixed n 2 N there exists a unique (because exp |U is injective) w 2 U
2

such that exp(w) = �( t0n ) and our job is to show that w = v
n , or nw = v.

Since v 2 U
2
and exp |U

2
is injective it su�ces to show that nw 2 U

2
. Suppose

now kw 2 U
2
for all 1  k < j for some j  n. Then jw = (1+(j�1))w 2 U ,

so since
exp(jw) = exp(w)j = �( t0n )

j = �( jt0n ) 2 exp(U
2
),

and exp |U is injective we have jw 2 U
2
. This is the induction step which

shows nw 2 U
2
and finishes the proof.

(ii) Let G and H be Lie groups, and suppose ' : H ! G is a continuous group
homomorphism. Prove that ' is automatically smooth, and hence is a Lie
group homomorphism. Hint: Use the previous part.

2The converse to this problem was Hilbert’s Fifth Problem, posed originally by David Hilbert
in 1900. It was eventually proved in 1952 by Montgomery and Zippen, although von Neumann
and Pontryagin proved important special cases earlier, and Yamabe proved a stronger result in
1953.
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Solution. Denote by h the Lie algebra of H and choose a basis v1, . . . , vm
for h (so dim(H) = m as a smooth manifold). The map

Rm 3 (t1, . . . , tm) 7! '(exp(t1v1) · · · exp(tmvm))
is clearly smooth, since each of the functions R 3 tk 7! '(exp(tkvk)) is smooth
by (i) above (this is clearly a continuous homomorphism R! G). From the
lectures we know that the map

f(t1, . . . , tm) = exp(t1v1) · · · exp(tmvm)
is non-singular at the origin. In particular, by the implicit function theorem
there exist neighbourhoods U ⇢ h of the origin and V ⇢ H of e 2 H such
that f |U : U ! V is a di↵eomorphism. It follows that ' = (' � f) � f�1 is
smooth on V . This shows that ' is smooth on a neighbourhood of the origin.
Given h0 2 H we have

H 3 h 7! '(h0h) = '(h0)'(h) = l'(h0) � '(h),
so in fact ' is a smooth on a neighbourhood of h0. This finishes the proof.

(iii) Let G be a topological space which is simultaneously a topological group and
a topological manifold. Prove that G admits at most one di↵eomorphism
class of smooth structures that turns G into a Lie group.

Solution. Let G1 and G2 be two smooth structures on G. We must show
that G1 = G2. The maps

(G,G1)! (G,G2) & (G,G2)! (G,G1)

given by the identity are clearly continuous homomorphisms. In particular
they are both smooth by (ii). Since they are each others inverses, it follows
that (G,G1) is di↵eomorphic to (G,G2). I.e. G1 = G2.

Problem F.7. Let ' : Mn ! Nk be a surjective submersion. Prove that the
collection of preimages '�1(x) as x ranges over N defines an (n � k)-dimensional
foliation of M .

Solution. Since ' is a submersion, as a consequence of the Implicit Function
Theorem, for every x 2 N , each connected component of '�1(x) is an embedded
(m� k)-dimensional submanifold of M and, if w 2 '�1(x), there holds

Tw('
�1(x)) = ker(D'(x)),

where we are identifying Tw('�1(x)) as a subspace of TwM . As a consequence, if
we set

�w = Tw('
�1(x)),

we have a mapping that to each x 2 M assigns a (n� k)-dimensional subspace of
TwM . To verify that this mapping is smooth, we proceed as follows: given w0 2M ,

5



by the Implicit Function Theorem we may choose a local chart (U, �)about w0 in
M and a local chart (W, ⌧) around '(w0) in N so that the local representative of '
with respect to these charts is given by the projection onto the first k-coordinates,
namely (recall that n � k)

(⌧ � ' � ��1)(w1, . . . , wn) = (w1, . . . , wk), for v 2 �(U).

Hence, � may be written for every w 2 '(U) as

�w = span

⇢

@

@wk+1

�

�

�

�

w

, . . . ,
@

@wn

�

�

�

�

w

�

for w 2 '(U),

which implies that w 7! �w is smooth about w0, and hence that � is a (n � k)-
dimensional distribution on M .

Finally, let ⌃ be any connected integral manifold of � and denote by ◆ : ⌃!M
the inclusion map. For fixed w0 = ◆(v0) 2 M \ ◆(⌃), choosing a local chart (U, �)
about w0 as above, we have that, for every v in a su�ciently small, connected
neighbourhood V of v0 so that ◆(V ) ⇢ U , there holds

X 2 Tv⌃() D◆(v)[X] 2 �w

() D◆(v)[X](wi) = 0 for i = k + 1, . . . , n,

and consequently, that

v 7! wi(◆(v)) is constant for every i = k + 1, . . . , n.

This implies ◆(V ) is contained in the connected component of '�1('(w0)) contain-
ing w0. Since w0 was arbitrarily chosen, we deduce that ◆(⌃) is contained in the
connected component of '�1('(w0)) containing w0.

This proves that the family {'�1(x)}x2N defines a (n�k)-dimensional foliation
on M .
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Problem Sheet G

Problem G.1. Let ' : H ! G be a Lie group homomorphism. Let K := ker' =
{a 2 H | '(a) = e} and let k := kerD'(e). Prove that K is a closed Lie subgroup
of H with Lie algebra k.

(|) Problem G.2. Let h be a Lie subalgebra of a Lie algebra g. We say that h is
an ideal in g if:

v 2 h, w 2 g ) [v, w] 2 h.

Now let G be a connected Lie group with Lie algebra g. Let H ⇢ G be a closed
connected subgroup with Lie subalgebra h ⇢ g. Prove that H is a normal subgroup
if and only if h is an ideal in g.

(|) Problem G.3. Let G be a connected Lie group with Lie algebra g. Prove
that the centre of G is the kernel of the adjoint representation Ad: G ! GL(g).
Deduce that G is abelian if and only if g is abelian.

Problem G.4. Show that the real projective space RP n�1 can be seen as the
homogeneous space SO(n)

�

O(n� 1).

Problem G.5. Prove that the quotient map ⇡ : Rn+1 \ {0} ! RP n (see Problem
A.3) is a fibre bundle with fibre R \ {0}. By adding a single point to each fibre,
construct a bundle En ! RP n whose fibre is R and for which ⇡ is a subbundle.
En is called the universal line bundle over RP n. Prove that En is naturally a
subbundle of En+1.

Problem G.6. Prove that the Klein bottle is a fibre bundle over S1 with fibre S1.

Problem G.7. Let ⇡ : E ! N be a fibre bundle with fibre F and structure group
G, and let ' : M ! N be a smooth map.

(i) Prove that '?E is a fibre bundle with fibre F and structure group a Lie
subgroup of G.

(ii) Prove that

T(x,p)('
?E) = {(v, ⇣) 2 TxM ⇥ TpE | D'(x)[v] = D⇡(p)[⇣]} .

(iii) Now suppose that E is actually a vector bundle and  : L ! M is another
smooth map. Prove that  ?('?E) and (' �  )?E are isomorphic as vector
bundles.

Will J. Merry, Di↵. Geometry I, Autumn 2018, ETH Zürich. Last modified: June 28, 2019.
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Solutions to Problem Sheet G

Problem G.1. Let ' : H ! G be a Lie group homomorphism. Let K := ker' =
{a 2 H | '(a) = e} and let k := kerD'(e). Prove that K is a closed Lie subgroup
of H with Lie algebra k.

Solution. Since {e} ⇢ G is closed and ' is continuous, the kernel K is a closed
subgroup of H and hence an embedded Lie subgroup of H by the Closed Subgroup
Theorem. Let ◆ : K ! H denote the inclusion map. By Proposition 10.12, we have
the following commutative diagram:

K H G

Lie(K) h g

◆ '

D◆(e)

exp exp

D'(e)

exp

We identify Lie(K) with its image under D◆(e). Let v 2 h. Then v 2 Lie(K) if
and only if exp(tv) 2 K for all t 2 R, which occurs if and only if '

�

exp(tv)
�

= e
for all t 2 R. By the commutativity of the above diagram, this is equivalent to
exp
�

tD'(e)[v]
�

= e for all t 2 R. This happens precisely when D'(e)[v] = 0, i.e.,
v 2 k. It follows that Lie(K) = k.

(|) Problem G.2. Let h be a Lie subalgebra of a Lie algebra g. We say that h is
an ideal in g if:

v 2 h, w 2 g ) [v, w] 2 h.

Now let G be a connected Lie group with Lie algebra g. Let H ⇢ G be a closed
connected subgroup with Lie subalgebra h ⇢ g. Prove that H is a normal subgroup
if and only if h is an ideal in g.

Solution. We will need a few lemmas. In all of the following statements, the
groups G and H are as in the statement of the problem.

Lemma 1. Let U ⇢ G be an open neighbourhood of the identity element such that

U = U�1 := {g�1 | g 2 U}.
Then for all g 2 G, there exists a positive integer k and elements g1, . . . , gk 2 U
such that g = g1 · · · gk.
Proof. For each k � 1, let Uk denote the set of all elements of G that can be
expressed as the product of k elements in U . We claim that H :=

S1
i=1 Ui is an

open subgroup of G. For the openness, we note that U1 = U is open and

Uk =
[

g2U1

lg(Uk�1).

Solutions written by Mads Bisgaard, Francesco Palmurella, Alessio Pellegrini, and Alexandre
Puttick. Last modified: June 28, 2019.
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Since each lg is a di↵eomorphism, it follows by induction that each Uk is open;
hence H is open. Now if g 2 H, we may write g = g1 · · · gk for some gi 2 U . By
assumption, each g�1

i is in U and thus g�1 = g�1
k · · · g�1

1 is in H, which is hence a
subgroup of G. Since H is an open subgroup of G, it is also closed (this is a general
property of topological groups). Since G is connected, it follows that H = G.

Lemma 2. The subgroup H is normal in G if and only if

(exp v)(expw)
�

exp(�v)� 2 H for all v 2 g and w 2 h. (G.1)

Proof. Note that exp(�v) = exp(v)�1, so that (G.1) holds when H is normal by
the definition of normality. Conversely, suppose (G.1) holds. Choose open subsets
0 2 V ⇢ g and e 2 U ⇢ G such that the restriction exp: V ! U is a di↵eomorphism
(this is possible via Theorem 10.10 and the Inverse Function Theorem). Since the
exponential map of H is the restriction of that of G, after shrinking V if necessary,
we may assume that exp |V \h is a di↵eomorphism to a neighbourhood U0 ⇢ H of
the identity in H. Shrinking V even further, we may assume the v 2 V if and only
if �v 2 V . Then (G.1) implies that ghg�1 2 H whenever g 2 U and h 2 U0.

Let let h be an arbitrary element ofH. By Lemma 1, we may write h = h1 · · ·hm

for hi 2 U0. Then for any g 2 U , we have

ghg�1 = (gh1g
�1) · · · (ghmg

�1) 2 H.

Now let g 2 G be arbitrary and write g = g1 · · · gk for gj 2 U . It follows by
induction on k that ghg�1 2 H. This proves the lemma.

Consider the adjoint representation Ad: G! GL(g), g 7! Adg, and recall that
for any g 2 G, we have a commutative diagram

G G

g g

µ
g

exp

Ad
g

exp (G.2)

where µg is the action of g on G by conjugation.
Suppose that h is an ideal. Let v 2 g and w 2 h. Then substituting exp v = g

into (G.2) yields

exp
�

Adexp v(w)
�

= µexp v(expw) = (exp v)(expw)
�

exp(�v)�. (G.3)

On the other hand, we also have the commutative diagram

G GL(g)

g gl(g)

Ad

exp

ad

exp (G.4)
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which yields
Adexp v = exp(adv).

By Problem F.1, the exponential on the right-hand side is just matrix exponentia-
tion,1 and we obtain

Adexp v(w) = exp(adv)(w) =
1
X

k=0

1

k!
(adv)

k(w). (G.5)

Recall from Proposition 10.23 that adv(w) = [v, w]. Since h is an ideal in g, we have
adv(w) = [v, w] 2 h, and by induction (adv)k(w) 2 h for all k. Thus (G.5) implies
that Adv(w) 2 h. It follows that exp

�

Adexp v(w)
�2 H and hence H is normal by

(G.3) and Lemma 2.

Conversely, suppose H is normal. Given v 2 g and w 2 h, we again use (G.2)
to deduce that

exp
�

Adexp tv(sw)
�

= µexp tv(exp sw) = (exp tv)(exp sw)
�

exp(tv)
��1

,

and the left-hand side is in H for all s, t 2 R by assumption. Since Adexp tv is
R-linear, we have

exp
�

Adexp tv(sw)
�

= exp
�

sAdexp tv(sw)
�

,

which we have just shown to be in H for all s. It follows from Corollary 10.13 that
Adexp tv(w) 2 h for all t 2 R. Finally, since �(t) := exp tv is a curve in G with
�(0) = e and �0(0) = v, we have

d

dt

�

�

�

t=0
Adexp tv(w) = D(Ad)(e)[v][w] = adv(w) = [v, w].

By the above argument, the left-hand side is in h. Thus [v, w] 2 h and h is an ideal.

(|) Problem G.3. Let G be a connected Lie group with Lie algebra g. Prove
that the centre of G is the kernel of the adjoint representation Ad: G ! GL(g).
Deduce that G is abelian if and only if g is abelian.

Solution. We denote by Z(G) the centre of G and by µa(b) = aba�1 the inner
automorphism of G induced by a. Recall finally that Ad(a) = Dµa(e), and that
saying that ab = ba in G is exactly the same as saying that µa(b) = b.

If a 2 Z(G), then µa(b) = b for every b 2 G and in particular it follows that
Dµa(e) is the identity map of g, that is, Ad(a) = id

g

.
Conversely suppose that a 2 G is so that Dµa(e) = id

g

. By property of the
exponential map (Proposition 10.12) we then deduce

µa � exp = exp �Dµa(e) = exp in g,

but since exp is a di↵eomorphism when restricted to a su�ciently small neighbour-
hood V of 0 in g, the above equality also shows that, in the neighbourhood of e in

1Or rather homomorphism exponentiation since we haven’t taken a basis of g. The argument
in the solution to Problem F.1 applies just as well to this setting. Note that (ad

v

)k means the
k-fold composition of ad

v

with itself.
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G given by U = exp(V ), µa is the identity map. To conclude that µa is the identity
not only when restricted to U but to the whole G, recall that, as proved in Lemma
1, since G is connected we have G =

S

k�1 U
k, that is to say, every element g 2 G

can be written as g = b1 · · · bn for some bj 2 U and some n 2 N. But then, arguing
by finite induction, we see that

µa(g) = a(b1 · · · bn)a�1

= b1 a(b2 · · · bn)a�1

= b1b2 a(b3 · · · bn)a�1

= . . .

= (b1 · · · bn)aa�1

= g,

which proves that µa is the identity on the whole G, and hence that a 2 Z(G).
We can draw the conclusions. If G is abelian, then Ad is the constant map:

Ad(a) = id
g

for every a 2 G; it follows that ad = DAd(e) = 0, but then [v, w] =
adv w = 0 for every v, w 2 g, and hence g is abelian. Vice versa, if g is abelian,
then [v, w] = 0 for every v, w 2 g, but then ad is the zero map, and hence Ad is
constant; since Ad(e) = id

g

and G is connected, Ad is the constant map and thus
by what proved above, G is abelian.

Problem G.4. Show that the real projective space RP n�1 can be seen as the
homogeneous space SO(n)

�

O(n� 1).

Solution. The Lie group action of SO(n) on RP n�1 is defined as follows: for
A 2 SO(n) and [x] = [x1, . . . , xn] 2 RP n�1, we set

SO(n)⇥ RP n�1 ! RP n�1 (A, [x]) 7! A[x] := [Ax]

Since A is a linear map, this map is well defined and it is a Lie group action.
It is a transitive action: if [x], [y] are elements of RP n�1, let x0 be one on the

the points in the equivalence class of [x] so that x0 2 Sn�1 (recall that there are
precisely two of them, and in fact RP n�1 ' Sn�1/{p 7! �p}) and likewise let y0 be
one on the the points in the equivalence class of [x] so that y0 2 Sn�1. The map
A 2 SO(n) so that Ax0 = y0 will then map [x0] to [y0] via the above action.

We deduce that, if H is the isotropy group of a fixed element [x] for the above
action, then RP n�1 ' SO(n)/H, so let us compute the isotropy group of the n-th
canonical vector [0, . . . , 1] = [en]. We have that A[en] = [en] precisely if Aen = en
or Aen = �en. Since A 2 SO(n), it must then have the form

A =

0

B

B

B

@

0

@ B

1

A

0
...
0

0 · · · 0 1

1

C

C

C

A

or A =

0

B

B

B

@

0

@ B0

1

A

0
...
0

0 · · · 0 �1

1

C

C

C

A

where B,B0 2 O(n � 1) with det(B) = 1 and det(B0) = �1. But then we may
identify H with O(n� 1) via the map

A 7! A|Rn�1 ,
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where A|Rn�1 is the restriction of A to the first n� 1 components. Such identifica-
tion is compatible with the group action we are considering, and consequently we
conclude that RP n�1 ' SO(n)/O(n� 1).

Problem G.5. Prove that the quotient map ⇡ : Rn+1 \ {0} ! RP n (see Problem
A.3) is a fibre bundle with fibre R \ {0}. By adding a single point to each fibre,
construct a bundle En ! RP n whose fibre is R and for which ⇡ is a subbundle.
En is called the universal line bundle over RP n. Prove that En is naturally a
subbundle of En+1.

Solution. Recall that the equivalence relation ⇠ on Rn+1 is defined by x ⇠ y if
any only if there exists � 6= 0 such that x = �y. We write an element of RP n as
[x0 : · · · : xn] with the understanding that [x0 : · · · : xn] = [�x0 : · · · : �xn] for all
� 6= 0. The canonical map ⇡ : Rn+1 ! RP n is given by

⇡(x0, . . . , xn) = [x0 : · · · : xn].

Set eUi := {(x0, . . . , xn) | xi 6= 0} for i = 0, . . . , n and define Ui := ⇡(eUi). We have
seen in previous exercises that the Ui’s are open subsets and that 'i : Ui ! Rn

given by

'i([x0 : · · · : xn]) =

✓

x0

xi
, . . . ,

xi�1

xi
,
xi+1

xi
, . . .

xn

xi

◆

are charts of RP n. We define the map ↵i : eUi ! R\{0} by

↵i(xo, . . . , xn) = xi,

so that (⇡,↵i) : eUi ! Ui ⇥ R\{0} is given by

(⇡,↵i)(x0, . . . , xn) = ([x0 : · · · : xn], xi).

Note that this map is a di↵eomorphism if and only if ('i �⇡,↵i) : eUi ! Rn⇥R\{0}
is a di↵eomorphism. We have

('i � ⇡,↵i)(x0, . . . , xn) =

✓✓

x0

xi
, . . . ,

xi�1

xi
,
xi+1

xi
, . . .

xn

xi

◆

, xi

◆

and it is easy to see that this map is a di↵eomorphism: It is clearly smooth and its
inverse map is given by

Rn ⇥ R\{0}! eUi

((x1, . . . xn),�) 7! (�x1, . . . ,�xi�1,�,�xi+1,�xn).

This finishes the proof that ⇡ : Rn+1 ! RP n is a fibre bundle with fibre R\{0}.
We now ”glue” the element 0 2 R into each fibre of this fibre bundle to obtain

a vector bundle. The precise procedure for doing this is the following: The total
set of the vector bundle is going to be

En := (U0 ⇥ R t · · · t Un ⇥ R) / ⇠, (G.6)
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where the equivalence relation ⇠ is defined as follows: We have well-defined maps

'ji := (⇡|eU
j

,↵j) � (⇡|eU
i

,↵i)
�1 : Ui \ Uj ⇥ (R\{0})! Ui \ Uj ⇥ (R\{0})

'ji([x0 : · · · : xn],�) =

✓

[x0 : · · · : xn],�
xj

xi

◆

which clearly extend in a unique way to a smooth map

'ji : Ui \ Uj ⇥ R! Ui \ Uj ⇥ R

such that for fixed [x] 2 Ui \ Uj, the map R 3 � 7! p2 � 'ji([x],�) is linear
(here p2 : Ui \ Uj ⇥ R ! R denotes the natural projection). By definition, the
equivalence relation in (G.6) identifies an element ([x],�1) 2 Ui⇥R with the element
([y],�2) 2 Uj ⇥R exactly if 'ji([x],�1) = ([y],�2). This defines a smooth structure
on En in such a way that we have an induced projection map e⇡ : En ! RP n which
gives a vector bundle structure to En. From the construction it is clear that we
have a commuting diagram of smooth maps

Rn+1\{0} En

RP n

⇡ e⇡

I.e. ⇡ : Rn+1\{0}! RP n is a subbundle of e⇡ : En ! RP n. The inclusion ı : Rn+1 !
Rn+2 given by ı(x0, . . . , xn) = (x0, . . . , xn, 0) descends to an inclusion

i : RP n ! RP n+1

such that the following diagram commutes

Rn+1\{0} Rn+2\{0}

RP n RP n+1

⇡
n+1

ı

⇡
n+1

i

It is now immediate to check that ı induces a map En ! En+1, making En into a
subbundle of En+1.

Problem G.6. Prove that the Klein bottle is a fibre bundle over S1 with fibre S1.

Solution. We define the Klein bottle

K = [0, 1]2/ ⇠

by making the following identifications on the boundary of [0, 1]2

• (x, 0) ⇠ (x, 1)

• (0, y) ⇠ (1, 1� y)

6
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and denote equivalence classes in K with square brackets, i.e. [x, y] 2 K. Checking
that K is a smooth manifold is not hard and is left to reader. Now we define the
projection

⇡ : K ! S1 = R/Z, [x, y] 7! x

and claim that this is a fibre bundle with fibre S12.
Indeed, ⇡ : K ! S1 is a smooth surjection and we can construct two bundle

charts ↵1 and ↵2 as follows: Let U1 := (0, 1) be the open arc viewed inside S1 and
U2 =

⇥

0, 1
2

� [ �1
2
, 1
⇤

also viewed inside S1. The map

↵1 : ⇡
�1(U1)! S1, [x, y] 7! y

is obviously well defined as [x, 1] = [x, 0] and 0 = 1 in S1 = R/Z, and also smooth.
It readily follows that

(⇡,↵1) : ⇡
�1(U1)! U1 ⇥ S1

defines a di↵eomorphism, thus proving that ↵1 is a bundle chart.
For ↵2 : ⇡�1(U2)! S1 one has to take the identification (0, y) ⇠ (1, 1� y) into

account, which is the reason why the same choice as for ↵1 does not work. However,
we claim that the following choice works:

↵2([x, y]) =

(

y, if x < 1
2

�y, if x > 1
2
.

The only classes [x, y] 2 ⇡�1(U2) that have several representatives and actually
matter for the definition of ↵ are those of the form

[0, y] = {(0, y), (1, 1� y)}.

Then we can check

↵2([0, y]) = y and ↵2([1, 1� y]) = y � 1,

but y � 1 equals y if viewed in S1 and therefore ↵2 is well defined (note that it is
crucial to exclude 1

2
to make this definition work!). Just as for ↵1, smoothness of

↵2 is clear. It’s also not hard to see that

(⇡,↵2) : ⇡
�1(U2)! U2 ⇥ S1

defines a di↵eomorphisms by taking a closer look at what ↵2 does on the two
preimages V+ = ⇡�1

⇥

0, 1
2

�

and V� = ⇡�1
�

1
2
, 1
⇤

, namely:

(⇡,↵2)
�

�

�

V±
= ± idV± .

Problem G.7. Let ⇡ : E ! N be a fibre bundle with fibre F and structure group
G, and let ' : M ! N be a smooth map.

(i) Prove that '?E is a fibre bundle with fibre F and structure group a Lie
subgroup of G.

2Sanity check: ⇡�1(x) = {[x, y] | y 2 [0, 1]} ⇠= S1 as [x, 1] = [x, 0].
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(ii) Prove that

T(x,p)('
?E) = {(v, ⇣) 2 TxM ⇥ TpE | D'(x)[v] = D⇡(p)[⇣]} .

(iii) Now suppose that E is actually a vector bundle and  : L ! M is another
smooth map. Prove that  ?('?E) and (' �  )?E are isomorphic as vector
bundles.

Solution. Part (i):
We start part (i) by proving that '?E carries a smooth manifold structure. By

defining the smooth map

' : M ⇥ E ! N ⇥N, '(x, p) = ('(x), ⇡(p))

and the diagonal
� = {(y, y) 2 N ⇥N} ⇢ N ⇥N

one can write
'?E = '�1(�).

In view of problem E.7 it su�ces to show that ' is transverse (and regular) at the
diagonal � to conclude that '?E is a smooth manifold3. This follows from the
fact that ⇡ : E ! N is a submersion (cf. Lemma 13.4) and T(y,y)� = {(v, v) 2
TyN ⇥ TyN}.

The projection pr1 : '
?E !M, (x, p) 7! x is obliviously a continuous surjection.

For the bundle charts, we make the same choice as in Example 13.19 by picking
↵ : ⇡�1(U)! F a bundle chart on ⇡ : E ! N and setting

↵? := ↵ � pr2 : U? ! F, with U? := pr�1
1 ('�1(U))4.

The map (pr1,↵
?) : U? ! '�1(U)⇥ F is a di↵eomorphism since

(pr1,↵
?)(x, p) = (x,↵?(x, p)) = (x,↵(p)).

We finish part (i) by proving that G is a structure group of the fibre bundle
pr1 : '

?E ! M . Let µ : G ⇥ F ! F denote the G-action on F coming from
the bundle ⇡ : E ! N . Any two bundle charts ↵? : U? ! F, �? : V ? ! F , with
U? \ V ? 6= ; and the notation from above, are (G, µ)-compatible via the smooth
function

⇢̃↵? �? : U
? \ V ? ! G, x 7! ⇢̃↵�('(x)).

Indeed, for any x 2 U? \ V ? and z 2 F we have

⇢↵? �?(x)(z) = ↵?
�

�

�

'?E
x

� �?
�

�

�

�1

'?E
x

(z)

=

✓

↵ � pr2
�

�

�

'?E
x

◆

�
✓

� � pr2
�

�

�

'?E
x

◆�1

(z)

=

✓

↵
�

�

�

E
'(x)

� �
�

�

�

�1

E
'(x)

◆

(z)

= ⇢↵�('(x))(z),

3We even get the dimension of '?E, namely dim'?E = dimM +dimE� dimN . This shows
dim'?E � dimM , which is necessary if we want '?E !M to be a fibre bundle (why ?).

4
Warning: This notation is not standard and it’s only purpose is to prevent cumbersome

notation throughout the proof.
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and therefore

⇢↵? �?(x)(z) = µ(⇢̃↵�('(x)), z) = µ(⇢̃↵? �?(x), z).

This finishes the proof of (i).
Part (ii):
We proceed by showing that the LHS is included in the RHS and deduce the

equality by a dimension argument. Let (x, p) 2 '?E, (v, ⇣) 2 T(x,p)'?E and pick a
smooth curve � : (�✏, ✏)! '?E satisfying

(

�(0) = (x, p),

�̇(0) = (v, ⇣),

and write �(t) = (x(t), p(t)) 2 '?E. By definition of the pullback bundle we have
the relation

'(x(t)) = ⇡(p(t))

and di↵erentiating this at time t = 0 gives

D'(x)[v] = D⇡(p)[⇣],

which proves the desired inclusion.
For the dimension argument we observe that the RHS can be written as the

kernel of the following linear operator

A : TxM ⇥ TpE ! T'(x)N, A(v, ⇣) = D'(x)[v]�D⇡(p)[⇣].

This is well defined because '(x) = ⇡(p). The strategy now consists in showing
that

dim kerA = dimT(x,p)('
?E), (G.7)

where the latter is equal to

dim'?E = dimM + dimE � dimN,

as we have already seen (cf. footnote in Part (i)). Indeed, A is surjective as
⇡ : E ! N is a submersion and basic linear algebra then tells us that

dim kerA = dim(TxM ⇥ TpE)
| {z }

� dim imA = dimM + dimE � dimN.

This finishes Part (ii).
Part (iii):
The goal is to find a smooth map between the total spaces

' : (' �  )?E !  ?('?E)

that covers the identity id : L ! L. Unravelling the definitions of both the total
space (' �  )?E and  ?('?E) will naturally lead us to the right candidate for '.
Observe:

(a, p) 2 (' �  )?E () (a, p) 2 E ⇥ L and (' �  )(a) = ⇡(p),
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and

(b, x, p) 2  ?('?E) () (b, (x, p)) 2 L⇥ '?E and  (b) = pr1(x, p) = x

() (b, x, p) 2 L⇥M ⇥ E and '(x) = ⇡(p),  (b) = x.

We claim that

' : (' �  )?E !  ?('?E), '(a, p) := (a, (' �  )(a), p),

is well defined and satisfies the bundle isomorphism properties. Indeed, well-
definedness follows immediately form the equivalences above. Smoothness and the
fact that ' cover the identity on L are both obvious by construction of ', so we
are only left to show that ' maps fibres to fibres isomorphically. But this is also
clear by noting that

(' �  )?Ea = {a}⇥ E'( (a)),

 ?('?)Ea = {a}⇥ '?E (a) = {a}⇥ {(' �  )(a)}⇥ E'( (a)).

This finishes Part (iii) and the proof.
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Problem Sheet H

Problem H.1. Let V,W and U be vector spaces. Prove there are natural isomor-
phisms V ⌦W ⇠= W ⌦ V and (U ⌦ V )⌦W ⇠= U ⌦ (V ⌦W ).

Problem H.2. Let V and W be vector spaces. For any A 2 Altr(V,W ) prove there
is a unique linear map T :

Vr(V )! W such that the following diagram commutes:

r
z }| {

V ⇥ · · ·⇥ V
Vr(V )

W

^

A T

Moreover
Vr(V ) is uniquely characterised by this property.

Problem H.3. Let V be a vector space of dimension k with basis {e1, . . . , ek}.
Prove that

{ei1 ^ · · · ^ ei
r

| 1  i1 < · · · < ir  k}
is a basis of

Vr(V ). Prove that
Vr(V ) = 0 for r > k. Thus dim

Vr(V ) =
�

k
r

�

and
dim

V

(V ) = 2k.

Problem H.4. Let M be a smooth manifold and suppose ⇡i : Ei ! M are two
vector bundles over M of the same rank k. Let {Ua | a 2 A} be an open cover of
M such that both1 E1 and E2 admit GL(k)-bundle atlases over the Ua. Let

⇢1ab : Ua \ Ub ! GL(k), and ⇢2ab : Ua \ Ub ! GL(k)

denote the transition functions of E1 and E2 with respect to these bundle atlases.
Prove that E1 and E2 are isomorphic if and only if there exists a smooth family
⌫a : Ua ! GL(k) of functions such that

⌫a(x) � ⇢1ab(x) = ⇢2ab(x) � ⌫b(x), 8 x 2 Ua \ Ub, 8 a, b 2 A.

(|) Problem H.5. Let ' : M ! N be a smooth map and suppose ⇡ : E ! N is
a vector bundle, which we illustrate pictorially as:

E

M N

⇡

'

(�)

Will J. Merry, Di↵. Geometry I, Autumn 2018, ETH Zürich. Last modified: June 28, 2019.
1This can always be achieved by taking intersections.
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A solution of the diagram (�) is a vector bundle ⇡1 : E1 ! M over M together
with a vector bundle morphism � : E1 ! E along '. Thus a solution is any pair
⇡1 : E1 !M and � such that the following commutes:

E1 E

M N

�

⇡1 ⇡

'

As we have seen, one possible solution is the pullback bundle '?E:

'?E E

M N

pr2

pr1 ⇡

'

The aim of this exercise is to prove that '?E is the “most e�cient” solution in the
following sense: Suppose ⇡1 : E1 ! E and � is any solution to (�). Prove there
exists a unique vector bundle homomorphism  : E1 ! '?E such that the following
diagram commutes:

E1

'?E E

M N

⇡1

� 

pr2

pr1 ⇡

'

Prove moreover that '?E is uniquely determined by this property. Explicitly this
means that if ⇡̃ : Ẽ ! M and �̃ is another solution to the diagram (�) with the
property that for any solution ⇡1 : E1 ! M and � of (�) there exists a unique
vector bundle homomorphism  ̃ : E1 ! Ẽ such that the following commutes:

E1

Ẽ E

M N

⇡1

� ̃

�̃

⇡̃ ⇡

'

2



then in fact Ẽ is isomorphic as a vector bundle over M to '?E. Hint: Argue as in
the proof of Lemma 15.2.

Problem H.6. Let ⇡i : Ei !Mi be vector bundles for i = 1, 2. Suppose ⇥ : E1 !
E2 is any smooth map that maps each fibre ⇡�1

1 (x) linearly onto some fibre ⇡�1
2 (y)

for x 2 M1 and y 2 M2. Prove that ⇥ =  � � where  is a vector bundle
homomorphism and � is a vector bundle morphism along a map M1 !M2.

Problem H.7. Let ⇡i : Ei !M be two vector bundles over the same manifold M
of ranks ki. Let � : E1 ! E2 be a vector bundle homomorphism.

(i) Assume � is injective on each fibre. Consider the quotient vector space

Ēx := E2|x
�

�|E1|x(E1|x).

Prove that Ē :=
F

x2M Ēx is a vector bundle of rank k2 � k1.

(ii) Assume that � is surjective on each fibre. Let

Kx := ker�|E
x

⇢ E1|x.

Prove that K :=
F

x2M Kx is a vector bundle over M of rank k1 � k2.
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Solutions to Problem Sheet H

Problem H.1. Let V,W and U are vector spaces. Prove there are natural isomor-
phisms V ⌦W ⇠= W ⌦ V and (U ⌦ V )⌦W ⇠= U ⌦ (V ⌦W ).

Solution. To prove that V ⌦W ⇠= W⌦V , consider the bilinear map F : V ⇥W !
W ⌦ V given by F (v, w) = w⌦ v. By the universal property of the tensor product
(lemma 15.2) there is an associated linear map TF : V ⌦W ! W ⌦ V defined by
TF (v ⌦ w) = w ⌦ v and then extended by linearity. Such map is invertible, the
inverse being defined by T�1

F (w⌦ v) = v⌦w and then extended by linearity. Such
map is then the required isomorphism.

To prove that (U⌦V )⌦W ⇠= U⌦(V ⌦W ), consider the map G : (U⌦V )⇥W !
U ⌦ (V ⌦W ) (which we regard as a function of two variables, the first on U ⌦ V
and the second on W ) defined by G(u ⌦ v, w) = u ⌦ (v ⌦ w), and extended by
linearity with respect to its first argument. Such map is bilinear and so by the
universal property of the tensor product (lemma 15.2) there is an associated linear
map TG : (U⌦V )⌦W ! U⌦(V ⌦W ) defined by TG((u⌦v)⌦w) = u⌦(v⌦w) and
extended by linearity. Since such map is invertible, (the inverse being defined by
T�1
G (u⌦ (v⌦w)) = (u⌦ v)⌦w and then extended by linearity), and so it provides

the required isomorphism.

Problem H.2. Let V and W be vector spaces. For any A 2 Altr(V,W ) prove there
is a unique linear map T :

Vr(V )! W such that the following diagram commutes:

r
z }| {

V ⇥ · · ·⇥ V
Vr(V )

W

^

A T

Moreover
Vr(V ) is uniquely characterised by this property.

Solution. Any alternating r-linear is by definition multilinear which allows us to
define a map

T̃ : T r,0(V ) = V ⌦ · · ·⌦ V ! W, T̃ (v1 ⌦ · · ·⌦ vr) := A(v1, . . . , vr).

This map is well defined and linear by the very definition of the tensor product (cf.
Definition 15.1) and multilinearity of A.

Now we claim that our T̃ : T r,0(V )! W factors through
Vr(V ) ⇠= T r,0(V )

.

Ir(V ).

Indeed, any element of the form v1 ⌦ · · ·⌦ vi ⌦ · · ·⌦ vi ⌦ · · ·⌦ vr gets mapped to
0 by T̃ simply because the vi appears twice and A is alternating, i.e.

A(v1, . . . , vi, . . . , vi, . . . , vr) = 0.

Solutions written by Mads Bisgaard, Francesco Palmurella, Alessio Pellegrini, and Alexandre
Puttick. Last modified: June 28, 2019.
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Therefore
Ir(V ) ⇢ ker T̃

and we end up with a linear map T :
Vr(V )! W such that the following diagram

commutes

T r,0(V ) W

Vr(V )

T̃

p T

where p the obvious projection.
Moreover, the linear map T fits into the desired commutative diagram (T �^ =

T � (p �⌦) = T̃ �⌦ = A) and we are only left to show that such a T is unique, but
that’s straightforward: The decomposable elements v1^· · ·^vr generate

Vr(V ) and
as T (v1^ · · ·^vr) is already determined to be equal to A(v1, . . . , vr) the uniqueness
of T follows.

The proof of the second statement about the unique characterisation of
Vr(V )

is identical to the second part in the proof of Lemma 15.2.

Problem H.3. Let V be a vector space of dimension k with basis {e1, . . . , ek}.
Prove that

{ei1 ^ · · · ^ ei
r

| 1  i1 < · · · < ir  k}
is a basis of

Vr(V ). Thus dim
Vr(V ) =

�

k
r

�

and dim
V

(V ) = 2k.

Solution. We start by noticing that an element A 2 Altr(V ) has components
(with respect to the chosen basis on V ) given by

Ai1···ir = A(ei1 , . . . , eir) for every 1  i1  · · ·  ir  k.

Since A is alternating, we deduce that if � is a permutation of any set of indices
{i1, . . . , ir}, then A�(i1)···�(ir) = sign(�)Ai1···ir (sign(�) is the signature of �). In
particular A is determined completely by the values Ai1···ir for 1  i1 < i2 <
· · · ir  k and consequently a basis for Altr(V ) is given, for this choice of indices,
by the maps

Ei1,...,ir(ej1 , . . . , ejr) =

(

sign(⌘) if {i1, . . . , ir} = {j1, . . . , jr},
0 else,

for every 1  j1  . . .  jr where sign(⌘) is the signature of the permutation
sending (i1, . . . , ir) to (j1, . . . jr). With the canonical vector-space identification
between Altr(V ) and

Vr(V ⇤) given by Proposition 15.23, Ei1,...,ir corresponds to
the element ei1 ^ · · · ^ eir . Consequently, {ei1 ^ · · · ^ eir}1i1<···<i

r

k must then be
a basis for

Vr(V ⇤).
The same reasoning can be applied to Altr(V ⇤) and

Vr(V ) (or also simply
recalling the canonical identification V ⇠= V ⇤⇤), and so the conclusion is reached.

Finally, it is clear that
Vr(V ) = 0 for r > k since eg. e1 ^ · · · ^ en ^ ei = 0 for

any i as the ei term appears twice.
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Problem H.4. Let M be a smooth manifold and suppose ⇡i : Ei ! M are two
vector bundles over M of the same rank k. Let {Ua | a 2 A} be an open cover of
M such that both1 E1 and E2 admit GL(k)-bundle atlases over the Ua. Let

⇢1ab : Ua \ Ub ! GL(k), and ⇢2ab : Ua \ Ub ! GL(k)

denote the transition functions of E1 and E2 with respect to these bundle atlases.
Prove that E1 and E2 are isomorphic if and only if there exists a smooth family
⌫a : Ua ! GL(k) of functions such that

⌫a(x) � ⇢1ab(x) = ⇢2ab(x) � ⌫b(x), 8 x 2 Ua \ Ub, 8 a, b 2 A. (H.1)

Solution. Suppose first that we are given a vector bundle isomorphism � : E1
⇠!

E2. For i = 1, 2 and each a 2 A, we denote the corresponding bundle chart
⇡�1
i (Ua)! Rk by ai. Let x 2 Ua and define

⌫a(x) := a2 � � � (a1|E1,x)
�1.

Since each ai|E
i,x

: Ei,x
⇠! Rk is a linear isomorphism, it follows that ⌫a(x) 2 GL(k).

Let a, b 2 A be such that Ua \ Ub 6= ;. We compute

⌫a(x) � ⇢1ab(x) =
�

a2 � � � (a1|E1,x)
�1
� � �a1 � (b1|E1,x)

�1
�

= a2 � � � (b1|E1,x)
�1

= a2 � (b2|E2,x)
�1 � b2 � � � (b1|E1,x)

�1

= ⇢2ab(x) � ⌫b(x).
It follows that the ⌫a satisfy (H.1), as desired.

Conversely, suppose we are given a smooth family of functions ⌫a : Ua ! GL(k)
satisfying (H.1). For each a 2 A, define �̃a : Ua ⇥ Rk ! Ua ⇥ Rk by (x, v) 7!
(x, ⌫a(x)v). We then define � : E1 ! E2 as follows: for e1 2 E1, choose a 2 A such
that e1 2 ⇡�1

1 (Ua) and define

�(e1) :=
�

(⇡2, a
2)�1 � �̃a � (⇡1, a1)

�

(e1). (H.2)

We first check that � is well-defined, i.e., independent of the choice of a 2 A. Let
b 2 A be another element such that e1 2 ⇡�1

1 (Ub). Let x := ⇡1(e1) 2 Ua \Ub. Then
it follows from the definition of each map in the composite that the right hand
side of (H.2) is equal to (a2|E2,x)

�1⌫a(x)a1|E1,x(e1). Checking that � is well-defined
therefore amounts to checking that the following equality holds:

(a2|E2,x)
�1⌫a(x)a

1|E1,x(e1) = (b2|E2,x)
�1⌫b(x)b

1|E1,x(e1) (H.3)

Precomposing both sides by a2|E2,x and recalling that ⇢iab(x) := ai|E
i,x

� (bi|E
i,x

)�1,
we find that (H.3) is equivalent to (H.1), which holds by assumption. Thus � is
well-defined.

It remains to show that the smooth map � : E1 ! E2 is a vector bundle iso-
morphism. This amounts to checking that �|E1,x is a linear isomorphism from E1,x

to E2,x for all x 2 M . Fix x 2 M and choose a 2 A such that x 2 Ua. Then by
construction we have �|E1,x = (a2|E2,x)

�1⌫a(x)a1|E1,x , and the right hand side is
clearly a linear isomorphism. This concludes the proof.

1This can always be achieved by taking intersections.
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(|) Problem H.5. Let ' : M ! N be a smooth map and suppose ⇡ : E ! N is
a vector bundle, which we illustrate pictorially as:

E

M N

⇡

'

(�)

A solution of the diagram (�) is a vector bundle ⇡1 : E1 ! M over M together
with a vector bundle morphism � : E1 ! E along '. Thus a solution is any pair
⇡1 : E1 !M and � such that the following commutes:

E1 E

M N

�

⇡1 ⇡

'

As we have seen, one possible solution is the pullback bundle '?E:

'?E E

M N

pr2

pr1 ⇡

'

The aim of this exercise is to prove that '?E is the “most e�cient” solution in the
following sense: Suppose ⇡1 : E1 ! E and � is any solution to (�). Prove there
exists a unique vector bundle homomorphism  : E1 ! '?E such that the following
diagram commutes:

E1

'?E E

M N

⇡1

� 

pr2

pr1 ⇡

'

(�)

Prove moreover that '?E is uniquely determined by this property. Explicitly this
means that if ⇡̃ : Ẽ ! M and �̃ is another solution to the diagram (�) with the
property that for any solution ⇡1 : E1 ! M and � of (�) there exists a unique

4



vector bundle homomorphism  ̃ : E1 ! Ẽ such that the following commutes:

E1

Ẽ E

M N

⇡1

� ̃

�̃

⇡̃ ⇡

'

then in fact Ẽ is isomorphic as a vector bundle over M to '?E. Hint: Argue as in
the proof of Lemma 15.2.

Solution. In the language of category theory we are looking for a certain bundle
morphism ( , idM) between the two objects ⇡1 : E1 ! M and pr1 : '

⇤E ! M
in the category of vector bundles VectBundles. Suppose first that there exists a
bundle morphism ( , idM) fitting into the diagram from the statement (modulo
the uniqueness part), i.e.

 : E1 ! '⇤E,

is smooth and satisfies
(

pr2 � = �

pr1 � = ⇡1.

The definition of the pullback bundle '⇤E and the fact that  takes values in '⇤E
imply

8p 2 E1 :  (p) = (pr1( (p)), pr2( (p))) .

With the commutative relations above this becomes

 (p) = (⇡1(p),�(p)) ,

which proves uniqueness. Existence follows by reading the last few lines backwards
and finishes the first part of the exercise.

For the second part of the exercise we pick the vector bundle ⇡̃ : Ẽ !M together
with the bundle morphism (�̃,') just as in the statement. In particular, the vector
bundle ⇡̃ : Ẽ ! M is a solution of (�) and so the first part of the exercise grants
us the following commutative diagram

Ẽ

'?E E

M N

⇡̃

� ̃

pr2

pr1 ⇡

'

(�̃)
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Due to the assumptions on ⇡̃ : Ẽ ! M however, we can “stick” yet another com-
mutative diagram on top of (�̃), namely:

'⇤E

Ẽ

'?E E

M N

pr1

⇥̃

pr2

⇡̃

�
 ̃

pr2

pr1 ⇡

'

(�̃)

This means that pr1 : '
⇤E ! M and pr2 is the unique solution of (�) by the first

part of the proof which shows

 ̃ � ⇥̃ = id'⇤E,

simply because pr1 : '
⇤E !M and id'⇤E also solves (�).

Similarly, reversing the roles of '⇤E and Ẽ2 then proves

⇥̃ �  ̃ = Ẽ .

This concludes the prove.

Problem H.6. Let ⇡i : Ei !Mi be vector bundles for i = 1, 2. Suppose ⇥ : E1 !
E2 is any smooth map that maps each fibre ⇡�1

1 (x) linearly onto some fibre ⇡�1
2 (y)

for x 2 M1 and y 2 M2. Prove that ⇥ = � �  where  is a vector bundle
homomorphism and � is a vector bundle morphism along a map M1 !M2.

Solution. Note first that any vector bundle ⇡1 : E1 !M has a (canonical) section
s 2 �(E1 ! M) given by s(x) = (x, 0) 2 ⇡�1

1 (x). I.e. s maps every point
in M to the 0-element in ⇡�1

1 (x). The map ' := ⇡2 � � � s is a smooth map
M1 !M2 which is “covered” by ⇥. Now note that there is a natural induced map
 : E1 ! '?E2 which covers the identity M1 ! M1. This map is simply given by
 (x, v) = (x, P �⇥(x, v)). Here P is the map which sends an element of z 2 E2 to
the vector sitting over ⇡2(z). With this definition we clearly have

E1 '?E2

M1

 

⇡1 ⇡

where ⇡ : '?E2 ! M is induced projection map. Now of course we have a map
� : '?E2 ! E2 covering '. This map is simply given by '?E2 3 (x, v) 7! ('(x), v) 2

2Note that reversing the roles also uses the first part of the proof. Why?
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E2 (here we use the notation that x is the basepoint coordinate and v is the fibre
coordinate). Now everything fits into a commutative diagram as wanted:

E1 '?E2 E2

M1 M2.

 

⇡1
⇡

�

⇡2

'

Problem H.7. Let ⇡i : Ei !M be two vector bundles over the same manifold M
of ranks ki. Let � : E1 ! E2 be a vector bundle homomorphism.

(i) Assume � is injective on each fibre. Consider the quotient vector space

Ēx := E2|x
�

�|E1|x(E1|x).

Prove that Ē :=
F

x2M Ēx is a vector bundle of rank k2 � k1.

(ii) Assume that � is surjective on each fibre. Let

Kx := ker�|E
x

⇢ E1|x.

Prove that K :=
F

x2M Kx is a vector bundle over M of rank k1 � k2.

Solution. (i) Choose a covering U = {U} of open subsets of M such that E2

is trivial over each U . I.e. we have di↵eomorphisms

⇡�1
2 (U) U ⇥ Rk2

U

⇠=

⇡2 projection

which restrict to linear isomorphisms on fibres. Since the restriction of � to
fibres is assumed to be an injective map, �(E1|x) ⇢ E2|x is a k1-dimensional
linear subspace. Over a subset U we may therefore view �(E1|x) as a k1-
dimensional linear subspace of Rk2 . Hence, we may for each point x 2 U
choose a basis v1(x), . . . , vk1(x) of �(E1|x). By perhaps restricting to an
open subset V ⇢ U , this basis can in fact be chosen in such a way that
they depend smoothly on x 2 V . By the Gram-Schmidt orthogonalisation
procedure this set of vectors v1(x), . . . , vk1(x) can be extended to a basis
v1(x), . . . , vk1(x), vk1+1(x), . . . vk2(x) for Rk2 and this basis depends smoothly
on x 2 V .3 The set of vectors vk1+1(x), . . . vk2(x) spans E2|x/�(E1|x) for each
x 2 V . Since we can cover M by such subsets V we conclude that E is a
vector bundle of rank k2 � k1 over M .

(ii) Fix a point x0 2M and choose an open neighbourhood U of x such that both
E1 and E2 are trivial over U . For all x 2 U we can then view �|x : E1|x ! E2|x
as a surjective linear map Rk1 ! Rk2 , and hence it is represented by a matrix
Ax. In particular, Ax0 : Rk1 ! Rk2 is surjective, so there exists v1, . . . vk2 2 Rk1

3These sets V are determined by an open covering on M over which E1 is trivial.
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such that Ax0(v1), . . . Ax0(vk2) 2 Rk2 is a basis. By continuity it follows that
also

Ax(v1), . . . Ax(vk2) 2 Rk2

is a basis for all x 2 V , where V is a su�ciently small neighbourhood of x0.
Set E := Span(v1, . . . vk2)  Rk1 . The concatenation (over V )

K ,! V ⇥ Rk1 ! V ⇥ (Rk1/E)

of the inclusion and the quotient map is a fibrewise linear isomorphism. Since
x0 2 M was arbitrary we have shown that K is locally trivial and admits a
smooth structure, so it is a vector bundle of rank k1 � k2.
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Problem Sheet I

Problem I.1. Let ⇡ : E ! M be a vector bundle. An operator � : �(E) ! �(E)
is said to satisfy the Leibniz rule if there exists a vector field X on M such that
for any f 2 C1(M) and s 2 �(E) one has

�(fs) = (Xf)s+ f�(s).

Prove that an operator satisfying the Leibniz rule is a local operator but not a point
operator.

Problem I.2. Let M be a smooth manifold and let E1, . . . , Er and E be vector
bundles over M . Let � : �(E1) ⇥ · · · ⇥ �(Er) ! �(E) be a C1(M)-multilinear
operator. Prove that for each x 2M there is a unique R-multilinear map

�x : E1|x ⇥ · · ·⇥ Er|x ! Ex

such that for all si 2 �(Ei) one has

�x(s1(x), . . . sr(x)) = �(s1, . . . , sr)(x).

Problem I.3. Let M be a smooth manifold and let W ⇢M be a non-empty open
set. Let r, s � 0. Prove that there is a one-to-one correspondence between tensor
fields on W of type (r, s) and C1(W )-multilinear functions

A : ⌦1(W )⇥ · · ·⇥ ⌦1(W )
| {z }

r

⇥
s

z }| {

X(W )⇥ · · ·⇥ X(W )! C1(W ).

This generalises Corollary 16.29. Hint: Use the previous problem.

Problem I.4. Let M be a smooth manifold and let ⇡ : E !M be a vector bundle
over M . Prove that both the presheaf C1

M of smooth functions on M and the
presheaf EE of sections of E are in fact sheaves.

(|) Problem I.5. This problem introduces the notion of a vertical bundle.

(i) Let ⇡ : E !M be a fibre bundle with fibre F . Assume F has dimension k as
a manifold. Let

V E :=
G

p2E
{kerD⇡(p) : TpE ! T⇡(p)M}

with projection map ⇡V : V E ! E. Prove that V E is a vector bundle over
E of rank k.

(ii) Assume now that ⇡ : E ! M is a vector bundle. Prove that the vertical
bundle V E is isomorphic as a vector bundle to the pullback bundle ⇡?E ! E.

Will J. Merry, Di↵. Geometry I, Autumn 2018, ETH Zürich. Last modified: June 28, 2019.
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(iii) Continue to assume that ⇡ : E ! M is a vector bundle. Prove that the
composite vector bundle1 ⇡ � ⇡V : V E !M is isomorphic as a vector bundle
over M to the direct sum bundle E � E.

(iv) Continue to assume that ⇡ : E ! M is a vector bundle. View M as an
embedded submanifold of TM via the zero section. Prove that the composite
bundle ⇡ � ⇡V : V E ! M is a vector subbundle of D⇡ : TE ! TM in the
sense of Example 14.8.

1See Example 13.20.
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Solutions to Problem Sheet I

Problem I.1. Let ⇡ : E ! M be a vector bundle. An operator � : �(E) ! �(E)
is said to satisfy the Leibniz rule if there exists a vector field X on M such that
for any f 2 C1(M) and s 2 �(E) one has

�(fs) = (Xf)s+ f�(s).

Prove that an operator satisfying the Leibniz rule is a local operator but not a point
operator.

Solution. To prove that � is a local operator, let U ⇢M be an open set and let
s 2 �(E) be a section of E vanishing on U . Fix any x0 2 U and let f 2 C1(M)
be so that

f(x) =

(

0 at x = x0,

1 in M \ U.

Such function can be constructed since {x0} is a compact subset of U , and since s
vanishes on U , we have

f s ⌘ s in M.

Consequently,

�(s)(x0) = �(fs)(x0) = X(f)(x0)
| {z }

=0

s(x0) + f(x0)
| {z }

=0

�(s)s(x0) = 0,

and since x0 is arbitrarily chosen on U , we conclude that �(s) vanishes on U .
To prove that, unless X ⌘ 0, � is never a point operator, let x0 be any fixed

point in M where X(x0) 6= 0 and let e be a section of E so that e(x0) 6= 0.
Since X is not zero at x0, we can always construct a function f 2 C1(M) so that
f(x0) = 0 and X(f)(x0) 6= 0, as follows: let (U, �) be local chart at x0 so that
�(x0) = 0 and in whose local coordinates x1, . . . , xm X is written as X(x) = @

@x1

�

�

x
(Corollary 11.2). The required function f is then defined in this coordinate patch
as f(x1, . . . , xm) = x1, and then extended arbitrarily to a smooth function on all of
M by means of a partition-of-unity argument. Now consider the section s 2 �(E)
given by s = f e: we see that

s(x0) = f(x0) e(x0) = 0, but �(s)(x0) = X(f)(x0) e0(x0) = e(x0) 6= 0,

so � is not a point operator.

Solutions written by Mads Bisgaard, Francesco Palmurella, Alessio Pellegrini, and Alexandre
Puttick. Last modified: June 28, 2019.
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Problem I.2. Let M be a smooth manifold and let E1, . . . , Er and E be vector
bundles over M . Let � : �(E1) ⇥ · · · ⇥ �(Er) ! �(E) be a C1(M)-multilinear
operator. Prove that for each x 2M there is a unique R-multilinear map

�x : E1|x ⇥ · · ·⇥ Er|x ! Ex

such that for all si 2 �(Ei) one has

�x(s1(x), . . . sr(x)) = �(s1, . . . , sr)(x).

Solution. Fix x 2 M and let vk 2 Ek|x. Extend each vk to a global section
sk 2 �(Ek) (here we use Lemma 16.16). Define

�x(v1, . . . , vr) := �(s1, . . . sr)(x). (I.1)

We claim that this definition is independent of the extensions sk of vk. To see this,
let ŝk be another extension of vk. Then

�(s1, . . . , sk � ŝk, . . . sr)(x) = 0

because � is a point operator (Proposition 16.25) and sk(x)� ŝk(x) = vk � vk = 0.
Now multilinearity of � implies

�(s1, . . . , sk, . . . sr)(x) = �(s1, . . . , ŝk, . . . sr)(x).

This shows that (I.1) defines �x independently of the extensions sk. Clearly, R-
multilinearity of �x follows from C1(M)-multilinearity of �.

Problem I.3. Let M be a smooth manifold and let W ⇢M be a non-empty open
set. Let r, s � 0. Prove that there is a one-to-one correspondence between tensor
fields on W of type (r, s) and C1(W )-multilinear functions

T̃ : ⌦1(W )⇥ · · ·⇥ ⌦1(W )
| {z }

r

⇥
s

z }| {

X(W )⇥ · · ·⇥ X(W )! C1(W ).

Hint: Use the previous problem.

Solution. The idea is to mimic the proof of Corollary 16.29 with Problem I.2
taking the role of Proposition 16.28. We start with T̃ a C1(W )-multilinear function
as in the statement. Recalling �(TW ) = X(W ), �(T ⇤W ) = ⌦1(W ) and �(W⇥R) =
C1(W ) we can invoke Problem I.2 to get, for every x 2 W , a unique R-multilinear
map

�x : T
⇤
xW ⇥ · · ·T ⇤

xW
| {z }

r

⇥
s

z }| {

TxW ⇥ · · ·⇥ TxW ! R,

such that for every tuple of 1-forms (!1, . . . ,!r) and vector fields (X1, . . . , Xs) on
W one has

�x (!1(x), . . . ,!r(x), X1(x), . . . , Xs(x)) = T̃ (!1, . . . ,!r, X1, . . . , Xs) (x).
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For each x 2 W we have �x 2 Multr,s(T ⇤
xW ) ⇠= Mults,r(TxW ) ⇠= T r,s(TxW ) (cf.

Proposition 15.9). Just as in Corollary 16.29 we can use Remark 16.9 to deduce
that the map

� : W ! T r,s(TW ), x 7! �x

is smooth and satisfies the section property, thus proving that � is a tensor field
on W of type (r, s), i.e.

� 2 T r,s(W ).

Problem I.4. Let M be a smooth manifold and let ⇡ : E !M be a vector bundle
over M . Prove that both the presheaf C1

M of smooth functions on M and the
presheaf EE of sections of E are in fact sheaves.

Solution. We start with proving that the R-valued presheaf C1
M on M defines a

sheaf. Let U ⇢M by any open set, {Ua | a 2 A} an open cover of U and

f : U ! R

any function such that the all the restrictions f |U
a

: Ua ! R are smooth, i.e. f |U
a

2
C1
M (Ua). In order to conclude that C1

M defines a sheaf we need to show that f : U !
R is smooth (cf. Remark 17.10), but this basically follows from smoothness being
a local property. Indeed, for any x 2 U we need to show that for any chart
� : Ux ! Rn around x the map

f � ��1 : Rn ! R

is of class C1 in the usual calculus sense. But for b 2 A with x 2 Ub we already
know that

f |U
b

\U
x

� ��1|�(U
b

\U
x

) : �(Ub \ Ux)! R
is of class C1 as

f |U
a

2 C1
M (Ua) =) resUa

U
a

\U
x

(f |U
a

) = fU
a

\U
x

2 C1
M (Ua \ Ux)1,

which implies smoothness of f at x. This then implies smoothness of f and hence
proves that C1

M is a sheaf.
The proof that EE defines a sheaf on M is very similar. Adopt the notation

from above and pick any function

s : U ! E

such that for all a 2 A
s|U

a

2 EE(Ua).

We want to show that s belongs to EE(U) which is equivalent to

s : U ! E smooth and ⇡ � s = idM .

The smooth bit follows in an analogous way to what we did the first part of the
proof. The section property is trivial as for every x 2 U there is a b 2 A such that
x 2 Ub and therefore

(⇡ � s)(x) = (⇡ � s|U
b

)(x) = x.
1This uses the fact that C1

M

is a presheaf. Of course, one could argue directly as to why
f |

U

b

\U

x

is smooth.
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(|) Problem I.5. This problem introduces the notion of a vertical bundle.

(i) Let ⇡ : E !M be a fibre bundle with fibre F . Assume F has dimension k as
a manifold. Let

V E :=
G

p2E
{kerD⇡(p) : TpE ! T⇡(p)M}

with projection map ⇡V : V E ! E. Prove that V E is a vector bundle over
E of rank k.

(ii) Assume now that ⇡ : E ! M is a vector bundle. Prove that the vertical
bundle V E is isomorphic as a vector bundle to the pullback bundle ⇡?E ! E.

(iii) Continue to assume that ⇡ : E ! M is a vector bundle. Prove that the
composite vector bundle2 ⇡ � ⇡V : V E !M is isomorphic as a vector bundle
over M to the direct sum bundle E � E.

(iv) Continue to assume that ⇡ : E ! M is a vector bundle. View M as an
embedded submanifold of TM via the zero section. Prove that the composite
bundle ⇡ � ⇡V : V E ! M is a vector subbundle of D⇡ : TE ! TM in the
sense of Example 14.8.

Solution. For (i), we define bundle charts on V E as follows: let ↵ : ⇡�1(U)! F
be a bundle chart for E, and let � : Ũ

⇠! O ⇢ Rk be a coordinate chart on F . We
identify the tangent bundle TO with O ⇥ Rk and define

�

↵V := pr2 �D� �D↵
�

: ⇡�1
V

�

⇡�1(U) \ ↵�1(Ũ)
�! Rk. (I.2)

One then follows the procedure outlined in Remark 13.7 to endow V E with a
smooth structure. To check that the resulting smooth manifold is a vector bundle
over E, we must verify that the transition functions obtained from the ↵V are
linear isomorphisms. Consider a bundle chart � : ⇡�1(V ) ! F and coordinate
chart ⌧ : Ṽ

⇠! O0 such that

�

⇡�1(U) \ ↵�1(Ũ)
� \ �⇡�1(V ) \ ��1(Ṽ )

� 6= ;, (I.3)

and define �V in analogy to ↵V . Consider an element p in the left hand side of (I.3).
Let x := ⇡(p). By Proposition 5.15, the inclusion ◆x : Ex ! E yields an isomorphism
D◆x(p) : TpEx

⇠! kerD⇡(p) ⇢ TpE. We have the following commutative diagram

TpEx kerD⇡(p)D↵(p)

T↵(p)F.

D◆
x

(p)

⇠

D(↵|
E

x

)(p) D↵(p)

Since ↵|E
x

is a di↵eomorphism, it follows that D(↵|E
x

)(p)|kerD⇡(p) is an isomor-
phism. We deduce from the above diagram that D↵(p)|kerD⇡(p) is also an iso-
morphism. Since ↵V |(V E)

p

:
�

(V Ep) = kerD⇡(p)
� ! Rk is simply the composite

2See Example 13.20.

4



D�
�

↵(p)
� �D↵(p)|kerD⇡(p), we conclude that ↵V |(V E)

p

is a linear isomorphism. The
map �V |(V E)

p

has a similar description, and thus

⇢↵
V

�
V

(p) = ↵V |(V E)
p

� (�V |(V E)
p

)�1

is a linear isomorphism. We conclude that V E is a rank k vector bundle over E,
as desired.

For (ii), we first note that by definition

⇡⇤E = {(p, q) 2 E ⇥ E | ⇡(p) = ⇡(q)}. (I.4)

In other words, elements of the pullback bundle ⇡⇤E consist of pairs (p, q) 2 E⇥E
such that p, q 2 Ex for some x 2 M . Since each Ex is a vector space, for any
(p, q) 2 ⇡⇤E the map t 7! ⇡(p + tq) from R to M is constant in t. It follows that
d
dt |t=0(p+ tq) 2 kerD⇡(p). We thus have a map

J : ⇡⇤E ! V E

(p, q) 7! d

dt

�

�

�

t=0
(p+ tq).

To see that J is an isomorphism of vector bundles, it su�ces to show that it restricts
to a linear isomorphism (⇡⇤E)p

⇠! (V E)p for every p 2 E. This is easy to see since
the map (p, q) 7! q identifies (⇡⇤E)p with E⇡(p) and, again by Proposition 5.15, we
may identify (V E)p = kerD⇡(p) with TpE⇡(p)

⇠= E⇡(p). All of these identifications
are linear, and after making these identifications, the map J |(⇡⇤E)

p

becomes the
identity map on E⇡(p). It follows that J |(⇡⇤E)

p

is a linear isomorphism; hence J is
an isomorphism of vector bundles.

For (iii), we first observe that ⇡⇤E = E �E as vector bundles over M . Indeed,
as stated in the proof of (ii), for each element (p, q) 2 ⇡⇤E, we have p, q 2 Ex, where
x := ⇡(p) = ⇡(q). Hence we can view (p, q) as an element of Ex � Ex = (E � E)x.
Conversely, any (p, q) 2 Ex � Ex can be viewed as an element of ⇡⇤E. We may
thus identify ⇡⇤E and E as sets. To see that they are equal as vector bundles, it
su�ces to observe that they have the same bundle charts. Indeed, given a bundle
chart ↵ : ⇡�1(U)! Rk on E, the corresponding chart on pr1 : ⇡

⇤E ! E is given by

↵ � pr2 : pr�1
1

�

⇡�1(U)
�! Rk,

which in turn corresponds to the bundle chart

(↵ � pr1,↵ � pr2) : pr�1
1

�

⇡�1(U)
�! Rk ⇥ Rk (I.5)

on the composite bundle ⇡ � pr1 : ⇡⇤E !M . Since

pr�1
1

�

⇡�1(U)
�

= ⇡⇤⇡�1(U) = ⇡�1(U)� ⇡�1(U),

we see that (I.5) is precisely the bundle chart on E � E given by

(↵,↵) : ⇡�1(U)� ⇡�1(U)! Rk ⇥ Rk.

Hence ⇡⇤E = E � E as vector bundles over M , as claimed.
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We may thus view the map J from part (ii) as morphism J : E � E ! V E of
vector bundles over M . Since J is smooth, it only remains to show that J restricts
to a linear isomorphism Ex � Ex ! (V E)x for each x 2 M . We first describe the
vector space structure on (V E)x as a subspace of (TE)x. The latter has vector
space structure given by

⇣ + ⇠ := Da(p, q)(⇣, ⇠) 2 Tp+qE, p, q 2 Ex, ⇣ 2 TpE, ⇠ 2 TqE, (I.6)

where a : E � E ! E is the bundle map given on fibers by (p, q) 7! p + q. For
(p, v), (q, w) 2 Ex � Ex and � 2 R, we need to show that

J (p+ �q, v + �w) = J (p, v) + �J (q, w).

This amounts to showing the equality

d

dt

�

�

�

t=0
(p+ �q + t(v + �w)) =

d

dt

�

�

�

t=0
(p+ tv) + �

d

dt

�

�

�

t=0
(q + tw), (I.7)

where the addition on the right-hand side is as defined in (I.6). We denote the path
t 7! p+ tv by �p,v : R! E. Then by definition

d

dt

�

�

�

t=0
(p+ tq) = D�p,v(0)

⇣ d

dt

�

�

�

t=0

⌘

.

Using the chain rule, we compute

d

dt

�

�

�

t=0
(p+ tv) + �

d

dt

�

�

�

t=0
(q + tw) = Da(p,�q)

h

D�p,v(0)
⇣ d

dt

�

�

�

t=0

⌘

, D��q,�w(0)
⇣ d

dt

�

�

�

t=0

⌘i

= D
�

a � (�p,v, ��q,�w)�(0)
⇣ d

dt

�

�

�

t=0

⌘

= D(�p+�q,v+�w)(0)
⇣ d

dt

�

�

�

t=0

⌘

=
d

dt

�

�

�

t=0
(p+ �q + t(v + �w)).

This yields (I.7). Thus J |E
x

�E
x

is linear. Since it is also bijective onto (V E)x,
it must be a linear isomorphism. Hence J : E � E ! V E is a vector bundle
isomorphism over M , as desired.

For (iv), first recall that we can view M as an embedded submanifold of TM
via the 0-section

s0 : M ! TM, x 7! (x, 0).

Let ↵ : ⇡�1(U) ! Rk be a bundle chart on U . Note that in the case of vector
bundles, the associated chart as defined in (I.2) has the simpler description

↵V := pr2 �D↵ : ⇡�1
V

�

⇡�1(U)
�! Rk.

The associated bundle chart of ⇡�⇡V is defined to be (↵�⇡V , pr2�D↵). Since the ⇡V
is just the restriction of the natural map TE ! E, it follows that ↵�⇡V = pr1�D↵.
Thus the bundle chart (↵ � ⇡V , pr2 �D↵) on the composite is simply

D↵ : ⇡�1
V

�

⇡�1(U)
�! TRk = Rk ⇥ Rk.

Since D↵ is also a bundle chart for D⇡ : TE ! TM , this shows that the natural
inclusion V E ! TM is a vector bundle morphism along s0 : M ! TM , i.e., that
⇡ � ⇡V : V E !M is a vector subbundle of D⇡ : TE ! TM .
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Problem Sheet J

(|) Problem J.1. Let M be a smooth manifold of dimension n.

(i) Let A 2 T r,s(M) denote a tensor of type (r, s). Let � : U ! O and ⌧ : V ! ⌦
denote two charts on M with U \ V 6= ;. Let xi denote the local coordinates
of � and yi denote the local coordinates of ⌧ . Then one can write

A = f i1···ir
j1···js

@

@xi1
⌦ · · ·⌦ @

@xi
r

⌦ dxj1 ⌦ · · ·⌦ dxj
s , on U

and

A = gi1···irj1···js
@

@yi1
⌦ · · ·⌦ @

@yir
⌦ dyj1 ⌦ · · ·⌦ dyjs , on V,

for smooth functions f i1···ir
j1···js 2 C1(U) and gi1···irj1···js 2 C1(V ). Investigate the

relationship between

f i1···ir
j1···js |U\V and gi1···irj1···js |U\V .

(ii) Let ! 2 ⌦r(M) denote a di↵erential r-form. Let � : U ! O and ⌧ : V ! ⌦
denote two charts on M with U \ V 6= ;. Let xi denote the local coordinates
of � and yi denote the local coordinates of ⌧ . Then one can write

! = fi1···irdx
i1 ^ · · · ^ dxi

r , on U

and
! = gi1···irdy

i1 ^ · · · ^ dyir , on V,

for smooth functions fi1···ir 2 C1(U) and gi1···ir 2 C1(V ). Investigate the
relationship between

fi1···ir |U\V and gi1···ir |U\V .

(iii) Suppose ' : M ! N is a di↵eomorphism. Let A 2 T r,s(N). Let � : U ! O
denote a chart on M and ⌧ : V := '(U) ! ⌦ denote a chart on N . Let xi

denote the local coordinates of � and yi denote the local coordinates of ⌧ .
Then one can write

'?(A) = f i1···ir
j1···js

@

@xi1
⌦ · · ·⌦ @

@xi
r

⌦ dxj1 ⌦ · · ·⌦ dxj
s , on U

and

A = gi1···irj1···js
@

@yi1
⌦ · · ·⌦ @

@yir
⌦ dyj1 ⌦ · · ·⌦ dyjs , on V,

for smooth functions f i1···ir
j1···js 2 C1(U) and gi1···irj1···js 2 C1(V ). Investigate the

relationship between

f i1···ir
j1···js |U\V and gi1···irj1···js |U\V .

Will J. Merry, Di↵. Geometry I, Autumn 2018, ETH Zürich. Last modified: June 28, 2019.
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(iv) Suppose ' : M ! N is a smooth map. Let ! 2 ⌦r(N). Let � : U ! O denote
a chart on M and ⌧ : V := '(U) ! ⌦ denote a chart on N . Let xi denote
the local coordinates of � and yi denote the local coordinates of ⌧ . Then one
can write

'?(!) = fi1···irdx
i1 ^ · · · ^ dxi

r , on U

and
! = gi1···irdy

i1 ^ · · · ^ dyir , on V,

for smooth functions fi1···ir 2 C1(U) and gi1···ir 2 C1(V ). Investigate the
relationship between

fi1···ir |U\V and gi1···ir |U\V .

(v) Conclude that local coordinates are horrible.

Problem J.2. Let ' : M ! N denote a smooth map. Let A 2 T 0,s(N). Using the
Tensor Criterion (Theorem 18.3), regard A as a C1(N)-multilinear function

X(N)⇥ · · ·⇥ X(N)
| {z }

s

! C1(N).

and similarly regard '?(A) as a C1(M)-multilinear function

X(M)⇥ · · ·⇥ X(M)
| {z }

s

! C1(M).

Suppose Xi 2 X(M) is '-related to Yi 2 X(N) for i = 1, . . . , s. Prove that

'?(A)(X1, . . . , Xs) = A(Y1, . . . , Ys) � '
as functions M ! N .

Problem J.3. Let V be a vector space and suppose ! 2 Vr(V ⇤) and # 2 Vs(V ⇤).
Let vi 2 V for i = 1, . . . , r + s. Identify ! with an element of Altr(V ), # with
an element of Alts(V ) and ! ^ # with an element of Altr+s(V ) (using Proposition
15.23). Prove that:

(! ^ #)(v1, . . . , vr+s) =
1

r!s!

X

%2S
r+s

sgn(%)!
�

v%(1), . . . , v%(r)
�

#
�

v%(r+s), . . . v%(r+s)

�

or equivalently

(! ^ #)(v1, . . . , vr+s) =
X

%2Shu✏e(r,s)

sgn(%)!
�

v%(1), . . . , v%(r)
�

#
�

v%(r+s), . . . v%(r+s)

�

,

where Shu✏e(r, s) was defined in Definition 19.3.

Problem J.4. Let (r, s), (r0, s0) and (r00, s00) be three pairs of non-negative integers.
Suppose we are given a C1

M -bilinear sheaf homomorphism

A : T r,s
M ⇥ T r0,s0

M ! T r00,s00

M .
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Assume in addition that A has the property that if ' : U ! V is a local di↵eomor-
phism between open sets of M then

'?(AV (A,B)) = AU('
?(A),'?(B)).

Prove that for every vector field X on M , one has

L̃X(A(A,B)) = A(L̃X(A), B) +A(A, L̃X(B)),

where L̃X is defined as in (18.8) from Definition 18.19. (Remark: This Problem is
used in Lecture 18 to show that L̃X = LX .)

Problem J.5. Let M be a smooth manifold.

(i) Suppose A 2 T 1,1(M) ⇠= �(End(TM)). Prove there exists a unique tensor
derivation DA on M with the property that DA(Y )(x) = Ax(Y (x)) for any
vector field Y and satisfies DA(f) = 0 for any function f .

(ii) Let D be an arbitrary tensor derivation. Prove that there exists a vector field
X on M and A 2 T 1,1(M) such that D = LX +DA.

3



Solutions to Problem Sheet J

(|) Problem J.1. Let M be a smooth manifold of dimension n.

(i) Let A 2 T r,s(M) denote a tensor of type (r, s). Let � : U ! O and ⌧ : V ! ⌦
denote two charts on M with U \ V 6= ;. Let xi denote the local coordinates
of � and yi denote the local coordinates of ⌧ . Then one can write

A = f i1···ir
j1···js

@

@xi1
⌦ · · ·⌦ @

@xi
r

⌦ dxj1 ⌦ · · ·⌦ dxj
s , on U

and

A = gi1···irj1···js
@

@yi1
⌦ · · ·⌦ @

@yir
⌦ dyj1 ⌦ · · ·⌦ dyjs , on V,

for smooth functions f i1···ir
j1···js 2 C1(U) and gi1···irj1···js 2 C1(V ). Investigate the

relationship between

f i1···ir
j1···js |U\V and gi1···irj1···js |U\V .

(ii) Let ! 2 ⌦r(M) denote a di↵erential r-form. Let � : U ! O and ⌧ : V ! ⌦
denote two charts on M with U \ V 6= ;. Let xi denote the local coordinates
of � and yi denote the local coordinates of ⌧ . Then one can write

! = fi1···irdx
i1 ^ · · · ^ dxi

r , on U

and
! = gi1···irdy

i1 ^ · · · ^ dyir , on V,

for smooth functions fi1···ir 2 C1(U) and gi1···ir 2 C1(V ). Investigate the
relationship between

fi1···ir |U\V and gi1···ir |U\V .

(iii) Suppose ' : M ! N is a di↵eomorphism. Let A 2 T r,s(N). Let � : U ! O
denote a chart on M and ⌧ : V := '(U) ! ⌦ denote a chart on N . Let xi

denote the local coordinates of � and yi denote the local coordinates of ⌧ .
Then one can write

'?(A) = f i1···ir
j1···js

@

@xi1
⌦ · · ·⌦ @

@xi
r

⌦ dxj1 ⌦ · · ·⌦ dxj
s , on U

and

A = gi1···irj1···js
@

@yi1
⌦ · · ·⌦ @

@yir
⌦ dyj1 ⌦ · · ·⌦ dyjs , on V,

for smooth functions f i1···ir
j1···js 2 C1(U) and gi1···irj1···js 2 C1(V ). Investigate the

relationship between

f i1···ir
j1···js |U\V and gi1···irj1···js |U\V .

Solutions written by Mads Bisgaard, Francesco Palmurella, Alessio Pellegrini, and Alexandre
Puttick. Last modified: June 28, 2019.
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(iv) Suppose ' : M ! N is a smooth map. Let ! 2 ⌦r(N). Let � : U ! O denote
a chart on M and ⌧ : V := '(U)! ⌦ denote a chart on N . Let xi denote the
local coordinates of � and yi denote the local coordinates of ⌧ . Then one can
write

'?(!) = fi1···irdx
i1 ^ · · · ^ dxi

r , on U

and
! = gi1···irdy

i1 ^ · · · ^ dyir , on V,

for smooth functions fi1···ir 2 C1(U) and gi1···ir 2 C1(V ). Investigate the
relationship between

fi1···ir |U\V and gi1···ir |U\V .

(v) Conclude that local coordinates are horrible.

Solution. We start with (i). First of all observe that each @
@xi

2 T (U \V ) can be
written in terms of the local frame field @

@y1 , . . .
@
@yn , i.e.

@

@xi
= dyk

✓

@

@xi

◆

@

@yk
=
@yk

@xi

@

@yk
,

and similarly

dxi = dxi

✓

@

@yk

◆

dyk =
@xi

@yk
dyk.

Thus on U \ V we get

A = f i1···ir
j1···js

@

@xi1
⌦ · · ·⌦ @

@xi
r

⌦ dxj1 ⌦ · · ·⌦ dxj
s

= f i1···ir
j1···js

✓

@yk1

@xi1

@

@yk1

◆

⌦ · · ·⌦
✓

@ykr

@xi
r

@

@ykr

◆

⌦
✓

@xj1

@yl1
dyl1

◆

⌦ · · ·⌦
✓

@xj
s

@yls
dyls

◆

= f i1···ir
j1···js

✓

@yk1

@xi1
· · · @y

k
r

@xi
r

◆

·
✓

@xj1

@yl1
· · · @x

j
s

@yls

◆

@

@yk1
⌦ · · ·⌦ @

@ykr
⌦ dyl1 ⌦ · · ·⌦ dyls .

This then proves

gk1···krl1···ls = f i1···ir
j1···js

✓

@yk1

@xi1
· · · @y

k
r

@xi
r

◆

·
✓

@xj1

@yl1
· · · @x

j
s

@yls

◆

, on U \ V.

The relation for (ii) follows in a similar fashion, namely

! = fi1···irdx
i1 ^ · · · ^ dxi

r

= fi1···ir
@xi1

@yj1
· · · @x

i
r

@yjr
dyj1 ^ · · · ^ dyjr ,

and hence

gj1···jr = fi1···ir
@xi1

@yj1
· · · @x

i
r

@yjr
, on U \ V.
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For (iii) it will be convenient to view A and its pullback '⇤A as multilinear maps
at every footpoint (see Proposition 15.9). We first observe that f i1···ir

j1···js is given by

f i1···ir
j1···js = '⇤(A)

✓

dxi1 , · · · , dxi
r ,

@

@xj1
, · · · , @

@xj
s

◆

= A'

✓

dxi1 �D'�1, · · · , dxi
r �D'�1, D'



@

@xj1

�

, · · · , D'


@

@xj
s

�◆

,

where the second equality is just definition. Now let us denote by (D'�1)ij(y) the
(i, j)-th entry of the matrix representative D'�1(y) : TyN ! T'�1(y)M with respect
to the two bases @

@yk

�

�

y
and @

@xl

�

�

'�1(y)
. Adopting the analogue notation for D'i

j(x)

and omitting footpoints again we get

f i1···ir
j1···js = A'

✓

(D'�1)i1k1 dy
k1 , · · · , (D'�1)irk

r

dykr , D'l1
j1

@

@yl1
, · · · , D'l

s

j
s

@

@yls

◆

.

Now by multilinearity of A we conclude

f i1···ir
j1···js = (D'�1)i1k1 · · · (D'�1)irk

r

·D'l1
j1 · · ·D'l

s

j
s

gk1,···krl1···ls .

Part (iv) follows from a very similar argument to the one in (iii) 1

fi1···ir = '⇤!
✓

@

@xi1
, · · · @

@xi
r

◆

= !

✓

D'



@

@xi1

�

, · · ·D'


@

@xi
r

�◆

= D'j1
i1 · · ·D'j

r

i
r

gj1,···gr .

Problem J.2. Let ' : M ! N denote a smooth map. Let A 2 T 0,s(N). Using the
Tensor Criterion (Theorem 18.3), regard A as a C1(N)-multilinear function

X(N)⇥ · · ·⇥ X(N)
| {z }

s

! C1(N).

and similarly regard '?(A) as a C1(M)-multilinear function

X(M)⇥ · · ·⇥ X(M)
| {z }

s

! C1(M).

Suppose Xi 2 X(M) is '-related to Yi 2 X(N) for i = 1, . . . , s. Prove that

'?(A)(X1, . . . , Xs) = A(Y1, . . . , Ys) � '

as functions M ! N .

1Actually both (ii) and (iv) are just special cases of (i) and (iii), respectively.
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Solution. We compute: For a point x 2M we set y = '(x), so that

'?(A)(X1, . . . , Xs)(x) = A'(x)(D'(x)X1(x), . . . , D'(x)Xs(x))

= Ay(D'('
�1(y))X1('

�1(y)), . . . , D'('�1(y))Xs('
�1(y)))

= Ay(Y1(y), . . . , Ys(y))

= A(Y1, . . . , Ys) � '(x)
This solves the problem.

Problem J.3. Let V be a vector space and suppose ! 2 Vr(V ⇤) and # 2 Vs(V ⇤).
Let vi 2 V for i = 1, . . . , r + s. Identify ! with an element of Altr(V ), # with
an element of Alts(V ) and ! ^ # with an element of Altr+s(V ) (using Proposition
15.23). Prove that:

(! ^ #)(v1, . . . , vr+s) =
1

r!s!

X

%2S
r+s

sgn(%)!
�

v%(1), . . . , v%(r)
�

#
�

v%(r+s), . . . v%(r+s)

�

(J.1)
or equivalently

(! ^ #)(v1, . . . , vr+s) =
X

%2Shu✏e(r,s)

sgn(%)!
�

v%(1), . . . , v%(r)
�

#
�

v%(r+s), . . . v%(r+s)

�

,

(J.2)
where Shu✏e(r, s) was defined in Definition 19.3.

Solution. We first observe that given any permutation ⇡ 2 Sr+s, there exists a
unique permutation � ofSr and a unique permutation ⌧ on the letters r+1, . . . , r+s
such that % := ⇡ � � � ⌧ is an (r, s)-shu✏e. Let us write S0

s for the permutations on
the letters r + 1, . . . , r + s. We now verify (J.2). Both sides are linear in ! and #,
and hence we may assume that both ! and # are decomposable, say:

! = p1 ^ · · · ^ pr, # = q1 ^ · · · ^ qs.

Then if v1, . . . , vr+s 2 V , we have (using the Leibniz formula for the determinant)
that

�

p1 ^ · · · ^ pr ^ q1 ^ · · · ^ qs
��

v1, . . . , vr+s

�

=
X

⇡2S
r+s

sgn(⇡)p1
�

v⇡(1)
� · · · pr�v⇡(r)

�

q1
�

v⇡(r+1)

� · · · qs�v⇡(r+s)

�

=
X

%2Shu✏e(r,s)

X

�2S
r

X

⌧2S0
s

sgn(%) sgn(�) sgn(⌧) (J.3)

p1
�

v%(�(1))
� · · · pr�v%(�(r))

�

q1
�

v%(⌧(r+1))

� · · · qs�v%(⌧(r+s))

�

Set wi := v%(i). Then w�(i) = v%(�(i)) and hence

X

�2S
r

p1
�

v%(�(1))
� · · · pr�v%(�(r))

�

=
X

�2S
r

sgn(�)p1
�

w�(1)
� · · · pr�w�(r)

�

=
�

p1 ^ · · · ^ pr
��

w1, . . . , wr

�

=
�

p1 ^ · · · ^ pr
��

v%(1), . . . , v%(r)
�

4



It follows that the sum in (J.3) is

X

%2Shu✏e(r,s)

sgn(⇢)
�

p1 ^ · · · ^ pr
��

v%(1), . . . , v%(r)
� �

q1 ^ · · · ^ qs
��

v%(r+1), . . . , v%(r+s)

�

=
X

%2Shu✏e(r,s)

sgn(⇢)!
�

v%(1), . . . , v%(r)
�

#
�

v%(r+1), . . . , v%(r+s)

�

This proves (J.2). Finally, (J.1) is a formal consequence of (J.2).

Problem J.4. Let (r, s), (r0, s0) and (r00, s00) be three pairs of non-negative integers.
Suppose we are given a C1

M -bilinear sheaf homomorphism

A : T r,s
M ⇥ T r0,s0

M ! T r00,s00

M .

Assume in addition that A has the property that if ' : U ! V is a local di↵eomor-
phism between open sets of M then

'?(AV (A,B)) = AU('
?(A),'?(B)).

Prove that for every vector field X on M , one has

L̃X(A(A,B)) = A(L̃X(A), B) +A(A, L̃X(B)),

where L̃X is defined as in (18.8) from Lecture 18.

Solution. Denote by 't : M ! M the flow generated by the vector field X. For
notational reasons we will omit the basepoints in the following computation:

L̃X(A(A,B)) = lim
t!0

'⇤
tA(A,B)�A(A,B)

t

= lim
t!0

'⇤
tAV (A,B)�AU(A,B)

t
(1)
= lim

t!0

AU('⇤
tA,'

⇤
tB)�AU(A,B)

t
(2)
= lim

t!0

A('⇤
tA� A,'⇤

tB) +A(A,'⇤
tB)�A(A,B)

t
(3)
= lim

t!0
A
✓

'⇤
tA� A

t
,'⇤

tB

◆

+A
✓

A,
'⇤
tB � B

t

◆

(4)
= A(L̃X(A), B) +A(A, L̃X(B)).

Equality (1) is justified by our assumptions, (2) and (3) are just bilinearity and (4)
uses the C1

M -bilinear assumption on A, or more precisely the fact that A is smooth
in both entries so that we can take the limit inside.

Problem J.5. Let M be a smooth manifold.

(i) Suppose A 2 T 1,1(M) ⇠= �(End(TM)). Prove there exists a unique tensor
derivation DA on M with the property that DA(Y )(x) = Ax(Y (x)) for any
vector field Y and satisfies DA(f) = 0 for any function f .

5



(ii) Let D be an arbitrary tensor derivation. Prove that there exists a vector field
X on M and A 2 T 1,1(M) such that D = LX +DA.

Solution.

(i) Let us suppose first that DA exists and let us see how it must behave on
functions, that is to say how DA(f) for a fixed f 2 C1(M). On the one hand,
since A is a tensor, its C1-multilinearity implies that for every X 2 X(M) it
must satisfy

DA(fX) = A(fX) = fA(X).

On the other hand, since DA is a derivation it must also hold that

DA(fX) = DA(f)X + fDA(X) = DA(f)X + fA(X).

For both condition to hold it is then necessary that

DA(f)X = 0 for every X 2 X(M),

and consequently that DA(f) = 0. In other words, DA has to vanish iden-
tically on functions. To prove that DA exists we now set, by definition, for
every open set U ✓M ,

DA
U (f) = 0 for every f 2 C1(U),

DA
U (X) = A(X) for every X 2 X(U),

and note that the class of maps DA
U defines a sheaf morphism since tensors

are point operators and the derivation rule is satisfied. The existence of DA

is then given by Proposition 18.17.

(ii) If D is any derivation, it is in particular a derivation on functions and con-
sequently, by Proposition 7.7, there exists some vector field Z 2 X(M) so
that

D(f) = LZ(f) = X(f) for every f 2 C1(M).

In particular, it is su�cient to check that the di↵erence D0 = D�LZ defines a
(1, 1)-tensor and then we can conclude tanks to point (i) above. By Theorem
18.3, we only need to check that it is C1-bilinear, and indeed for every f 2
C1(M) and every X 2 X(M) we have:

D0(fX) = D(fX)� LZ(fX)

= D(f)X + fD(X)� LZ(f)X � fLZ(X)

= f(D(X)� LZ(X))

= fD0(X),

and for every ! 2 ⌦1(M) we have

D0(X)(f!) = (f!)(D0(X)) = f(!D0(X)),

and this yields the required multilinearity of D0.
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Problem Sheet K

Problem K.1.

(i) Prove that Sn is orientable.

(ii) Prove that any Lie group is orientable.

(iii) Prove that RP n is orientable if and only if n is odd. Hint: Consider the
antipodal map x 7! �x on Sn.

Problem K.2. Let
Rn

� := Rn
u10, Hn := Rn

un�0.

We can identify both @Rn
� and @Hn with Rn�1. Endow both Rn

� and Hn with
their standard orientation they inherit from Rn. Show that the induced orientation
on @Rn

� is equal to standard orientation on Rn�1 for all n, but that the induced
orientation on @Hn agrees with the standard orientation of Rn�1 only when n is
even. Remark: This is the main reason we take our “standard” half-space to be
Rn

�, not Hn, cf. Remark 21.4.

(|) Problem K.3.

(i) Let V be a vector space of dimension r. A symplectic form on V is an
element ! 2 Alt2(V ) ⇠= V2(V ⇤) which is non-degenerate in the sense that
iv(!) ⌘ 0 if and only if v = 0. Prove that if a symplectic form exists then
r = 2n is necessarily an even number.

(ii) A symplectic manifold is a smooth manifold M equipped with a closed
di↵erential 2-form ! such that !x is a symplectic form on TxM for every
x 2M . Prove that any symplectic manifold is orientable.

(iii) Let M be a smooth manifold. Define a 1-form � 2 ⌦1(T ⇤M) on the cotangent
bundle via the formula:

�x,p(⇣) = p
�

D⇡(x, p)[⇣]
�

, x 2M, p 2 T ⇤
xM, ⇣ 2 T(x,p)(T

⇤M),

where ⇡ : T ⇤M ! M is the projection1. Prove that ! := d� is a symplectic
form on T ⇤M . Thus every cotangent bundle is a symplectic manifold.

(|) Problem K.4. Let M and N be smooth manifolds. Prove that if M has
boundary and N does not, them M ⇥ N is a smooth manifold with boundary.
Prove that if both M and N have non-empty boundary then M ⇥ N is not a
smooth manifold with boundary,

(|) Problem K.5. After making appropriate modifications, reprove all results in
the course for manifolds with boundary.

Will J. Merry, Di↵. Geometry I, Autumn 2018, ETH Zürich. Last modified: June 28, 2019.
1This makes sense, as D⇡(x, p) is a linear map T(x,p)(T

⇤M) ! T
x

M , and thus p can eat
D⇡(x, p)[⇣] to produce a real number.

1
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Solutions to Problem Sheet K

Problem K.1.

(i) Prove that Sn is orientable.

(ii) Prove that any Lie group is orientable.

(iii) Prove that RP n is orientable if and only if n is odd. Hint: Consider the
antipodal map x 7! �x on Sn.

Solution.

(i) We will use a concrete model for Sn:

Sn := {x = (x0, . . . , xn) 2 Rn+1 | |x| = 1}.
On Rn+1 we have the canonical di↵erential (n+ 1)-form !Rn+1 := dx0 ^ · · · ^
dxn, which is clearly a volume form. On Rn+1\{0} we have a canonical
nowhere vanishing radial vector field X 2 X(Rn+1) which assigns to every
point x 6= 0 the vector X(x) = x 2 Rn+1 = TxRn+1. The interior product
ıX!Rn+1 is a di↵erential n-form Rn+1\{0}, so in particular the restriction
!Sn := (ıX!Rn+1)|Sn is a di↵erential n-form on Sn.1

We claim that !Sn is a volume form on Sn. To see this, recall that the
di↵erential of the inclusion Sn ,! Rn+1 identifies the tangent space of Sn at
x 2 Sn with the orthogonal complement x? ⇢ Rn+1 = TxRn+1. In particular,
if v1, . . . , vn denotes a basis for TxSn, then x, v1, . . . , vn is a basis for Rn+1 =
TxRn+1. Hence,

!Sn(v1, . . . vn) = !Rn+1(x, v1, . . . , vn) 6= 0.

Since this is true for every x 2 Sn we see that !Sn is indeed a volume form on
Sn and thus Sn is orientable. Note that the above proof can be adapted to
show the following more general statement: The boundary of an orientable
manifold is orientable. In the above case, Sn is the boundary of the ball
{x | |x| < 1}, which is clearly orientable, simply because it is an open subset
of the orientable Rn+1.

(ii) Let G denote an n-dimensional Lie group. The Lie algebra g = TeG is an
n-dimensional real vector space and hence admits a volume form of the type
!e := e⇤1^· · ·^e⇤n, where e1, . . . , en is some basis for g with dual basis e⇤1, . . . , e

⇤
n.

At some point g 2 G we can define

!g := (Dlg�1(g))⇤!e

Solutions written by Mads Bisgaard, Francesco Palmurella, Alessio Pellegrini, and Alexandre
Puttick. Last modified: June 28, 2019.

1Recall that taking the restriction means pulling back by the inclusion map, so (ı
X

!Rn+1)|
S

n =
i⇤(ı

X

!Rn+1), where i : Sn ,! Rn+1 denotes the inclusion.
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which is the (linear) pull back of !e by the linear map Dlg�1(g) : TgG !
TeG. The map g 7! !g is clearly a smooth di↵erential n-form which vanishes
nowhere, because !e doesn’t vanish and Dlg�1(g) is a linear isomorphism.
This shows that G is orientable.

(iii) Denote by q : Sn ! RP n = Sn/(x ⇠ �x) the quotient map and by a : Sn !
Sn the antipodal map

a(x) = �x.
RP n is orientable if and only if there exists a nowhere vanishing di↵erential
n-form !RPn on RP n. Since the di↵erential of q is an isomorphism (q is a
covering map) at every point it follows that !RPn vanishes nowhere if and
only if q⇤!RPn vanishes nowhere. Since q � a = q we also have

a⇤q⇤!RPn = (q � a)⇤!RPn = q⇤!RPn (K.1)

Putting these things together we conclude that, if RP n is orientable, then
q⇤!RPn is a volume form on Sn, so it is a generator for the 1-dimensional real
vector spaceHn

dR(S
n), and (K.1) says that the induced linear map a⇤ : Hn

dR(S
n)!

Hn
dR(S

n) is the identity map (i.e. multiplication by 1). Hence, to see that
RP n is not orientable when n is even it su�ces to check that a⇤ is not the
identity in this case. In (i) we saw that

x 7! !Sn |x := ıx(dx
0 ^ · · · ^ dxn)|Sn

defines a volume form on the sphere. Denote by A : Rn+1 ! Rn+1 the an-
tipodal map A(x) = �x, so that if i : Sn ! Rn+1 denotes the inclusion then
i � a = A � i as a map Sn ! Rn+1. Then

(a⇤!Sn)|x = a⇤(!Sn |�x)

= a⇤i⇤(ı�x[dx
0 ^ · · · ^ dxn])

= (i � a)⇤(ı�x[dx
0 ^ · · · ^ dxn])

= (A � i)⇤(ı�x[dx
0 ^ · · · ^ dxn])

= i⇤A⇤(ı�x[dx
0 ^ · · · ^ dxn])

= i⇤(ıx[�dx0 ^ · · · ^ �dxn])

= (�1)n+1i⇤(ıx[dx0 ^ · · · ^ dxn])

= (�1)n+1!Sn |x
Hence, we see that if n is even (so (n+1) is odd) then a⇤ : Hn

dR(S
n)! Hn

dR(S
n)

is multiplication by �1 instead of 1, which concludes the proof that RP n is
not orientable when n is even. To see that RP n is orientable when n is odd,
note that the above computation shows that in this case !Sn is an a⇤-invariant
volume form (in the sense that a⇤!Sn = !Sn). This implies that !Sn descends
to a volume form on RP n when n is odd, finishing the proof that RP n is
orientable in this case.

Problem K.2. Let
Rn

� := Rn
u10, Hn := Rn

un�0.
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We can identify both @Rn
� and @Hn with Rn�1. Endow both Rn

� and Hn with
their standard orientation they inherit from Rn. Show that the induced orientation
on @Rn

� is equal to standard orientation on Rn�1 for all n, but that the induced
orientation on @Hn agrees with the standard orientation of Rn�1 only when n is
even. Remark: This is the main reason we take our “standard” half-space to be
Rn

�, not Hn, cf. Remark 21.4.

Solution. Both on Rn
� and Hn the orientation is the one induced standard volume

form µ = dx1 ^ · · · ^ dxn.
To determine the orientation induced on @Rn

�, it is su�cient (see the exercise
at the end of Definition 21.21) to compute iX(µ) for an arbitrarily chosen outward-
pointing section X(x) = X i(x)@xi |x of TRn

�|@Rn

�
. By Definition 21.18, X is outward-

pointing if and only if

dx1(X)|x = X1(x) > 0 for every x 2 @Rn
�,

consequently the obvious choice is the constant section X = @1|x, for which using
the formula given in Definition 20.1 we see that

iX(µ) = dx2 ^ · · · ^ dxn,

and this volume form on @Rn
� is exactly the standard one on Rn�1 ' {0}⇥ Rn�1.

Similarly, on Hn a section Y (x) = Y i(x)@xi |x of THn|@Hn is outward-pointing if
and only if

dxn(Y )|x = Y n(x) < 0 for every x 2 @Hn,

so choosing Y = �@xn |x we compute

iY (µ) = (�1)n+1dx1 ^ · · · ^ dxn�1,

and so this volume form induces the same orientation on @Hn as the standard one
in Rn�1 ' Rn�1 ⇥ {0} if and only if n is odd.

(|) Problem K.3.

(i) Let V be a vector space of dimension r. A symplectic form on V is an
element ! 2 Alt2(V ) ⇠= V2(V ⇤) which is non-degenerate in the sense that
iv(!) ⌘ 0 if and only if v = 0. Prove that if a symplectic form exists then
r = 2n is necessarily an even number.

(ii) A symplectic manifold is a smooth manifold M equipped with a closed
di↵erential 2-form ! such that !x is a symplectic form on TxM for every
x 2M . Prove that any symplectic manifold is orientable.

(iii) Let M be a smooth manifold. Define a 1-form � 2 ⌦1(T ⇤M) on the cotangent
bundle via the formula:

�x,p(⇣) = p
�

D⇡(x, p)[⇣]
�

, x 2M, p 2 T ⇤
xM, ⇣ 2 T(x,p)(T

⇤M),

where ⇡ : T ⇤M ! M is the projection2. Prove that ! := d� is a symplectic
form on T ⇤M . Thus every cotangent bundle is a symplectic manifold.

2This makes sense, as D⇡(x, p) is a linear map T(x,p)(T
⇤M) ! T

x

M , and thus p can eat
D⇡(x, p)[⇣]) to produce a real number.
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Solution. We will prove part (i) by proving the following stronger statement3.
There exists a basis e1, . . . , er, f1, . . . , fr of V satisfying

8i, j = 1, . . . , r : !(ei, ej) = !(fi, fj) = 0, and !(ei, fj) = �ij.

We will refer to such a basis as a symplectic basis of (V,!). If dimV < 1 then
there is nothing to prove, so we assume dim V � 1. Pick a non-zero vector e1 2 V .
Non-degeneracy of ! and e1 6= 0 imply the existence of a non-zero f1 2 V such that

!(e1, f1) 6= 0.

By bilinearity of ! we can assume !(e1, f1) = 1 after rescaling f1. Since ! is
alternating and bilinear we know that f1 cannot lie in the span of e1 which in turn
implies that the dimension of V is strictly greater than 1. If dimV = 2 then we
are done, otherwise we proceed as follows. For any subspace W ⇢ V there exists
the so called symplectic complement

W ! = {v 2 V | !(v, w) = 0 for all w 2 W},

which is itself a subspace of V giving rise to the splitting

V = W �W !.

Since dimV > 2 we get for W1 := span(e1, f1) a non-trivial symplectic complement

W !
1 6= 0.

Again, pick a non-zero vector e2, this time lying in W !
1 , and another non-zero

vector f2 2 V such that !(e2, f2) = 1. By definition of the symplectic complement,
e2 2 W1 and V = W1 �W !

1 it follows that f2 2 W !
1 \ span(e2) and hence

dim span(e2, f2) = 2,

which again implies
dimV � 4.

Proceeding inductively (with Wi = span(e1, . . . , ei, f1, . . . , fi) and so on) and ob-
serving that the procedure terminates at some point (dimV < +1!) finishes the
proof.

We continue with part (ii). In Lecture 20 we have seen that a manifold M is
orientable if and only if there exists a volume form (see 20.23), i.e. a everywhere
non-vanishing top form

µ 2 ⌦2r(M),

where dimM = 2r is even by part (i) since !x is a symplectic form on TxM and
dimM = dimTxM . We claim that the r-wedge

!r := ! ^ · · · ^ !
| {z }

r�times

2 ⌦2r(M)

3This makes the proof of (ii) and (iii) much more pleasant.
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defines a volume form. Indeed, by part (i) we know that for each x 2 M there
exists a symplectic basis (e1,x, · · · , er,x, f1,x, · · · fr,x) for (TxM,!x). By evaluating
!x on this basis it is easy to see that

!x =
r
X

i=1

e⇤i,x ^ f ⇤
i,x,

where the ⇤’s indicate the dual basis of T ⇤
xM . A straightforward combinatorial

argument shows
!r
x = r! e⇤1,x ^ f ⇤

1,x ^ · · · ^ e⇤r,x ^ f ⇤
r,x,

thus proving !r
x 6= 0 since

!r
x (e1,x, f1,x, . . . , er,x, fr,x) = r! 6= 0.

Finally we move to part (iii). The quickest way to see why d� defines a sym-
plectic form on T ⇤M is by computing it in local coordinates and invoking part (i).
Let (x1, · · · xn) be the local coordinates on M associated to a chart � : U ! Rn and
define, for every i = 1, . . . , n,

yi : T ⇤U ! R, yi(x, p) := p

✓

@

@xi

�

�

�

x

◆

.

We can view xi : U ! R also as smooth functions on T ⇤U by setting xi(x, p) =
xi(x) which then leads us to local coordinates (x1, . . . , xn, y1, . . . , yn) on T ⇤M (see
Problem C.1 for more details). Let us show that on T ⇤U one has

� =
n
X

i=1

yi dxi.

To prove this it su�ces to compute � on the local frame field associated to our local
coordinates, i.e.

�(x,p)

✓

@

@xi

�

�

�

(x,p)

◆

= p

✓

D⇡(x, p)



@

@xi

�

�

�

(x,p)

�◆

(1)
= p

✓

@

@xi

�

�

�

x

◆

= yi(x, p),

where in (1) we used the fact that � � ⇡ � ��1 = id (this is clear as ⇡(x, p) = x and
�(x, p) = �(x)). On the other hand we have

�(x,p)

✓

@

@yi

�

�

�

(x,p)

◆

= 0,

simply because the di↵erential D⇡ maps all the @
@yi ’s to 0. All in all this proves the

claim.
Now di↵erentiating � =

Pn
i=1 y

i dxi and using the Leibniz rule grants

d� =
n
X

i=1

dyi ^ dxi.
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This 2-form is certainly closed as it is exact (remember: d2 = 0) and non-degeneracy
follows immediately by either a direct check or comparing it with the proof of part
(ii).

(|) Problem K.4. Let M and N be smooth manifolds. Prove that if M has
boundary and N does not, them M ⇥ N is a smooth manifold with boundary.
Prove that if both M and N have non-empty boundary then M ⇥ N is not a
smooth manifold with boundary,

Solution. Suppose M has boundary and N does not. Let m := dimM and
n := dimN . We claim that M ⇥N is a smooth manifold with boundary given by
@M ⇥N . We may always choose an atlas ⌃ = {�a : Ua ! Qa | a 2 A} on M such
that Qa is an open subset of Rm

+ . Let T = {⌧b : Vb ! Ob | b 2 B} be an atlas on
N . Then

{�a ⇥ ⌧b : Ua ⇥ Vb ! Qa ⇥Ob | (a, b) 2 A⇥ B}
is an atlas on M ⇥ N making it into a smooth manifold with boundary (since
Qa ⇥Ob ⇢ Rm

+ ⇥ Rn = Rm+n
+ ).

Showing that @(M ⇥N) = @M ⇥N is equivalent to showing that

int(M ⇥N) = int(M)⇥N. (K.2)

Let (p, q) 2M⇥N and consider charts � : U ! Rm
+ and ⌧ : V ! Rn around p and q

respectively. Then �⇥⌧ : U⇥V ! Rm+n
+ is a chart around (p, q) and (�⇥⌧)(p, q) 2

int(Rm+n
+ ) if and only if �(p) 2 int(Rm

+ ). It follows that (p, q) 2 int(M ⇥N) if and
only if p 2 int(M). Thus (K.2) holds.

Now let M and N be smooth manifolds with non-empty boundary. Note that
the boundary of a 0-dimensional manifold is empty, so our assumptions imply
that m = dimM and n = dimN are both � 1. Suppose first that m = n =
1. It su�ces to show that R2

+ and R+ ⇥ R+ are not di↵eomorphic. Suppose
there exists a di↵eomorphism � : R+ ⇥ R+

⇠! R2
+ and let x0 := (0, 0). Since a

di↵eomorphism is also a homeomorphism, it follows that � must send @(R+ ⇥R+)
to @R2

+, where we mean boundaries in the sense of topological manifolds with
boundary. By assumption, the map � extends on an open neighbourhood U ⇢ R2

of x0 to a di↵eomorphism �̃ : U
⇠! V , where V is open in R2. Consider the curves

�1 : (�✏1, ✏1)! U, t 7! (0, t)

and
�2 : (�✏2, ✏2)! U, t 7! (t, 0).

Then the �0i(0) 2 Tx0U are linearly independent for i = 1, 2. Since �̃ is a di↵eomor-
phism, the vectors D�̃(x0)

�

�0i(0)
�

for i = 1, 2 must also be linearly independent.

But for negative t, the curves �̃��i lie on the y-axis of R2, from which it follows that
the tangent vectors (�̃ � �i)0(0) for i = 1, 2 are linearly dependent, a contradiction.
Note. One can generalise this argument to higher dimensions. In that case, one
must instead take n + m curves passing through a point (p, q) 2 @Rm

+ ⇥ @Rn
+

such that the tangent vectors are linearly independent, but whose images under
the di↵erential of a di↵eomorphism are contained in an (n + m � 1)-dimensional
subspace. We present a di↵erent argument of the same flavor below.
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Now suppose that m+n > 2. Let (p, q) 2 @M⇥@N and consider charts � : U !
Q ⇢ Rm

+ and ⌧ : V ! O ⇢ Rn around p and q respectively. As a consequence of the
fact that the set of interior points and the set of boundary points on a manifold are
disjoint, it follows that the image of (p, q) under �⇥ ⌧ is contained in @Rm

+ ⇥ @Rn
+.

In order to obtain a contradiction, suppose that M ⇥N is a smooth manifold with
boundary. Then there exists a smooth chart ⇢ : U 0 ! Q0 ⇢ Rm+n

+ around (p, q).
Without loss of generality, we may assume that U 0 = U ⇥ V . We thus obtain a
di↵eomorphism ⇢ � (� ⇥ ⌧)�1 : Q ⇥ O

⇠! Q0. Let x = (xi)i := (� ⇥ ⌧)�1(p, q) 2
Rm ⇥ Rn. By our assumptions, we have x1 = xm+1 = 0. Let S ⇢ Rm+n be the
(n +m � 2)-dimensional subspace consisting of points whose first and (m + 1)-st
coordinates are zero. Then Ũ := (Q ⇥ O) \ S is open in S and x 2 Ũ . Consider
the composite

↵ : Ũ  - Q⇥O ! Q0 ,! Rm+n,

where the middle map is ⇢ � (� ⇥ ⌧)�1. By construction, the map ↵ is smooth
and the composite (� ⇥ ⌧) � ⇢�1 � ↵ is the identity on Ũ , so D↵(x) is injective.
Let T := D↵(x)(TxS) ⇢ Rm+n. Because T is (n + m � 2) dimensional, it must
contain a vector v such that one of the first three components, v1, v2 or v3 is
non-zero. Renumbering coordinates and replacing v by �v if necessary, we may
assume the v1 < 0. Let � : (�✏, ✏)! S be a smooth curve such that �(0) = x and
D↵(�0(0)) = v. Then ↵ � �(t) has negative x1 coordinate for all small t > 0, which
contradicts the fact that ↵ takes values in Rm+n

+ .

(|) Problem K.5. After making appropriate modifications, reprove all results in
the course for manifolds with boundary.

Solution. Nope.
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Problem Sheet L

Problem L.1. A singular k-cube c : Ck ! M is said to be degenerate if there
exists 1  i  k such that c does not depend on xi. Prove that if c : Ck ! M is a
degenerate singular k-cube then

R

c ! = 0 for any ! 2 ⌦k(M).

Problem L.2. Let c : Ck !M be a smooth singular k-cube in M and let ' : Ck !
Ck be an orientation preserving di↵eomorphism1. Let c̃ := c � '. Prove that for
any ! 2 ⌦k(M), one has

Z

c

! =

Z

c̃

!.

Problem L.3. Prove that there does not exist a compact symplectic manifold
(M,!) (without boundary) with the property that ! is exact. (See Problem K.3 if
you forgot the definition of a symplectic manifold.)

Problem L.4. Find a closed (n� 1)-form on Rn \ {0} that is not exact.

Problem L.5. Let M be a smooth manifold, let X 2 X(M), and let A be a tensor
field. Let ✓t denote the flow of X. Prove that

d

dt

�

�

�

t=t0
✓?t (A) = ✓?t0(LX(A)).

Problem L.6. Let ' : Mn ! Nn be a di↵eomorphism of connected oriented man-
ifolds and let ! 2 ⌦n

c (N). Prove that
Z

M

'?(!) = ±
Z

N

!,

where the + signs occurs if and only if ' is orientation preserving (cf. Definition
20.21).

Problem L.7. Let G be a compact connected Lie group.

(i) G is orientable by part (ii) of Problem K.1. Prove there exists a unique
normalised left-invariant volume form µ on G, i.e. a volume form µ such
that

R

G µ = 1 and l?a(µ) = µ for all a 2 G.

(ii) This allows us to define the integral of a function on G via:
Z

G

f :=

Z

G

f µ, f 2 C1(G).

Prove that
Z

G

f =

Z

G

(f � la) =
Z

G

(f � ra), 8 f 2 C1(G), a 2 G.

Hint: Use Problem L.6.

Will J. Merry, Di↵. Geometry I, Autumn 2018, ETH Zürich. Last modified: June 28, 2019.
1As usual, think of this as meaning that ' is the restriction to Ck of an orientation preserving

di↵eomorphism of some neighbourhood.

1
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(|) Problem L.8. In this problem you may assume that for any compact con-
nected orientable smooth manifold Mn, one has Hn

dR(M) ⇠= R, and that an explicit
isomorphism is given by

Z

: Hn
dR(M)! R, [!] 7!

Z

M

!.

(This will be justified in Lecture 27. Let ' : M ! N be a smooth map be-
tween compact connected orientable smooth manifolds of dimension n. Then
'? : Hn

dR(N) ! Hn
dR(M) is a linear map between one-dimension vector spaces,

and hence is multiplication by a number. We call this number the degree of '.
Explicitly,

Z

M

'?(!) = deg(')

Z

N

!, ! 2 ⌦n(N).

The purpose of this question is to investigate how to compute deg(').

(i) Let y 2 N denote a regular value of '. Given x 2 '�1(y), let

sgnx(f) :=

(

+1, if D'(x) is orientation preserving,

�1, if D'(x) is not orientation preserving.

Prove that
deg(') =

X

x2'�1(y)

sgnx(f).

Thus deg(') is an integer. Hint: Use Problem L.6 again.

(ii) Prove the Hairy Ball Theorem: if n is even then any vector field on Sn

has at least one zero. Hint: Recall from part (iii) of Problem K.1 that the
antipodal map x 7! �x is orientation reversing if n is even.
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Solutions to Problem Sheet L

Problem L.1. A singular k-cube c : Ck ! M is said to be degenerate if there
exists 1  i  k such that c does not depend on xi. Prove that if c : Ck ! M is a
degenerate singular k-cube then

R

c ! = 0 for any ! 2 ⌦k(M).

Solution. Let c : Ck ! M be a degenerate singular k-cube and let ! 2 ⌦k(M).
Recall that we can write c⇤w as hdx1^ · · ·^dxk, where h 2 C1(Ck) is the function

h = c⇤(!)
⇣ @

@x1
, . . . ,

@

@xk

⌘

.

Fix p 2 Int(Ck). By definition,

c⇤(!)p
⇣ @

@x1
, . . . ,

@

@xk

⌘

= !c(p)

⇣

Dc(p)
h @

@x1

i

, . . . , Dc(p)
h @

@xk

i⌘

(L.1)

Let 1  i  k be such that c does not depend on xi. Consider the map

jip : C
1 ! Ck, t 7! (p1, . . . , pi�1, t, pi+1, . . . , pk).

Since c � jip is constant, it follows that

Dc(p)
h @

@xi

i

= D(c � jip)(pi)
h @

@t

i

= 0.

As !c(p) is alternating, we conclude that (L.1) is zero. Since this holds for all
p 2 Int(Ck), this implies that

R

c ! = 0.

Problem L.2. Let c : Ck !M be a smooth singular k-cube in M and let ' : Ck !
Ck be an orientation preserving di↵eomorphism1. Let c̃ := c � '. Prove that for
any ! 2 ⌦k(M), one has

Z

c

! =

Z

c̃

!.

Solution. We write c⇤! = hdx1 ^ · · · ^ dxk for h 2 C1(Ck). We have
Z

c

! :=

Z

Ck

c⇤! =

Z

Ck

h

(⇤)
=

Z

Ck

(h � �)| detD�|
(⇤⇤)
=

Z

Ck

(h � �)(detD�)
(⇤⇤⇤)
=

Z

Ck

�⇤c⇤!

=

Z

c̃

!,

Solutions written by Mads Bisgaard, Francesco Palmurella, Alessio Pellegrini, and Alexandre
Puttick. Last modified: June 28, 2019.

1As usual, think of this as meaning that ' is the restriction to Ck of an orientation preserving
di↵eomorphism of some neighbourhood.

1
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https://www.math.ethz.ch/the-department/people.html?u=palmuref
https://www.math.ethz.ch/the-department/people.html?u=alessiop
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where D� is the Jacobian matrix of �. Here (⇤) is just the classical change of
variable formula from multivariable calculus, and (⇤⇤) follows from the assumption
that � is orientation preserving. Finally, equality (⇤ ⇤ ⇤) comes from pullback
formula

�⇤(hdx1 ^ · · · ^ dxn) = (h � �)(detD�)dx1 ^ · · · ^ dxn.

Problem L.3. Prove that there does not exist a compact symplectic manifold
(M,!) (without boundary) with the property that ! is exact. (See Problem K.3 if
you forgot the definition of a symplectic manifold.)

Solution. Suppose for contradiction that there exists a closed exact symplectic
manifold

(M2n,! = d�).

By the second part of problem K.3, or rather its proof, we do know that !n defines
a volume form on M . Without loss of generality we therefore assume

!n > 0,

which readily implies
Z

M

!n > 0.

On the other hand exactness of ! implies exactness of !n as one can see by the
computation

!n = (d�)n =

n
z }| {

d� ^ · · · ^ d� = d(� ·
n�1

z }| {

d� ^ · · · ^ d�).

The last inequality is a consequence of d2 = 0 and the Leibniz-rule. Thus, for
↵ := � · (d� ^ · · · ^ d�) we have

!n = d↵.

We finally obtain our desired contradiction via Stokes’ Theore) and the fact that
M has empty boundary, i.e. @M = ;, as it is a closed manifold by assumption. We
have

0 <

Z

M

!n =

Z

M

d↵ =

Z

@M

↵ = 0,

which is a contradiction and concludes the proof.

Problem L.4. Find a closed (n� 1)-form on Rn \ {0} that is not exact.

Solution. Our strategy consists in pulling back a volume form on Sn�1 to Rn\{0}:
Pick a volume form ! on Sn�1 inducing the standard orientation and define the
smooth function

r : Rn \ {0}! Sn�1, r(x) :=
x

kxk .

Observe that r is a left inverse of the inclusion i : Sn�1 ,! Rn \ {0}. Now the claim
is that the pullback

r⇤! 2 ⌦n�1 (Rn \ {0})

2



defines a closed non-exact (n � 1)-form. The closed bit is straightforward by di-
mension reasons of the sphere, more precisely

dr⇤! = r⇤ d!
|{z}

=0

= 0.

To see why r⇤! is non-exact we argue by contradiction. Assume for contradiction
that there exists � 2 ⌦n�2 (Rn \ {0}) such that

d� = r⇤!.

From this we deduce that ! is also exact as

! = (r � i)⇤! = i⇤ (r⇤!) = i⇤d� = di⇤�.

But this already leads to a contradiction using the fact that ! is a volume form
and Stokes Theorem

0 <

Z

Sn�1

! =

Z

Sn�1

di⇤� =

Z

@Sn�1

i⇤� = 0,

hence finishes the proof.

Problem L.5. Let M be a smooth manifold, let X 2 X(M), and let A be a tensor
field. Let ✓t denote the flow of X. Prove that

d

dt

�

�

�

t=t0
✓?t (A) = ✓?t0(LX(A)).

Solution. Changing variable in the limit of the di↵erence quotient, we can write

d

dt

�

�

�

�

t=t0

✓?t (A) =
d

dt

�

�

�

�

t=0

✓?t0+t(A).

By the properties of the flow, we then have ✓t0+t = ✓t0 �✓t, and consequently by the
properties of the pull-back, this implies ✓?t0+t(A) = ✓?t0(✓

?
t (A)). Moreover, since the

pull-back is a linear operation, it commutes with derivatives and thus we conclude
that

d

dt

�

�

�

�

t=0

✓?t0+t(A) =
d

dt

�

�

�

�

t=0

✓?t0(✓
?
t (A)) = ✓?t0

✓

d

dt

�

�

�

�

t=0

✓?t (A)

◆

= ✓?t0(LX(A)),

as desired.

Problem L.6. Let ' : Mn ! Nn be a di↵eomorphism of connected oriented man-
ifolds and let ! 2 ⌦n

c (N). Prove that

Z

M

'?(!) = ±
Z

N

!,

where the + signs occurs if and only if ' is orientation preserving (cf. Definition
20.21).
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Solution. Assume first that ! and '?(!) are compactly supported in the domains
of single charts whose coordinates we denote y = (y1, . . . , yn) and x = (x1, . . . , xn)
respectively. We may then write !(y) = f(y)dx1 ^ · · · ^ dxn for some smooth
function f , and consequently (by the properties of the exerior derivative and of the
wedge product)

'?(!)(x) = f('(x))d'1(x) ^ · · · ^ 'n(x) = f('(x)) det(D'(x))dx1 ^ · · · ^ dxn,

and so, with the standard change of variable formula for the integrals and the rule
on the derivative of the inverse function, setting y = '(x), we see that

Z

'?(!) =

Z

f('(x)) det(D'(x))dx1 · · · dxn

=

Z

f(y) detD'('�1(y)) | detD('�1)(y)|dy1 · · · dyn

=

Z

f(y)
| detD('�1)(y)|
detD('�1)(y)

dy1 · · · dyn

= ±
Z

f(y)dy1 · · · dyn

= ±
Z

!,

where the plus sign occurs if ' (and so '�1) is orientation-preserving and the minus
sign if if it is orientation-reversing. This proves the result in this special single-chart
case.

For the general case, we choose an positively oriented atlas (Ui, �i)i2I for M so
that, for each Ui, '(Ui) is contained in a single coordinate chart of of N (this is
possible because ' is smooth and in particular continuous), and ( i)i2I a corre-
spondent partition of unity. Since ' is a di↵eomorphism, ('(Ui), �i � '�1)i2I will
then constitute a (positively or negatively, depending on ') oriented atlas for N ,
and ( i �'�1)i2I a corresponding partition of unity. We can then compute, thanks
to the special case above:

Z

N

'?(!) =
X

i

Z

'(U
i

)

( i � '�1)'?(!) =
X

i

±
Z

U
i

 i ! = ±
Z

M

!,

where again, the plus sign occurs if ' is orientation-preserving and the minus sign
if if it is orientation-reversing.

Problem L.7. Let G be a compact connected Lie group.

(i) G is orientable by part (ii) of Problem K.1. Prove there exists a unique
normalised left-invariant volume form µ on G, i.e. a volume form µ such
that

R

G µ = 1 and l?a(µ) = µ for all a 2 G.

(ii) This allows us to define the integral of a function on G via:

Z

G

f :=

Z

G

f µ, f 2 C1(G).

4



Prove that
Z

G

f =

Z

G

(f � la) =
Z

G

(f � ra), 8 f 2 C1(G), a 2 G.

Hint: Use Problem L.6.

Solution. Ad (i): Observe, that two volume forms on G which are left-invariant
and coincide at the identity e 2 G, coincide everywhere. This is because, if µ is such
a form then µ|T

g

G ⌘ Dlg�1(g)?µ|T
e

G for all g 2 G, so µ|T
g

G is uniquely determined
by µ|T

e

G. Hence, it su�ces to show that two left-invariant volume forms on G
coincide on TeG up to scaling, but this follows from basic linear algebra: We know
that

^dimG
T ⇤
eG

is 1-dimensional.
Ad (ii) By definition we have

Z

G

(f � la) =
Z

G

(f � la)µ

=

Z

G

(f � la)l⇤aµ

=

Z

G

l⇤a(fµ)

=

Z

G

fµ

=

Z

G

f,

where at the second to last equality we make use of L.6 and the fact that la : G! G
is orientation preserving (since l⇤aµ = µ). The equality

R

f =
R

(f � ra) follows from
the same computation if only r⇤aµ = µ. But this is the case because

r⇤aµ = µ() µ = l⇤a�1r⇤aµ = l⇤a�1µ

and the later is clearly the case because of the assumption that µ is left-invariant.

(|) Problem L.8. In this problem you may assume that for any compact con-
nected orientable smooth manifold Mn, one has Hn

dR(M) ⇠= R, and that an explicit
isomorphism is given by

Z

: Hn
dR(M)! R, [!] 7!

Z

M

!.

(This will be justified in Lecture 27. Let ' : M ! N be a smooth map be-
tween compact connected orientable smooth manifolds of dimension n. Then
'? : Hn

dR(N) ! Hn
dR(M) is a linear map between one-dimension vector spaces,

and hence is multiplication by a number. We call this number the degree of '.
Explicitly,

Z

M

'?(!) = deg(')

Z

N

!, ! 2 ⌦n(N).

The purpose of this question is to investigate how to compute deg(').

5



(i) Let y 2 N denote a regular value of '. Given x 2 '�1(y), let

sgnx(f) :=

(

+1, if D'(x) is orientation preserving,

�1, if D'(x) is not orientation preserving.

Prove that
deg(') =

X

x2'�1(y)

sgnx(f).

Thus deg(') is an integer. Hint: Use Problem L.6 again.

(ii) Prove the Hairy Ball Theorem: if n is even then any vector field on Sn

has at least one zero. Hint: Recall from part (iii) of Problem K.1 that the
antipodal map x 7! �x is orientation reversing if n is even.

Solution. Ad part (i): By Sard’s Theorem (cf. Theorem 5.17) there exists a regu-
lar value y 2 N of ' : M ! N . The Implicit Function Theorem (cf. Theorem 5.13)
then implies that '�1(y) ⇢ M is a 0-dimensional manifold, i.e. a collection of iso-
lated points in M . Since M is compact and '�1(y) does not have any accumulation
points, it follows that '�1(y) is finite. We enumerate

'�1(y) = {x1, . . . , xl} ⇢M.

By definition each xi defines a regular point of ' which then readily implies that
each di↵erential

d'(xi) : Tx
i

M ! TyM

is a linear isomorphism (remember dimM = dimN !). Therefore the Inverse Func-
tion Theorem (cf. Theorem 5.2) grants the existence of pairwise disjoint charts

U1, . . . , Ul ⇢M, �i : Ui ! Rn

such that ' restricted to each one of these is a di↵eomorphism onto its image, i.e.

'
�

�

U
i

⇠�! '(Ui), for all i = 1, . . . , l.

Now we define the open sets

V =
l
\

i=1

'(Ui) and U 0
i :== Ui \ '�1(V ).

By shrinking Ui (and hence V ) if necessary, we can assume that (V, ) defines a
chart on N . Let

g 2 C1(N)

be a smooth function with support in V and define the top form

! := g dy1 ^ · · · ^ dyn

on N , where the yi’s are the local coordinates coming from (V, ). Due to our
choices the pullback form '⇤! on M has support lying inside the union

S

i U
0
i and

'(U 0
i) = V,
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hence

Z

M

'⇤! =
l
X

i=1

Z

U 0
i

'⇤!
(1)
=

l
X

i=1

sgnx
i

(')

Z

V

! =
l
X

i=1

sgnx
i

(')

Z

N

!,

where step (1) follows from Problem L.6. This proves

deg(') =
X

x2'�1(y)

sgnx(')

and finishes the first part.
For part (ii) we make the crucial observation that the degree is a homotopy

invariant, i.e. two smoothly homotopic maps ', : M ! N have the same degree

deg(') = deg( ).

This follows immediately from the definition of deg as the scalar of the induced
map '⇤ : Hn

dR(M) ⇠= R! Hn
dR(N) ⇠= R and Theorem 23.17 which asserts that two

smoothly homotopic maps induce the same linear map on the de Rham cohomology.
We proceed by contradiction and assume that for n even there exists a vector

field X on Sn with no zeros. The strategy is to build a homotopy between the
antipodal map and the identity, which would lead to a contradiction as the former
has degree �1 whereas deg(idSn) = 1 (see the hint above).

For every x 2 Sn, there exists a unique semicircle �x ⇡ S1 on Sn determined by
the direction X(x) 2 TxSn \ {0}. Each such semicircle can be viewed as a smooth
loop

�x : [0, 2]! Sn

satisfying
�x(0) = �x(2) = x and �x(�1) = �x.

With this we are able to define a smooth homotopy

H : [0, 1]⇥ Sn ! Sn, H(t, x) := �x(t)

that connects the identity
H(0, x) = �x(0) = x

to the antipodal map
H(1, x) = �x(1) = �x.

The fact that H is smooth follows from �x being uniquely defined by X(x), where
the later is smooth by definition. This finishes the proof

7



Problem Sheet M

Problem M.1. Let ⇡ : P ! N be a G-principal bundle, and let ' : M ! N be a
smooth map. Prove that the fibre bundle '?P !M is also a G-principal bundle.

Problem M.2. Let ⇡i : Pi !Mi be two G-principal bundles. Suppose � : P1 ! P2

is a principal bundle morphism along a di↵eomorphism ' : M1 ! M2. Prove that
� is also a di↵eomorphism.

Problem M.3. LetM be a smooth manifold and suppose ⇡i : Pi !M are principal
G-bundles over M . Let {Ua | a 2 A} be an open cover of M such that both1 P1

and P2 admit principal bundle atlases over the Ua. Let

⇢1ab : Ua \ Ub ! G, and ⇢2ab : Ua \ Ub ! G

denote the transition functions of P1 and P2 with respect to these bundle atlases.
Prove that P1 and P2 are isomorphic principal bundles if and only if there exists a
smooth family ⌫a : Ua ! G of functions such that

⌫a(x) · ⇢1ab(x) = ⇢2ab(x) · ⌫b(x), 8 x 2 Ua \ Ub, 8 a, b 2 A.

Problem M.4. Suppose G is a Lie group acting transitively on a smooth manifold
M , so that M is the homogeneous space G/H for an appropriate subgroup H of G.
Prove that the subgroup of G acting trivially on M is the largest normal subgroup
N(H) of G contained in H. Let Ḡ and H̄ denote the quotient groups G/N(H) and
H/N(H) respectively. Prove that Ḡ acts e↵ectively and transitively on M , and M
is the homogeneous space Ḡ/H̄.

Problem M.5. Let G be a Lie group with Lie algebra g, and suppose G acts on a
manifold P on the right. Prove that the map v 7! ⇠v is a Lie algebra homomorphism
g! X(P ).

Problem M.6. Let M be a smooth manifold, and let W1,W2 and Z be vector
spaces. Let ! 2 ⌦r(M,W1) and let # 2 ⌦s(M,W2), and let � : W1 ⇥W2 ! Z be a
bilinear map. Prove that the exterior di↵erential satisfies

d(! ^� #) = d! ^� #+ (�1)r! ^� d#.

(|) Problem M.7. Compute the derivative of the map  from (24.2) (used in the
proof of Proposition 24.8), and show that its derivative is invertible.

Will J. Merry, Di↵. Geometry I, Autumn 2018, ETH Zürich. Last modified: June 28, 2019.
1This can always be achieved by taking intersections.
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Solutions to Problem Sheet M

Problem M.1. Let ⇡ : P ! N be a G-principal bundle, and let ' : M ! N be a
smooth map. Prove that the fibre bundle '?P !M is also a G-principal bundle.

Solution. Recall that the pullback bundle pr : '?P !M is given by

'?P := {(x, p) 2M ⇥ P | '(x) = ⇡(p)} and pr(x, p) := x.

We define a right G-action on the total space '?P by setting

(x, p) · a := (x, p · a),

where (x, p) 2 '?P, a 2 G and p · a denotes the G-action on P . Freeness of the
G-action on '?P readily follows from the freeness of the G-action on P . Therefore
we are only left to show the G-equivariance of the bundle charts on pr : '?P !M .

Let
↵ : ⇡�1(V )! G

be a bundle chart on ⇡ : P ! N . The corresponding bundle chart on the pullback
bundle is defined via

↵? : '�1(V )! G, ↵?(x, p) := ↵(p).

The following computation finishes the proof:

↵?((x, p) · a) = ↵?(x, p · a)
= ↵(p · a)
= ↵(p)a

= ↵?(x, p)a.

Problem M.2. Let ⇡i : Pi !Mi be two G-principal bundles. Suppose � : P1 ! P2

is a principal bundle morphism along a di↵eomorphism ' : M1 ! M2. Prove that
� is also a di↵eomorphism.

Solution. We begin by showing that � is surjective. Let q 2 P2 be any element
lying over, say, y 2 M2. Now let p 2 P1 be some element in the fibre over '�1(y).
Then �(p) 2 (P2)y and since the fibres are precisely the G-orbits (cf. Lemma 24.6)
there exists some a 2 G such that

�(p) · a = q.

Using the G-equivariance of principle bundle morphisms we deduce

�(p · a) = q,

Solutions written by Mads Bisgaard, Francesco Palmurella, Alessio Pellegrini, and Alexandre
Puttick. Last modified: June 28, 2019.
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which proves that � is surjective.
For the injectivity we pick two distinct elements p, q 2 P1 and let us assume

wlog that they lie in the same fibre - otherwise their images also lie in distinct fibres
since ' is injective and then there is nothing to prove. Thus

�(p),�(q) 2 (P2)'(x).

Since G acts freely and transitively on (P1)x there exists a unique a 2 G \ {e} such
that p = q · a and consequently

�(p) = �(q · a) = �(q) · a.
But G also acts freely on P2 and since a 6= e we conclude

�(q) 6= �(p).
In order to conclude the proof we will show that at any point p 2 P the dif-

ferential D�(p) is an isomorphism - we admit this for a second and see how one
can finish the proof using this: By the Implicit Function Theorem it follows that
� is a local di↵eomorphism around any p and since � itself is already bijective one
obtains that � is a (global) di↵eomorphism. We go back to the proof of “D�(p)
linear isomorphism”: We fix any point p 2 P1 and pick a bundle chart

↵ : ⇡�1
1 (U)! G,

where U is an open neighbourhood of x := ⇡1(p). Denote a = ↵(p) and observe
that

D�(p) = D(� � (⇡1,↵)�1)(x, a) =
⇣

D'(x), D
⇣

�
�

�

(P1)x
� ↵���1

(P1)x

⌘

(a)
⌘

can be seen as a linear map on TxM1 ⇥ TaG ⇠= TpP1. We already know that
D'(x) : TxM1 ! T'(x)M2 is a linear isomorphism as ' : M1 ! M2 is a di↵eomor-
phism by assumption, thus it su�ces to show that

�
�

�

(P1)x
� ↵���1

(P1)x
: G! (P1)x

is a di↵eomorphism. Set

c := �
�

�

(P1)x
� ↵���1

(P1)x
(e) 2 G

and define the unique G-equivariant smooth map

 c : (P1)x ! G with  c(c) = e1.

Since the bundle chart ↵ is G-equivariant by definition, we have that the whole
composition

 c � �
�

�

(P1)x
� ↵���1

(P1)x
: G! G

is G-equivariant, satisfying

 c � �
�

�

(P1)x
� ↵���1

(P1)x
(e) = e.

Therefore
 c � �

�

�

(P1)x
� ↵���1

(P1)x
= idG

by uniqueness of such a G-equivariant map, which then concludes the proof.
1Uniqueness of such a map follows from Lemma 24.6.
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Problem M.3. LetM be a smooth manifold and suppose ⇡i : Pi !M are principal
G-bundles over M . Let {Ua | a 2 A} be an open cover of M such that both2 P1

and P2 admit principal bundle atlases over the Ua. Let

⇢1ab : Ua \ Ub ! G, and ⇢2ab : Ua \ Ub ! G

denote the transition functions of P1 and P2 with respect to these bundle atlases.
Prove that P1 and P2 are isomorphic principal bundles if and only if there exists a
smooth family ⌫a : Ua ! G of functions such that

⌫a(x) · ⇢1ab(x) = ⇢2ab(x) · ⌫b(x), 8 x 2 Ua \ Ub, 8 a, b 2 A. (M.1)

Solution. Suppose first that we are given a principal G-bundle isomorphism
� : P1

⇠! P2. For i = 1, 2 and each a 2 A, we denote the corresponding bundle
chart ⇡i(Ua)! G by ai. Let x 2 Ua and define

⌫a(x) := a2 � � � (a1|P1,x)
�1.

A priori, we have ⌫a(x) 2 Di↵(G), but we claim that ⌫a(x) is in fact left translation
by an element of G. To see this, let g 2 G and let p 2 P2,x be the unique element
such that a2(p) = g. Define h := a1

�

��1(p)
�

. Fix g1 2 G. Then we can write
g1 = gg2 for g2 = g�1g1. By G-equivariance, we have

a2(p · g2) = a2(p)g2 = gg2 = g1.

Similarly,

a1
�

(��1(p) · g2
�

= a1
�

��1(p)
�

g2 = hg2 = hg�1g1 = `hg�1(g1).

It follows that ⌫a(x)(g1) = `hg�1(g1). Identifying ⌫a(x) with hg�1 and varying
x 2 Ua, we thus obtain a map ⌫a : Ua ! G. It remains to show that the ⌫a satisfy
(M.1). Note that in (M.1), we could also write � instead of · after identifying G
with the subgroup of Di↵(G) given by left-translations. Checking that (M.1) holds
is done in precisely the same way as in the solution to Problem H.4.

Conversely, suppose we are given a smooth family of function ⌫a : Ua ! G
satisfying (M.1). For each a 2 A, define �̃a : Ua⇥G! Ua⇥G by (x, g) 7! (x, ⌫a(x)g).
We define � : P1 ! P2 as follows: for p1 2 P1, choose a 2 A such that p1 2 ⇡�1

1 (Ua)
and define

�(p1) :=
�

(⇡2, a
2)�1 � �̃a � (⇡1, a1)

�

(p1).

Checking that � is well-defined is done exactly in the same manner as in the solution
to Problem H.4. This uses equation (M.1).

It remains to show that the smooth map � : P1 ! P2 is an isomorphism of
principal G-bundles. It is clear the � maps P1,x to P2,x for all x 2 M , and by
Problem M.2, it su�ces to show that � as a principle G-bundle homomorphism,
which follows if we show that � is G-equivariant. Let p 2 P1 and let x := ⇡1(p)
and let a 2 A be such that x 2 Ua. We note that fact that the G-actions are
fiber-preserving and the G-equivariance of the ai for i = 1, 2 implies that

(⇡i, a
i) : ⇡�1

i (Ua)
⇠! Ua ⇥G

2This can always be achieved by taking intersections.
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and its inverse are also G-equivariant, where we define the G-action on the right-
hand side via (x, g1) · g := (x, g1g). Let g 2 G. We compute:

�(pg) =
�

(⇡2, a
2)�1 � �̃a � (⇡1, a1)

�

(pg)

= (⇡2, a
2)�1

�

x, ⌫a(x)a
1(pg)

�

= (⇡2, a
2)�1

⇣

�

x, ⌫a(x)a
1(p)

�

g
⌘

= (⇡2, a
2)�1

⇣

�

x, ⌫a(x)a
1(p)

�

⌘

g

= �(p)g,

as desired.

Problem M.4. Suppose G is a Lie group acting transitively on a smooth manifold
M , so that M is the homogeneous space G/H for an appropriate subgroup H of G.
Prove that the subgroup of G acting trivially on M is the largest normal subgroup
N(H) of G contained in H. Let Ḡ and H̄ denote the quotient groups G/N(H) and
H/N(H) respectively. Prove that Ḡ acts e↵ectively and transitively on M , and M
is the homogeneous space Ḡ/H̄.

Solution. Denote by N ⇢ G the subset of elements which act trivially on M .
Suppose g0 2 N and fix any g 2 G. Then for all x 2M we have

µ(g�1g0g, x) = µ(g�1, g0gx) = µ(g�1, gx) = µ(g�1g, x) = x,

where µ : G⇥M ! M denotes the right action of G on M . This shows that N is
a normal subgroup. Clearly N ⇢ H, since H = {g 2 G | µ(g, x0) = x0} for some
fixed x0 2M . Suppose N0  G is a normal subgroup satisfying N0 ⇢ H. We need
to show that this implies N0 ⇢ N . Choose g0 2 N0 and y 2 M . Then, since G
acts transitively on M there is a g 2 G such that gx0 = y. Since N0 is normal in
G we have gg0g�1 2 N0 ⇢ H, which implies g�1g0gx0 = x0, or g0y = y. This shows
that every element of N0 fixes every element of M . Hence, N0 ⇢ N which proves
the first claim. Since N = N(H) is a normal subgroup of G it is well-known from
algebra that Ḡ := G/N carries a canonical group structure. It is obvious that Ḡ
acts on M in a canonical way. This action is said to be e↵ective if ḡx = x for all
x 2 M implies ḡ = id. Suppose ḡ 2 Ḡ satisfies ḡx = x for all x 2 M . Then the
representative g 2 G of the class ḡ 2 G fixes every element of M , so that g 2 N .
Hence, ḡ is the multiplicative unit in Ḡ, which proves that the action Ḡ⇥M !M
is e↵ective. H̄ is the isotropy group of the (transitive) action, so M = Ḡ/H̄.

Problem M.5. Let G be a Lie group with Lie algebra g, and suppose G acts on a
manifold P on the right. Prove that the map v 7! ⇠v is a Lie algebra homomorphism
g! X(P ).

Solution. Denote by

µ : G⇥ P ! P, µ(g, p) = p · g
the smooth right action of G on P and set µp = µ(·, p) : G! P for any p 2 P . The
map

g! X(P ), v 7! ⇠v
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is defined (see (25.2)) by

⇠v(p) := D(µp)e[v] 2 Tp·eP = TpP.

By smoothness of µ and the fact that p · e = p it readily follows that ⇠v defines a
vector field on P . In order to conclude that this is a Lie algebra homomorphism3

we need to prove that
⇠[v,w] = [⇠v, ⇠w],

for all v, w 2 g. Recall that the Lie bracket [v, w] on g is defined by

[v, w] := evale[Xv, Xw],

where Xv and Xw are the unique left-invariant vector fields associated to v and w.
The following computation proves the desired identity:

[⇠v, ⇠w](p) = [D(µp)(e)[v], D(µp)(e)[w]](p)

= [D(µp)(e)[Xv(e)], D(µp)(e)[Xw(e)]](p)
(1)
= D(µp)(e) ([Xv, Xw](e))

= ⇠[v,w],

where in step (1) we used Problem (ii).

Problem M.6. Let M be a smooth manifold, and let W1,W2 and Z be vector
spaces. Let ! 2 ⌦r(M,W1) and let # 2 ⌦s(M,W2), and let � : W1 ⇥W2 ! Z be a
bilinear map. Prove that the exterior di↵erential satisfies

d(! ^� #) = d! ^� #+ (�1)s! ^� d#.
Solution. We quickly recall that for two bundle-valued forms ! and # as above
one defines their �-wedge product by

! ^� # = !i ^ #j �(ei, e
0
j),

where (ei) (resp. (e0j)) is a basis of W1 (resp. W2). Let us fix a basis (fh) for Z and
write �(ei, e0j) = ahij fh. With this we can compute

d(! ^� #) = d(ahij !
i ^ #j)

= ahijd(!
i ^ #j)

= ahij
�

d!i ^ #j + (�1)s!i ^ d#j
�

= d!i ^ #j �(ei, e
0
j) + (�1)s!i ^ d#j �(ei, e

0
j).

On the other hand, by definition of the exterior di↵erential on bundle-valued forms:

d! ^� # = (d!i ⌦ ei) ^� (#j ⌦ e0j) = d!i ^ #j �(ei, e
0
j)

and similarly
! ^� d# = !i ^ d#j �(ei, e

0
j),

thus proving the desired formula and finishing the proof.

(|) Problem M.7. Compute the derivative of the map  from (24.2) (used in the
proof of Proposition 24.8), and show that its derivative is invertible.

Solution. A wholesome exercise like this is best left unsolved.

3Linearity is obvious.
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Problem Sheet N

Problem N.1. Let ⇡ : E ! M be a vector bundle, let H denote a connection on
E, and let o : M ! E denote the zero section. Prove that

H0
x

= Do(x)[TxM ], 8x 2M,

where 0x is the zero element of the vector space Ex.

Problem N.2. Let ⇡ : E ! M be a vector bundle. Prove that a preconnection
H on E is a vector subbundle of TE such that (⇡TE, D⇡)|H is a fibre-preserving
di↵eomorphism from the composite bundle H ⇡�⇡

TE����!M to the bundle E � TM .

Problem N.3. Recall from Problem C.7 that if we let ı : Sn ,! Rn+1 denote the
inclusion then

Dı(x)[TxS
n] = Jx(x

?),

where Jx : Rn+1 ! TxRn+1 was defined in Problem B.3 and

x? :=
�

y 2 Rn+1 | hx, yi = 0
 

,

where h·, ·i is the standard Euclidean dot product. Use this to prove that one can
identify

T(x,v)TS
n =

�

(u, w) 2 R2n+2 | hx, ui = 0 = hx, wi+ hv, ui .

Prove that

H(x,v) :=
��

u,�hv, uix� | u 2 Rn+1, hx, ui = 0
 ⇢ T(x,v)TS

n

defines a connection on TSn.

(|) Problem N.4. Take n = 2 and use the connection on TS2 from Problem N.3.
Let xN = (0, 0, 1) denote the North pole.

1. Let � be a great circle. Compute bP� : T�(0)S2 ! T�(0)S2.

2. Given s 2 (�⇡.⇡), let

�s(t) :=
�

cos t sin s, sin t sin s, cos s
�

Compute bP�
s

: T�
s

(0)S2 ! T�
s

(0)S2.

(|) Problem N.5. Let ⇡ : E ! M be a fibre bundle with fibre F and structure
group G. Let � : (a, b)!M be a smooth curve. Prove that �?E ! (a, b) (which is
another fibre bundle with fibre F and structure group contained in G, c.f. Problem
G.7) is a trivial bundle.

Will J. Merry, Di↵. Geometry II, Spring 2019, ETH Zürich. Last modified: June 28, 2019.
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Solutions to Problem Sheet N

Problem N.1. Let ⇡ : E ! M be a vector bundle, let H denote a connection on
E, and let o : M ! TM denote the zero section. Prove that

H0
x

= Do(x)[TxM ], 8x 2M,

where 0x is the zero element of the vector space Ex.

Solution. Fix x 2 M and let p 2 Ex. Given ⇣ 2 TpE, consider a curve
� : (�", ") ! E with �(0) = p and �0(0) = ⇣. Then µ0 � � haa image in o(M),
so that Dµ0(p)[⇣] 2 Do(x)[TxM ]. By (28.5) we have

H0
x

= Dµ0(p)[Hp],

and thus H0
x

⇢ Do(x)[TxM ]. But by the definition of a preconnection

dimH0
x

= dimDo(x)[TxM ],

and thus these two spaces must coincide.

Problem N.2. Let ⇡ : E ! M be a vector bundle. Prove that a preconnection
H on E is a vector subbundle of TE such that (⇡TE, D⇡)|H is a fibre-preserving
di↵eomorphism from the composite bundle H ⇡

TM

�⇡����!M to the bundle E � TM .

Solution. Recall that, by definition of preconnection, the map D⇡(p)|H
p

: Hp !
T⇡(p)M is a linear isomorphism. Therefore the map (D⇡(p)|H

p

)�1 : T⇡(p)M ! Hp is
a well-defined isomorphism.

More generally, the map

F : E � TM ! H
(p, v) 7! (D⇡(p)|H

p

)�1(v)

is well-defined and smooth. Indeed, by definition of sum of fibre bundles, for every
(p, v) 2 E � TM it holds that v 2 T⇡(p)M .

Let us now prove that the map F is the inverse of (⇡TE, D⇡)|H, that is F �
(⇡TE, D⇡)|H = idH and (⇡TE, D⇡)|H�F = idE�M . This would prove that (⇡TE, D⇡)|H
is a di↵eomorphism.

This is straightforward to check. For z 2 H, let us denote p = ⇡TE(z), then

F � (⇡TE, D⇡)|H(z) = F (p,D⇡|H
p

(z)) = (D⇡(p)|H
p

)�1(D⇡|H
p

(z)) = z.

On the other hand, given (p, v) 2 E � TM , it holds

(⇡TE, D⇡)|H �F (p, v) = (⇡TE, D⇡)|H((D⇡(p)|H
p

)�1(v)) = (p, v).

It is only left to check that (⇡TE, D⇡)|H is fibre-preserving as di↵eomorphism
from the composite bundle H ⇡�⇡

TE����!M to the bundle E � TM . For this purpose,
it is su�cient to check that z 2 H and (⇡TE, D⇡)|H(z) have the same base point in
M , which is however patently true.

Solutions written by Giada Franz, Francesco Palmurella, Alessio Pellegrini, and Alessandro
Pigati. Last modified: June 28, 2019.
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Problem N.3. Recall from Problem C.7 that if we let ı : Sn ,! Rn+1 denote the
inclusion then

Dı(x)[TxS
n] = Jx(x

?),

where Jx : Rn+1 ! TxRn+1 was defined in Problem B.3 and

x? :=
�

y 2 Rn+1 | hx, yi = 0
 

,

where h·, ·i is the standard Euclidean dot product. Use this to prove that one can
identify

T(x,v)TS
n =

��

(x, v), (u, w)
� 2 TSn ⇥ R2n+2 | hx, ui = 0 = hx, wi+ hv, ui .

Prove that

H(x,v) :=
��

(x, v), (u,�hv, uix) | u 2 Rn+1, hx, ui = 0
 

defines a connection on TSn.

Solution. Thanks to the canonical isomorphism Dı(x) above, we may write

TxS
n = {v 2 Rn+1 : hx, vi = 0}

and
TSn = {(x, v) 2 R2n+2 : |x|2 = 1, hx, vi = 0}.

To deduce the expression for T(x,v)TSn given above, consider an arbitrary curve
↵ : (�", ") ! TSn, ↵(t) = (x(t), v(t)) with ↵(0) = (x(0), x(0)) = (x, v) and
set (u, w) = ↵0(0) = (x0(0), v0(0)). Note now that di↵erentiating at t = 0 the
expressions

|x(t)|2 = 1 and hx(t), v(t)i = 0,

we deduce that

hu, xi = 0 and hu, vi+ hx, wi = 0.

Since ↵ is arbitrary, (u, v) defines an arbitrary element of T(x,v)TSn and we then
deduce the inclusion

T(x,v)TS
n ✓ {(u, w) 2 R2n+2 : hu, xi = 0, hu, vi+ hx, wi = 0}.

On the other hand, the set on the right-hand side is also a vector subspace of R2n+2

whose dimension equals 2n because (for example) it is the preimage of (0,0) of the
function

F : R2n+2 ! R2, (u, w) 7! (hu, xi, hu, vi+ hx, wi),
and (0,0) is a regular value for F . The two spaces have the same dimension and
must then coincide.

Now let us prove that H defines a preconnection on TSn. The fact that, for
every (x, v), H(x,v) is a vector subspace of T(x,v)TSn follows because the relations

hx, ui = 0 and w = �hv, uix

2



are linear in u and w and moreover each couple (u, w) which satisfies such relations
also satisfies

hu, vi+ hx, wi = 0,

and so (u, w) is an element of T(x,v)TSn by what we proved above. Let us now
compute the di↵erential of ⇡ : TSn ! Sn at a point (x, v) evaluated at a vector
(u, w), by picking the same curve ↵ given above:

D⇡(x, v)[(u, w)] =
d⇡(↵(t))

dt

�

�

�

�

t=0

=
dx(t)

dt

�

�

�

�

t=0

= u.

It follows that, when restricted to H(x,v), D⇡(x, v) is bijective, and consequently H
is a preconection on TSn.

Finally, to prove that H is a connection let us compute the di↵erential of the
scalar multiplication map µa(x, v) = (x, av), for a fixed a 2 R, similarly as before:

Dµa(x, v)[(u, w)] =
dµa(↵(t))

dt

�

�

�

�

t=0

=
d

dt
(x(t), av(t))

�

�

�

�

t=0

= (u, aw).

Now, for a = 0, we directly see that Dµ0[H(x,v)] = H(x,0), and for a 6= 0,

w = �hv, uix if and only if aw = �hav, uix,

so we conclude that Dµa(x, v)[H(x,v)] = H(x,av).

(|) Problem N.4. Take n = 2 and use the connection on TS2 from Problem N.3.

1. Let � be a great circle. Compute bP� : T�(0)S2 ! T�(0)S2.

2. Given s 2 (�⇡.⇡), let

�s(t) :=
�

cos t sin t, sin t sin s, cos s
�

Compute bP�
s

: T�
s

(0)S2 ! T�
s

(0)S2.

Solution. First of all, for any curve � : [a, b]! S2 we have

�?(TS2) = {(t, v) 2 [a, b]⇥ R3 | h�(t), vi = 0},
(�?H)(t,v) = {(u, v) 2 R3 ⇥ R3 | h�(t), ui = 0, w = �hv, ui�(t)},

Moreover from the previous exercise we recall that, for every (x, v) 2 TS2, the
isomorphism between TxS2 and H(x,v) induced by the projection ⇡ : TS2 ! S2 is
given by

D⇡(x, v)[(u, w)] = u with inverse D⇡(x, v)�1[V ] = (V,�hv, V ix),

consequently, the induced isomorphism on the pulled-back bundles is given by

Tt[a, b]! (�?H)(t,v),
@

@t
7! (�0(t),�hv, �0(t)i�(t))

3



For any fixed v 2 T�(a)S2, the parallel transport of v along �, bP�(v) will be given
by the solution, evaluated at t = b, of the following Cauchy problem:

(

v0(t) = �hv(t), �0(t)i�(t), for t 2 (a, b),

v(0) = v.

1. Let us first compute the parallel transport map in the case of the great circle
in the xz-plane starting from the north pole, namely

� : [0, 2⇡]! S2, �(t) =

0

@

sin t
0

cos t

1

A ,

which, being �(0) = xN = �(2⇡), we will be an endomorphism P� : Tx
N

S2 ! Tx
N

S2.
Now, a basis of Tx

N

S2 is given by the vectors

e1 =

0

@

1
0
0

1

A and e2 =

0

@

0
1
0

1

A ,

and if we know how these two vector are mapped under P�, the transformation on
any other vector follows by linearity. For e1, we have to solve

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

(v1)0(t) =
�� cos t v1(t) + sin t v3(t)

�

sin t,

(v2)0(t) = 0,

(v3)0(t) =
�� cos t v1(t) + sin t v3(t)

�

cos t,

v1(0) = 1,

v2(0) = 0,

v3(0) = 0,

and a moment of thought reveals that the (necessarily unique) solution to this
system is given by (cos t, 0,� sin t). Consequently, we have bP�(e1) = e1. Similarly,
for e2 we have to solve:

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

(v1)0(t) =
�� cos t v1(t) + sin t v3(t)

�

sin t,

(v2)0(t) = 0,

(v3)0(t) =
�� cos t v1(t) + sin t v3(t)

�

cos t,

v1(0) = 0,

v2(0) = 1,

v3(0) = 0,

and the only solution to this problems is given by the constant map v(t) = (0, 1, 0),
thus yielding that bP�(e2) = e2. Necessarily than bP� has to be the identity from
Tx

N

S2 onto itself.
If � is a parametrisation (in arc-length without loss of generality) of any other

great circle of S2, then we may suppose that its domain is [0, 2⇡] and consequently,

4



we may find an orthogonal transformation A 2 O(3) so that A� = (sin t, 0, cos t).
Since

(

v0(t) = �hv(t), �0(t)i�(t),
v(0) = v.,

()
(

Av0(t) = �hAv(t), A�0(t)iA�(t),
Av(0) = Av,

it follows that bP�(v) = A�1
bPA�(Av). Since above we computed that bPA� is the

identity, so is bP� for any great circle �.
2. For every s, a basis of the tangent plane T�

s

(0)S2 is given by

f1 =

0

@

cos s
0

� sin s

1

A and f2 =

0

@

0
1
0

1

A ,

so it is enough to know how bP�
s

transforms these two vectors. As before, to find
bP�

s

(f1) we have to solve the problem

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

(v1)0(t) = (sin s)2
�

sin t v1(t)� cos t v2(t)
�

cos t,

(v2)0(t) = (sin s)2
�

sin t v1(t)� cos t v2(t)
�

sin t,

(v3)0(t) = sin s cos s
�

sin t v1(t)� cos t v2(t)
�

,

v1(0) = cos s,

v2(0) = 0,

v3(0) = � sin s,

while to find bP�
s

(f2) we have to solve the problem

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

(v1)0(t) = (sin s)2
�

sin t v1(t)� cos t v2(t)
�

cos t,

(v2)0(t) = (sin s)2
�

sin t v1(t)� cos t v2(t)
�

sin t,

(v3)0(t) = sin s cos s
�

sin t v1(t)� cos t v2(t)
�

,

v1(0) = 0,

v2(0) = 1,

v3(0) = 0,

while In this case we need to sweat considerably more than before, however it is
still possible to find explicit solutions, namely

0

@

(cos s) cos(t cos s)
� sin(t cos s)

�(cos s) sin(t cos s)

1

A and

0

@

(cos s) sin(t cos s)
cos(t cos s)

�(sin s) sin(t cos s)

1

A

respectively. We thus deduce that

bP�
s

(f1) =

0

@

(cos s) cos(2⇡ cos s)
� sin(2⇡ cos s)

�(cos s) sin(2⇡ cos s)

1

A and bP�
s

(f2) =

0

@

(cos s) sin(2⇡ cos s)
cos(2⇡ cos s)

�(sin s) sin(2⇡ cos s)

1

A ,

5



a fact that we can rewrite more meaningfully in matrix-form as

(bP�
s

(f1), bP�
s

(f2)) = (f1, f2)

✓

cos(2⇡ cos s) � sin(2⇡ cos s)
sin(2⇡ cos s) cos(2⇡ cos s)

◆

and which allows us to conclude that bP�
s

: T�
s

(0)S2 ! T�
s

(0)S2 is a counter-clockwise
rotation of angle 2⇡ cos s on that plane (with the orientation taken in accordance
with the basis (f1, f2)).

(|) Problem N.5. Let ⇡ : E ! M be a fibre bundle with fibre F and structure
group G. Let � : (a, b)!M be a smooth curve. Prove that �?E ! (a, b) (which is
another fibre bundle with fibre F and structure group contained in G, c.f. Problem
G.7) is a trivial bundle.

Solution. More generally, we show that any fibre bundle E 0 over (a, b), with
structure group G, is trivial.1

We call µ : G ⇥ F ! F the given action of G on the fibre F and we call
↵ : U↵ ! F a generic bundle chart in the given G-bundle atlas.

Showing that E 0 is trivial amounts to find a map � : E 0 ! F such that ⇡ ⇥
� : E 0 ! (a, b) ⇥ F is an isomorphism of fibre bundles with structure group G,
meaning that:

(i) ⇡ ⇥ � is a di↵eomorphism;

(ii) there exist smooth maps  ↵ : U↵ ! G such that �(x) = µ( ↵ � ⇡(x),↵(x)).
Indeed, the trivial bundle (a, b)⇥ F has projection map (t, z) 7! t. Hence, given a
fibre bundle homomorphism � : E 0 ! (a, b) ⇥ F and writing � = p ⇥ �, we have
necessarily p = ⇡ (since � is fibre-preserving).

Notice that condition (ii) does not depend on the G-bundle atlas, provided our
atlas is replaced with a G-compatible one (meaning that all the bundle charts in the
first one are G-compatible with all the bundle charts in the second one). Condition
(ii) can be dropped if one is merely interested in showing the triviality of E 0 as a
fibre bundle with fibre F , but it will come for free from the construction of �.

It is easy to find an increasing sequence (tk)k2Z ✓ (a, b) with limk!�1 tk = a and
limk!1 tk = b, together with bundle charts ↵k : U↵

k

! G with (tk�1, tk+1) ✓ U↵
k

.
For instance, take first an increasing sequence (sj)j2Z with limj!�1 sj = a and
limj!1 sj = b, and take a further subdivision of the intervals [sj, sj+1] into (finitely
many) subintervals whose size is less than half the Lebesgue number of [sj�1, sj+1]
with respect to the open cover (U↵). The sequence (tk) is then constructed starting
from t0 := s0 and enumerating the endpoints of the new intervals at the left and
right of s0 in an increasing way. By construction, each interval [tk�1, tk+1] is then
covered by the domain U↵

k

of some bundle chart.
Observe that ⇢↵0↵1 is given by left multiplication by some smooth function

b⇢ : (t0, t1)! G, namely

⇢↵0↵1(t)(z) = µ(b⇢↵0↵1(t), z)

1Actually, this fact is equivalent to the statement of the exercise: to see the converse impli-
cation, we can just choose E := E0, M := (a, b), � := id and observe that the pullback bundle
becomes �⇤E = id⇤ E0, which is canonically isomorphic to E0.

6



for all t 2 (t0, t1) and all z 2 F . It would then make sense to define � piecewise,
with � := ↵0 on ⇡�1((t�1, t1)) and �(x) := µ( 0,1 � ⇡(x),↵1(x)) on ⇡�1((t0, t2)),
where  0,1 is some smooth extension of b⇢↵0↵1 . The problem is that such extension
may not always exist, since b⇢↵0↵1(t) could oscillate too wildly as t " t1!

To overcome this di�culty, we need to twist the maps ↵k in such a way that
this becomes possible. We claim that there exists a curve �1 : (t0, t1) ! G such
that

(i’) �1(t) = e for t close to t0, say t < t0 + ✏1 (for some ✏1 > 0);

(ii’) �1(t)b⇢↵0↵1 is constant for t close to t1, say equal to some g1 2 G for t > t1�✏1.
For instance, let ✏1 :=

t1�t0
3

and �1(t) := g1 ·b⇢↵0↵1(⌧1(t))
�1, where g1 := b⇢↵0↵1(t0+

✏1) and ⌧1 : (t0, t1)! R is a smooth nondecreasing function such that ⌧1(t) = t0+✏1
for t < t0 + ✏1 and ⌧1(t) = t for t > t1 � ✏1.2

Similarly, for all k > 0, we can find �k : (tk�1, tk)! G, ✏k and gk 2 G such that
�k(t) = e for t < tk�1 + ✏k and �k(t)b⇢↵

k�1↵k

= gk for t > tk � ✏k.
Analogously we construct ��k : (t�k, t�(k�1)) ! G and g�k (again for k > 0),

asking that ��k(t) = e for t > t�(k�1) � ✏�k and ��k(t)b⇢↵�(k�1)↵�k

= g�k for t <
t�k + ✏�k. Now on ⇡�1((�t1, t1)) we let

�(x) :=

(

µ(�1 � ⇡(x),↵0(x)) if ⇡(x) � 0,

µ(��1 � ⇡(x),↵0(x)) if ⇡(x)  0,

and, on ⇡�1((tk � ✏k, tk+1)) (for k > 0), we define

�(x) :=

(

µ(g1 · · · gk,↵k(x)) if ⇡(x)  tk,

µ(g1 · · · gk · �k+1 � ⇡(x),↵k(x)) if ⇡(x) � tk,

and symmetrically on ⇡�1((t�(k+1), t�k + ✏k)). The smoothness of �, as well as
properties (i) and (ii), are clear. We only have to check that � is well defined. If
⇡(x) 2 (tk � ✏k, tk) with k > 0 then we have to check that

µ(g1 · · · gk�1 · �k � ⇡(x),↵k�1(x)) = µ(g1 · · · gk,↵k(x))

(where g1 · · · gk�1 = e if k = 1), but this holds as

µ(g1 · · · gk�1 · �k � ⇡(x),↵k�1(x))

= µ(g1 · · · gk�1 · �k � ⇡(x), µ(⇢↵
k�1↵k

� ⇡(x),↵k(x)))

= µ(g1 · · · gk�1 · (�k⇢↵
k�1↵k

) � ⇡(x),↵k(x))

= µ(g1 · · · gk,↵k(x))

by construction and by definition of left action.

2Given a nonnegative bump function ' : R! R compactly supported in (t0 + ✏1, t1 � ✏1) and
with

R1
�1 '(t) dt = 1, an example of such ⌧1 is ⌧1(t) := t0 + ✏1 + (t� t0 � ✏1)

R

t

�1 '(s) ds.
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Problem Sheet O

Problem O.1. Let ⇡ : E !M be a vector bundle of rank k with parallel transport
structure P. Fix x 2M and let {p1, . . . , pk} be a basis of Ex. Suppose  : Vx ! U
is a di↵eomorphism, where Vx is a starshaped open set in TxM about 0x and U is
a neighbourhood of x in M . Define for v 2 Vx a smooth curve

�v : [0, 1]!M, �v(t) :=  (tv).

Prove there exists a local frame {e1, . . . , ek} of E over U such that ei(x) = pi
and such that ei(�v(t)) is a parallel along �v for each i = 1, . . . , k and all v 2 Vx.
Remark: Lemma 31.5 is a special case of this problem.

(|) Problem O.2. Let H denote the connection on TSn from Problem N.3.

(i) Find an explicit formula for the connection map  : T (TSn) ! TSn and for
the covariant derivative operator r : X(Sn)⇥ X(Sn)! X(Sn).

(ii) Let x, y be two points in Sn such that x ? y. Let � : [0, 2⇡] ! Sn denote
the great circle �(t) = (cos t)x+ (sin t)y. Prove that the covariant derivative
operator along � satisfies rT (�0) = 0, where T 2 X([0, 2⇡]) is the vector field
@
@t .

Problem O.3. Let H be a connection in a vector bundle ⇡ : E ! M with associ-
ated parallel transport system P and covariant derivativer : X(M)⇥�(E)! �(E).

(i) Define the dual parallel transport system in the dual bundle E⇤ by declar-
ing that a section ⇢ 2 ��(E⇤) is parallel if and only if ⇢(c) is constant for every
parallel section c 2 ��(E). Prove directly that this defines a parallel transport
system. (You may skip the verification of Axiom (iii) of Definition 29.8!).

(ii) Define the dual covariant derivative operator r⇤ : X(M) ⇥ �(E⇤) !
�(E⇤) defined by

(r⇤
X⇢)(s) = X(⇢(s))� ⇢(rX(s)).

Prove directly that this is a covariant derivative operator in E⇤.

(iii) The dual connection on E⇤ is the connection H⇤ whose associated paral-
lel transport system is the dual parallel transport system from part (i) and
whose associated covariant derivative operator is the dual covariant derivative
operator from part (ii). How does one define H⇤ explicitly?

(|) Problem O.4. Let ⇡i : Ei !Mi be two vector bundles, and let ' : M1 !M2

denote a smooth map. Suppose � : E1 ! E2 is a smooth map such that the

Will J. Merry, Di↵. Geometry II, Spring 2019, ETH Zürich. Last modified: June 28, 2019.
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following diagram commutes:

E1 E2

M1 M2

�

⇡1 ⇡2

'

Note we are not assuming that � is linear on the fibres, and hence � need not be
a vector bundle morphism along '. For each x 2M1, � defines a smooth map

�x := �|E1|x : E1|x ! E2|'(x).

This is a map between two vector spaces, so for any p 2 E1|x we can take its
derivative

D�x(p) : TpE1|x ! T�(p)E2|'(x).
Composing with the J maps from Problem B.3, we get a linear map from

bD�x(p) := J �1
�(p) �D�x(p) � Jp : E1|x ! E2|'(x).

Consider the vector bundle ⇡̃ : Hom(E1,'?E2) ! M1 over M1. The fibre of this
bundle over x 2 M1 is L(E1|x, E2|'(x)). Since � is smooth, the map p 7! bD�x(p)
defines a smooth map Dfibre� : E1 ! Hom(E1,'?E2) which we call the fibrewise
derivative of �:

E1 Hom(E1,'?E2)

M1

Dfibre�

⇡1 ⇡̃

Note again that Dfibre� is not necessarily linear on the fibres (i.e. bD�x(p) does not
have to depend linearly on p), and thus Dfibre� is not necessarily a vector bundle
morphism along '.

(i) Show that the normal derivative D� : TE1 ! TE2 of � restricts to define a
map D�|V E1 : V E1 ! V E2. Prove that if p, q 2 E1|x then

Dfibre�(p)[q] = prE2
2 �D�|V E1 � Jp(q),

where prE2
2 : V E2 ! E2 is the “projection onto the second factor” map (see

(30.1) from Lecture 30 or Problem I.5).

(ii) Now take M1 = M2 = M and ' to be the identity. Let E1 = TM denote
the tangent bundle and let E2 = M ⇥ R denote the trivial bundle. Then a
fibre preserving map � : E1 ! E2 can be identified with a smooth function
f : TM ! R. Prove that the definition of Dfibref given above is consistent
with the fibrewise derivative Dfibref : TM ! T ⇤M given in Problem C.3.
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(iii) Now return to the general setup, and assume that both E1 and E2 are endowed
with connections H1 and H2 respectively. Let i : TEi ! Ei denote the
connection map of Hi. We define the parallel derivative of � to be the
map

Dparallel� : E1 ! Hom(TM1,'
?E2)

by
Dparallel�(p)[v] := 2 �D�(p)[v], p 2 E1, v 2 TM1,

where v is the horizontal lift of v at p with respect to H1 (see Definition 28.7).
Prove that for x 2 M1, p 2 E1|x and ⇣ 2 TpE1 that the following formula
holds:

2
�

D�(p)[⇣]
�

= Dfibre�(p)[1(⇣)] +Dparallel�(p)
⇥

D⇡1(p)[⇣]
⇤

.

(iv) Conclude that D� is entirely determined by D', Dfibre� and Dparallel�. That
is, under the vector bundle isomorphism (D⇡i,i) : TEi ! TMi � Ei along
⇡i given by Lemma 31.3, D� takes matrix form:

D� =

✓

D' 0
Dparallel� Dfibre�

◆

This formula is often very useful in computations.
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Solutions to Problem Sheet O

Problem O.1. Let ⇡ : E !M be a vector bundle of rank k with parallel transport
structure P. Fix x 2M and let {p1, . . . , pk} be a basis of Ex. Suppose  : Vx ! U
is a di↵eomorphism, where Vx is a starshaped open set in TxM about 0x and U is
a neighbourhood of x in M . Define for v 2 Vx a smooth curve

�v : [0, 1]!M, �v(t) :=  (tv).

Prove there exists a local frame {e1, . . . , ek} of E over U such that ei(x) = pi
and such that ei(�v(t)) is a parallel along �v for each i = 1, . . . , k and all v 2 Vx.
Remark: Lemma 31.5 is a special case of this problem.

Solution. Given y 2 U , let v :=  �1(y). If the local frame {ei} exists, then
ei ��v is parallel along �v and ei ��v(0) = pi. Since P�

v

(pi) has the same properties,

by Proposition 29.7 we must have ei � �v = P�
v

(pi). In particular, ei(y) = bP�
v

(pi).

Hence, in order to show that the desired local frame exists, we define ei(y) := bP�
v

(pi)
(with v :=  �1(y)).

The linear isomorphism axiom for P implies that {e1(y), . . . , ek(y)} is a basis of
Ey for all y 2 U , so we are left to prove the smoothness of ei.

We argue locally, invoking the smoothness axiom (in the way it is formulated in
the footnote to Definition 29.8). Given y0 2 U , let v0 :=  �1(y0) and pick a chart
� : U 0 ! O, with x 2 U 0 ✓ U . Then let W := D�(x)[Vx], regarded as a subset of
Rn (identifying T�(x)Rn with Rn).

Next, let ⌘ : Rn ! R be a smooth function compactly supported in W , with
0  ⌘  1 and ⌘ = 1 on a neighbourhood of the segment S := {tD�(x)[v0] | t 2
[0, 1]}.1 Since W is also starshaped about 0, we have ⌘(w)w 2 W for all w 2 W ,
and trivially also when w 62 W (since in this case ⌘(w)w = 0). Now we let

�(v) := D�(⇡(v))[v] 2 Rn

for v 2 TM |U 0 and finally we set

 (v) :=  �D�(x)�1[⌘(�(v))�(v)].

The map : TM |U 0 !M is smooth and well defined, sinceD�(x)�1[⌘(�(v))�(v)] 2
Vx. It is immediate to check that �(tv) = D�(x)[tv] and  (tv) = �v, for v 2 TxM
close enough to v0 and t 2 [0, 1]. Hence, by the smoothness axiom, v 7! bP�

v

(pi) is

smooth for v 2 Vx near v0. Thus ei(y) = bP�
 

�1(y)
(pi) is smooth near y0, as well.

(|) Problem O.2. Let H denote the connection on TSn from Problem N.3.

Solutions written by Giada Franz, Francesco Palmurella, Alessio Pellegrini, and Alessandro
Pigati. Last modified: June 28, 2019.

1For instance we can apply Lemma 3.2 with Rn, W and S0 playing the roles of M , U , K
respectively, where S0 is a compact neighbourhood of S in W .
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(i) Find an explicit formula for the connection map  : T (TSn) ! TSn and for
the covariant derivative operator r : X(Sn)⇥ X(Sn)! X(Sn).

(ii) Let x, y be two points in Sn such that x ? y. Let � : [0, 2⇡] ! Sn denote
the great circle �(t) = (cos t)p + (sin t)q. Prove that the covariant derivative
operator along � satisfies rT (�0) = 0, where T 2 X([0, 2⇡]) is the vector field
@
@t .

Solution. (i). Recall from Problem N.3 that

TxS
n = {v 2 Rn+1 : hx, vi = 0},

T(x,v)TS
n = {(u, w) 2 R2n+2 : hu, vi+ hx, wi = 0},

H(x,v) = {(u,�hv, uix) 2 R2n+2 : hx, ui = 0},
⇡ : TSn ! Sn is given by ⇡((x, v)) = v,

D⇡(x, v) : T(x,v)TS
n ! TxS

n is given by D⇡(x, v)[(u, w)] = u,

consequently, kerD⇡(x, v) = {(0, w) : hx, wi = 0}, and the map pr2 : V TSn ! TSn

is given by pr2((x, v), (0, w)) = (x, w). For every element ⇣ = (u, w) 2 T(x,v)TSn,
its splitting into vertical and horizontal part is then given by

⇣ = (u, w) = (0, w + hv, uix)
| {z }

⇣V

+(u,�hv, uix)
| {z }

⇣H

.

From Definition 31.1, the connection map k : TTSn ! TSn acts on an element
⇣ = ((x, v), (u, w)) 2 TTSn as

k((x, v), (u, w)) = (x, w + hv, uix).
To compute rXY for any two vector fields X, Y 2 X(Sn), recall that Y can be
represented as a smooth map Y : Sn ! Rn+1, so that hY (x), x)i = 0 for every
x 2 Sn, so if Z 2 TxSn, DY (x)[Z] can be regarded as a vector in Rn+1 (where the
di↵erential “D” is the one for maps Sn ! Rn+1), and its equivalent in T(x,Y (x))TSn,
which we denote in the same way, as (Z,DY (x)[Z]). Thanks to Theorem 31.10
with ' = idSn we conclude that

rXY (x) = k(DY (x)[X(x)]) = DY (x)[X(x)] + hY (x), X(x)ix.
(ii). Thanks to Theorem 31.10 with ' = �, we have that

rT (�
0)(t) = k(D(�0)(t)[T (t)]).

Now, for any t we simply have D(�0)(t)[T (t)] = �00(t) so we get that rT�(t) is given
by:

rT (�
0)(t) = �00(t) + |�0(t)|2 �(t).

Since

�0(t) = �(sin t)x+ (cos t)y,

�00(t) = �(cos t)x� (sin t)y,

It follows that rT (�0)(t) = 0.
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Problem O.3. Let H be a parallel transport system in a vector bundle ⇡ : E !M
with associated parallel transport system P and covariant derivative r : X(M) ⇥
�(E)! �(E).

(i) Define the dual parallel transport system in the dual bundle E⇤ by declar-
ing that a section ⇢ 2 ��(E⇤) is parallel if and only if ⇢(c) is constant for every
parallel section c 2 ��(E). Prove directly that this defines a parallel transport
system. (You may skip the verification of Axiom (iii) of Definition 29.8!).

(ii) Define the dual covariant derivative operator r⇤ : X(M) ⇥ �(E⇤) !
�(E⇤) defined by

(r⇤
X⇢)(s) = X(⇢(s))� ⇢(rX(s)).

Prove directly that this is a covariant derivative operator in E⇤.

(iii) The dual connection on E⇤ is the connection H⇤ whose associated paral-
lel transport system is the dual parallel transport system from part (i) and
whose associated covariant derivative operator is the dual covariant derivative
operator from part (ii). How does one define H⇤ explicitly?

Solution. Ad (i): Let � : [a, b] ! M be any smooth curve, � 2 E⇤
x. We will

denote by
P⇤
�(�) : [a, b]! E⇤

the2 parallel lift on ⇡ : E⇤ !M of � starting at �. We start by showing that such
a lift is unique. Indeed, pick a parallel local frame ei : U ! E along � around x,
i.e.

ei � � : [a, b]! E

is parallel and the ei(�(t)) form a basis of E�(t) for any t 2 [a, b]. Denote by

✏j : U ! E⇤

the dual local frame on U along � associated to ei. By definition of parallel lifts on
the dual bundle we have

P⇤
�(�)(t)[ei(�(t))] = P⇤

�(�)(a)[ei(�(a))] = �(ei(�(a)) 2 R.

Since ei(�(t)) forms a basis the computation above shows that the parallel P⇤
�(t)

is uniquely determined by its starting point �. This computation already takes
business of the first axiom, i.e. that

bP⇤
� : E

⇤
�(a) ! E⇤

�(b)

is an isomorphism:

bP⇤
�(✏

j(�(a)))[ei(�(b))] = P⇤
�(✏

j(�(a)))(b)[ei(�(b))]

= ✏j(�(a))[ei(�(a)]

= �ij.

2Apriori we do not know that such a lift of � is unique, but we will show that this is the case
under our given assumptions.

3



This proves that with respect to the basis ✏j � � we get bP⇤
� = id, in particular that

bP⇤
� is an isomorphism.
The second axiom follows from another easy computation. In order to keep the

notation in check, we will write

✏j�(t) = ✏j(�(t)), e�i (t) = ei(�(t))

and so on. Now let
h : [a1, b1]! [a, b]

be a di↵eomorphism with h(a1) = a, h(b1) = b. Observe that

P⇤
��h(✏

j
��h(a1))(t)[e

��h
i (t)]

(1)
= P⇤

��h(✏
j
��h(a1))(a1)[e

��h
i (a1)]

(2)
= �ij
(3)
= P⇤

�(✏
j
�(a))(a)[e

�
i (a)]

(4)
= P⇤

�(✏
j
�(a))(h(t))[e

�
i (h(t))]

(5)
= P⇤

�(✏
j
��h(a1))(h(t))[e

��h
i (t)],

where in (1) and (4) we used the definition of parallal lifts on E⇤, in (2) add (3)
we used the same reasoning as in the first axiom part and (5) uses h(a1) = a. This
proves

P⇤
��h(�)(t) = P⇤

�(�)(h(t)).
3

For the last axiom we pick yet another smooth curve � : [a, b]!M such that

�(a) = �(a), �0(a) = �0(a).

We want to prove that

d

dt

�

�

�

t=a
P⇤
�(�)(t) =

d

dt

�

�

�

t=a
P⇤
�(�)(t).

In analogy to � and ei, we pick another parallel local frame

fi : U ! E

along � with
fi(�(a)) = fi(�(a)) = ei(�(a)) = pi,

for all i.
First of all observe that

d

dt

�

�

�

t=a

�

P⇤
�(�)(t)[e

�
i (t)]

�

= 0,

d

dt

�

�

�

t=a

�

P⇤
�(�)(t)[e

�
i (t)]

�

= 0.

3Actually the equation above only proves this for � = ✏j
��h(a1), but after a moment of thought

one sees that the same proof works for linear combinations, hence for any �.
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By shrinking U , if necessary, we can work locally on some Euclidean space on which
P⇤
�(�)(t)[e

�
i (t)] corresponds to the scalar product

⌦

P⇤
�(�)(t), e

�
i (t)
↵ 2 R.

But then we have

0 =
d

dt

�

�

�

t=a

⌦

P⇤
�(�)(t), e

�
i (t)
↵

=

⌧

d

dt

�

�

�

t=a
P⇤
�(�)(t), ei(�(a))

�

+

⌧

�,
d

dt

�

�

�

t=a
ei(�(t))

�

.

We have an analogous formula for P⇤
� . Using these two and the initial uniqueness

applied to ei � � and fi � �, i.e.
d

dt

�

�

�

t=a
ei(�(t)) =

d

dt

�

�

�

t=a
fi(�(t)),

we see that
*

d

dt

�

�

�

t=a
P⇤
�(�)(t), ei(�(a))

| {z }

=p
i

+

= �
⌧

�,
d

dt

�

�

�

t=a
ei(�(t))

�

= �
⌧

�,
d

dt

�

�

�

t=a
fi(�(t))

�

=

*

d

dt

�

�

�

t=a
P⇤
�(�)(t), fi(�(a))

| {z }

=p
i

+

,

thus finishing the proof of the last axiom.
Ad (ii): We simply have to check the four covariant derivative axioms, so let us

pick two vector fields X, Y 2 X(M), two sections ⇢ : M ! E⇤, s : M ! E and a
smooth function f : M ! R. Then we have

�r⇤
X+Y ⇢

�

(s) = X(⇢(s)) + Y (⇢(s))� ⇢( rX+Y (s)
| {z }

=r
X

(s)+r
Y

(s)

)

= (r⇤
X(⇢)) (s) + (r⇤

Y (⇢)) (s).

Here we used the fact that r is a covariant derivative on E. In an analogous fashion
the linearity in the second entry of r⇤ follows from the one of r. Similarly, the
C1(M)-linearity in the first entry of r⇤ follows from the one of r. Let us do the
computation for the Leibniz-rule, i.e. verify the last axiom:

(r⇤
X(f · ⇢)) (s) = X((f · ⇢)(s))� f · ⇢ (rX(s))

= X(f · ⇢(s))� f · ⇢ (rX(s))

= ⇢(s) ·X(f) + f ·X(⇢(s))� f · ⇢ (rX(s))
| {z }

=f ·(r⇤
X

(⇢))(s)

= (X(f) · ⇢) (s) + f · (r⇤
X(⇢)) (s).
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Ad (iii): We want to define a distribution H⇤ on E⇤ that defines a connection
and whose parallel transport system and covariant derivative coincide with those
defined in (i) and (ii). Let again P⇤ denote the dual parallel transport system
defined in (i) on E⇤ and consider its associated connection HP⇤ on E⇤ which is
given by di↵erentiating parallel lifts. More precisely

HP⇤(�) :=

⇢

d

dt

�

�

�

t=0
P⇤
�(�)(t)

�

�

�

� : [0, 1]!M smooth

�

.

This is a connection, whose associated parallel transport system (defined via hori-
zontal lifts of the connection) is simply P⇤ again, see second part of Theorem 30.1.
Therefore H⇤ := HP⇤ is a connection on E⇤ whose parallel transport system is given
by P⇤.

Now we try to write down an explicit formula for H⇤ in terms of H. For this
we will need the direct sum bundle

E⇤ � E =
a

x2M
E⇤

x � Ex !M.

On this bundle we can define an evaluation map

e : E⇤ � E 7! R, e(�, p) = �(p).

This map is obviously smooth, thus we can di↵erentiate it to give us a map

De(�, p) : T�E
⇤ � TpE ! R,

where � and p both lie in their respective fiber over the common point x 2M . The
claim now is that

H⇤
� =

\

p2⇡�1(x)

kerDe(�, p) [ · ,Hp] .

First we show that the LHS is contained in the RHS, i.e. we pick ⇢ : [0, 1]! E⇤ a
parallel curve along � := ⇡⇤ � ⇢ with ⇢(0) = � and c : [0, 1]! E any other parallel
curve, also along � satisfying c(0) = p for some p over x. Observe that

0 =
d

dt

�

�

�

t=0
⇢(t)[c(t)]

=
d

dt

�

�

�

t=0
e(⇢(t), c(t))

= De(�, p)
h d

dt

�

�

�

t=0
⇢(t)

| {z }

2H⇤
�

,
d

dt

�

�

�

t=0
c(t)

| {z }

2H
p

i

,

which proves the desired inclusion since p was an arbitrary element over x.
For the other inclusion we pick some v 2 T�E⇤ such that De(�, p)[v,Hp] = 0 for

all p over x. Now we view v as the time-0 derivative of some curve ⇢ : [0, 1] ! E⇤

and show that this ⇢ is necessarily parallel which would then imply that v 2 H⇤
�.

Indeed, picking any parallel lift c : [0, 1]! E of � := ⇡⇤ � � starting at some p over
x we can read the above computation backwards to obtain

⇢(t)[c(t)] = const.

Again, this holds for any parallel lift of � since p is allowed to be any lift over x.
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(|) Problem O.4. Let ⇡i : Ei !Mi be two vector bundles, and let ' : M1 !M2

denote a smooth map. Suppose � : E1 ! E2 is a smooth map such that the
following diagram commutes

E1 E2

M1 M2

�

⇡1 ⇡2

'

Note we are not assuming that � is linear on the fibres, and hence � need not be
a vector bundle morphism along '. For each x 2M1, � defines a smooth map

�x := �|E1|x : E1|x ! E2|'(x).
This is a map between two vector spaces, so for any p 2 E1|x we can take its
derivative

D�x(p) : TpE1|x ! T�(p)E2|'(x).
Composing with the J maps from Problem B.3, we get a linear map from

bD�x(p) := J �1
�(p) �D�x(p) � Jp : E1|x ! E2|'(x).

Consider the vector bundle ⇡̃ : Hom(E1,'?E2) ! M1 over M1. The fibre of this
bundle over x 2 M1 is L(E1|x, E2|'(x)). Since � is smooth, the map p 7! bD�x(p)
defines a smooth map Dfibre� : E1 ! Hom(E1,'?E2) which we call the fibrewise
derivative of �

E1 Hom(E1,'?E2)

M1

Dfibre�

⇡1 ⇡̃

Note again that Dfibre� is not necessarily linear on the fibres (i.e. bD�x(p) does not
have to depend linearly on p), and thus Dfibre� is not necessarily a vector bundle
morphism along '.

(i) Show that the normal derivative D� : TE1 ! TE2 of � restricts to define a
map D�|V E1 : V E1 ! V E2. Prove that if p, q 2 E1|x then

Dfibre�(p)[q] = prE2
2 �D�|V E1 � Jp(q),

where prE2
2 : V E2 ! E2 is the “projection onto the second factor” map (see

(30.1) from Lecture 30 or Problem I.5).

(ii) Now take M1 = M2 = M and ' to be the identity. Let E1 = TM denote
the tangent bundle and let E2 = M ⇥ R denote the trivial bundle. Then a
fibre preserving map � : E1 ! E2 can be identified with a smooth function
f : TM ! R. Prove that the definition of Dfibref given above is consistent
with the fibrewise derivative Dfibref : TM ! T ⇤M given in Problem C.3.
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(iii) Now return to the general setup, and assume that both E1 and E2 are endowed
with connections H1 and H2 respectively. Let i : TEi ! Ei denote the
connection maps of Hi. We define the parallel derivative of � to be the
map

Dparallel� : E1 ! Hom(TM1,'
?E2)

by
Dparallel�(p)[v] := 2 �D�(p)[v], p 2 E1, v 2 TM1,

where v is the horizontal lift of v at p with respect to H1 (see Definition 28.7).
Prove that for x 2 M1, p 2 E1|x and ⇣ 2 TpE1 that the following formula
holds:

2
�

D�(p)[⇣]
�

= Dfibre�(p)[1(⇣)] +Dparallel�(p)[D⇡1(p)[⇣].

(iv) Conclude that D� is entirely determined by D', Dfibre� and Dparallel�. That
is, under the vector bundle isomorphism (D⇡i,i) : TEi ! TMi � Ei along
⇡i given by Lemma 31.3, D� takes matrix form:

D� =

✓

D' 0
Dparallel� Dfibre�

◆

This formula is often very useful in computations.

Solution. (i) First let us check that D�|V E1 defines a map from V E1 to V E2.
To do that it is su�cient to check that, given z 2 V E1 \ TpE1, it holds that
D�(p)[z] 2 V E2. However, this is very easy to verify since

D⇡2(�(p))[D�(p)[z]] = D(⇡2 � �)(p)[z] = D(' � ⇡1)(p)[z]
= D'(⇡1(p))[D⇡1(p)[z]] = 0,

where we have used that ⇡2 � � = ' � ⇡1. Therefore we have D�|V E1(p)[z] =
D�x(p)[z] for every z 2 V E1.

Now recall that J : ⇡⇤E ! V E is a vector bundle isomorphism (see Prob-
lem I.5 and Lecture 30) and that prE2

2 : V E ! E is exactly defined as
prE2

2 (Jp(q)) = q.

Putting together all these considerations, we easily obtain the thesis, that is

J �1
�(p) �D�x(p) � Jp = prE2

2 �D�|V E1 � Jp.

(ii) Let us consider the local coordinates (xi, vi) defined in Problem C.3. Then it
is su�cient to check that the two definitions of Dfibref(x, v) coincides on @

@xi

|x
for all (x, v) 2 TM and i = 1, . . . , n.

Following the definition of Dfibref given in Problem C.3, we have that

Dfibref(x, v)
h @

@xi

�

�

�

x

i

=
n
X

i=1

@

@vi

�

�

�

(x,v)
(f).

8



On the other hand, let us explicit the definition ofDfibref given in this exercise.
First recall that we can write Df as

Df(x, v) =
n
X

i=1

@

@vi

�

�

�

(x,v)
(f)dvi|(x,v) +

n
X

i=1

@

@xi

�

�

�

(x,v)
(f)dxi|(x,v)

and consequently

Df |V TM(x, v) =
n
X

i=1

@

@vi

�

�

�

(x,v)
(f)dvi|(x,v),

since V TM =
S

(x,v)2TM span
n

@
@vi

�

�

�

(x,v)

o

.

Moreover notice that Jv

⇣

@
@xi

�

�

�

x

⌘

= @
@vi

�

�

�

(x,v)
and that prM⇥R

2 is just the projec-

tion on the second factor.

Therefore, following the definition given in this exercise, we have

Dfibref(x, v)
h @

@xi

�

�

�

x

i

= prE2
2 �Df |V E1 � Jp

⇣ @

@xi

�

�

�

x

⌘

= prE2
2 �Df |V E1

h @

@vi

�

�

�

(x,v)

i

= prE2
2

⇣

n
X

i=1

@

@vi

�

�

�

(x,v)
(f)
⌘

=
n
X

i=1

@

@vi

�

�

�

(x,v)
(f),

which concludes the proof, since this coincides with the expression with the
other definition of Dfibref .

(iii) First notice that the horizontal lift of D⇡1(p)[⇣] is exactly ⇣H by definition.
Therefore

Dparallel�(p)[D⇡1(p)[⇣]] = 2(D�(p)[⇣
H]).

On the other hand, we have that

Dfibre�(p)[1(⇣)] = prE2
2 �D�|V E1 � Jp(1(⇣)) = prE2

2 �D�(p)[⇣V]
= 2(D�(p)[⇣

V]).

And this concludes the proof using the linearity of D�(p) and 2, together
with the fact that ⇣ = ⇣H + ⇣V.

(iv) First notice that

D⇡2(D�(p)[⇣]) = D(⇡2 � �)(p)[⇣] = D(' � ⇡1)(p)[⇣] = D'[D⇡1(p)[⇣]].

Moreover, thanks to the previous points, we have that

2
�

D�(p)[⇣]
�

= Dparallel�(p)[D⇡1(p)[⇣]] +Dfibre�(p)[1(⇣)].

This two observations are patently su�cient to conclude the proof.
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Problem Sheet P

Problem P.1. Let ⇡i : Ei !M be vector bundles with connections ri for i = 1, 2.

(i) Prove that there is a unique connection on E1 ⌦ E2 which on decomposable
sections s1 ⌦ s2 takes the form

r⌦
X(s1 ⌦ s2) := r1

X(s1)⌦ s2 + s1 ⌦r2
X(s2).

(ii) Prove that
rHom

X (�)(s) := r2
X(�(s))� �(r1

X(s))

is a connection on Hom(E1, E2). Remark: The connections in part (i) and
part (ii) are consistent with the connection on the dual bundle from Problem
(ii) under the isomorphism Hom(E1, E2) ⇠= E⇤

1 ⌦ E2 from Corollary 15.13.

Problem P.2. Suppose r is a connection on the tangent bundle ⇡ : TM ! M of
a manifold M . Show that for each X 2 X(M) there is a unique tensor derivation
r̃X : T (M) ! T (M) (cf. Definition 18.14) such that r̃X(Y ) = rX(Y ) for all
Y 2 X(M).

(|) Problem P.3. Let ⇡ : E ! M be a vector bundle over a connected manifold

M , and let H denote a connection on E Let ⇢ : fM ! M denote the universal
covering of M . Prove that r is flat if and only if ⇢⇤E ! fM is the trivial bundle
over fM and the pullback connection ⇢?H is the trivial connection.

(|) Problem P.4. Consider TSn equipped with the connection r from Problem
N.3.

(i) Prove that Holr = SO(n) (in the sense of Corollary 32.12).

(ii) Compute the curvature tensor Rr.

Problem P.5. Let G be a Lie group with Lie algebra g.

1. Suppose � : g⇥g! g is a bilinear map. Prove there exists a unique connection
r� on TG! G which satisfies the following condition: if v, w 2 g and Xv, Xw

denote the corresponding left-invariant vector fields then

r�
X

v

(Xw) = X�(v,w).

2. Prove that this connection is left-invariant in the sense that

(la)?(r�
X(Y )) = r�

(l
s

)
?

X((la)?(Y )), 8X, Y 2 X(G), 8 a 2 G.

Deduce that the parallel transport determined by this connection is left-
invariant in the sense that if c is a parallel section along a curve � then
Dla(�) � c is a parallel section along la � �.

Will J. Merry, Di↵. Geometry II, Spring 2019, ETH Zürich. Last modified: June 28, 2019.
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3. Prove moreover that any such left-invariant connection r determines such a
bilinear map � via

�(v, w) := rX
v

(Xw)(e),

and hence that there is a bijective correspondence between bilinear maps
g⇥ g! g and connections on TG.

2



Solutions to Problem Sheet P

Problem P.1. Let ⇡i : Ei !M be vector bundles with connections ri for i = 1, 2.

(i) Prove that
rX(s1 ⌦ s2) := r1

X(s1)⌦ s2 + s1 ⌦r2
X(s2)

is a connection on E1 ⌦ E2.

(ii) Prove that
rX(�)(s) := r2

X(�(s))� �(r1
X(s))

is a connection on Hom(E1, E2). Remark: The connections in part (i) and
part (ii) are consistent with the connection on the dual bundle from Problem
(ii) under the isomorphism Hom(E1, E2) ⇠= E⇤

1 ⌦ E2 from Corollary 15.13.

Solution. Ad (i): Linearity in the second entry is given by definition as we define
the connection r⌦ on decomposable elements and then extend linearly. The lin-
earity in the first variable follows from the linearity of ri and properties of tensors:
For two vector fields X, Y X(M) we have

r⌦
X+Y (s1 ⌦ s2) =

�r1
X(s1) +r1

Y (s2)
�⌦ s2 + s1 ⌦

�r2
X(s2) +r2

Y (s2)
�

= r1
X(s1)⌦ s2 + s1 ⌦r2

X(s2)
| {z }

=r⌦
X

(s1⌦s2)

+r1
Y (s1)⌦ s2 + s1 ⌦r2

Y (s2)
| {z }

=r⌦
Y

(s1⌦s2)

.

A similar argument proves that for any f 2 C1(M) one has

r⌦
f X(s1 ⌦ s2) = fr⌦

X(s1 ⌦ s2),

so we are left to prove the Leibniz rule:

r⌦
X (f · (s1 ⌦ s2)) = r⌦

X ((f s1)⌦ s2)

=
�

X(f) · (s1 ⌦ s2) + (f ·r1
Xs1)⌦ s2

�

+ (f s1)⌦r2
Xs2

= X(f) · (s1 ⌦ s2) + f ·
⇣

r1
Xs1 ⌦ s2 + s1 ⌦r2

Xs2
| {z }

=r⌦
X

(s1⌦s2)

⌘

.

This concludes the proof of part (i).
Ad part (ii): The linearity in both entries, i.e. for X + Y 2 X(M) and �+ 2

Hom(E1, E2) immediately follows from the linearity of both r1 and r2. The fact
that rHom

f X (�)(s) = f · rHom
X (�)(s) follows again from properties of r1, r2 and

�(f · s) = f · �(s) for any section s on E1. For the Leibniz bit we conclude with a
straightforward computation:

rHom
X (f · �)(s) = r2

X(f · �)(s)� f · �(r1
X(s))

= X(f) · �(s) + f ·r2
X�(s)� f · �(r1

X(s))
| {z }

=f ·rHom
X

�(s)

.

Solutions written by Giada Franz, Francesco Palmurella, Alessio Pellegrini, and Alessandro
Pigati. Last modified: June 28, 2019.
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Problem P.2. Suppose r is a connection on the tangent bundle ⇡ : TM ! M of
a manifold M . Show that for each X 2 X(M) there is a unique tensor derivation
r̃X : T (M) ! T (M) (cf. Definition 18.14) such that r̃X(Y ) = rX(Y ) for all
Y 2 X(M).

Solution. The result is a straightforward consequence of Proposition 18.17. In-
deed, for each X 2 X(M), rX is a sheaf morphism defined on smooth functions
and vector fields which satisfies

rX(fg) = X(fg) = X(f)g + fX(g), rX(fY ) = X(f)Y + frXY

for all f, g 2 C1(M) and X 2 X(M). Therefore, applying the proposition, r
extends uniquely to a tensor derivation r̃ : T (M)! T (M).

Notice that, on a 1-form !, r̃ is defined as

r̃X!(Y ) = X(!(Y ))� !(rXY ),

while, on a generic tensor A 2 T r,s(M), this tensor derivation is equal to

r̃XA(!1, . . . ,!r, X1, . . . , Xs) = X(A(!1, . . . ,!r, X1, . . . , Xs))

�
r
X

i=1

A(!1, . . . , r̃X!i, . . . ,!r, X1, . . . , Xs)

�
s
X

i=1

A(!1, . . . ,!r, X1, . . . , r̃XXi, . . . , Xs).

(|) Problem P.3. Let ⇡ : E ! M be a vector bundle over a connected manifold

M , and let H denote a connection on E Let ⇢ : fM ! M denote the universal
covering of M . Prove that r is flat if and only if ⇢⇤E ! fM is the trivial bundle
over fM and the pullback connection ⇢?H is the trivial connection.

Solution. We start the proof by first assuming that r is flat. This means that the
corresponding distribution H is integrable, i.e. for two vector fields V,W : E ! H
we have

[V,W ] 2 H.

First of all we claim that proving that ⇢⇤H is flat su�ces1. Indeed, this is su�-
cient due to Corollary 33.5 as a universal cover is connected and simply connected
by definition. For the ’if’-statement we are only left to show that the pullback
distribution ⇢⇤H is integrable. Recall that

⇢⇤H(x̃,p)

n

(ṽ, ⇣) 2 Tx̃
fM ⇥Hp

�

�

�

D⇢(x̃)[ṽ] = D⇡(p)[⇣]
o

.

Now pick two additional vector fields eX, eY 2 X(fM) such that

( eX,V ), (eY ,W ) 2 ⇢⇤H,

or equivalently such that

D⇢( eX) = D⇡(V ), D⇢(eY ) = D⇡(W ).

1Here we actually mean the connection r̃ associated to ⇢⇤H.
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But then we easily see that

D⇢
h

eX, eY
i

=
h

D⇢( eX), D⇢(eY )
i

= [D⇡(V ), D⇡(W )]

= D⇡ [V,W ]
| {z }

2H

,

which proves that [ eX, eY ] 2 ⇢⇤H and hence that the pullback is integrable.

Conversely, we assume that ⇢⇤E ! fM and ⇢⇤H are trivial, i.e.

⇢⇤E ⇠= fM ⇥ Rk, ⇢⇤H(x̃,p)
⇠= Tx̃

fM

with dimE = k, where the second di↵eomorphism is given by

Dpr1(x̃, p)[ṽ, ⇣] = ṽ.

Using the description of the pullback distribution we then deduce that for (ṽ, ⇣), (ṽ, ⌘) 2
⇢⇤H(x̃,p) we must have ⇣ = ⌘. Adopting the notation from the first part of the proof
then leads us to the conclusion

[V,W ] = [V,W ]

for any two vector fields V,W on E taking values in H. This proves that H is
integrable, hence flat.

(|) Problem P.4. Consider TSn equipped with the connection r from Problem
N.3.

(i) Prove that Holr = SO(n) (in the sense of Corollary 32.12).

(ii) Compute the curvature tensor Rr.

Solution. (i). Since for every x 2 Sn the groups Holr(x) are all isomorphic,
we will fix x = xN to be the north pole. Recall that, on the Sn, for any curve
� : [a, b]! Sn and a section of �?(TSn), V : [a, b]! TSn, V (t) = (�(t), v(t)), The
condition of parallelism rTV (t) = 0 is defined by the ODE

v0(t) + hv(t), �0(t)i�(t) = 0, (P.1)

and the map P� : T�(a)Sn ! T�(b)Sn is given by P�(v(a)) = v(b).
Let us first show that every element in Holr defines an element of SO(n). For

any continuous, piecewise smooth � : [a, b] ! Sn with �(a) = xN = �(b), we
note that, because of (P.1) and since v(t) ? �(t), we have (at all the points of
di↵erentiability of v)

d

dt
|v(t)|2 = 2hv(t), v0(t)i = hv(t),�hv(t), �0(t)i, �(t)i

= �hv(t), �0(t)ihv(t), �(t)i
= 0,

3



hence the map P� : Tx
N

Sn ! Tx
N

Sn is length-preserving, and so necessarily an
element of O(n). To show that it is also orientation preserving, pick any basis
e1, . . . , en of Tx

N

Sn which is positively oriented, a condition that can be expressed
as det(xN , e1, . . . , en) > 0. Since the parallel transport is an isomorphism, we have
that, for every t, the vectors ei(t) = P�(ei)(t) form a basis of T�(t)Sn, hence, for every
t, det(�(t), e1(t), . . . , en(t)) is always nonzero. Since such function is continuous
in [a, b] and is it positive at t = a, it must be positive everywhere. Hence P�
maps a (and so every) positive-oriented basis into a positive oriented basis and is
consequently orientation preserving.

Vice versa, let us show that every element A 2 SO(n) can be represented as
the parallel transport P� for some loop � : [a, b] ! Sn. Let us suppose first that
n = 2, so that A can be represented by a rotation matrix

A = R(�) =

✓

cos � � sin �
sin � cos �

◆

of some angle � 2 [0, 2⇡). We claim that the loop � can be obtained as the
concatenation of the following three paths:

• �1 : [0, ⇡/2] ! S2, �1(t) = (sin t, 0, cos t), namely the shortest arc of great
circle from xN to (1, 0, 0)

• �2(t) : [0, 1] ! S2, �2(t) = (cos(↵t), sin(↵t), 0), namely an arc of the equator
from (1, 0, 0) to (cos↵, sin↵, 0);

• �3 : [0, ⇡/2] ! S2, �3(t) = (cos↵ cos t, cos↵ cos t, sin t), namely the arc of
shortest great circle from (cos↵, sin↵, 0) to xN .

Where ↵ will be chosen below.
From (P.1), the parallel transport of a vector u0 2 Tx

N

S2 along �1 is defined by
the value u(⇡/2) of the solution to the problem

8

>

>

>

<

>

>

>

:

u̇1(t) =
��u1(t) cos t+ u3(t) sin t

�

sin t,

u̇2(t) = 0,

u̇3(t) =
��u1(t) cos t+ u3(t) sin t

�

cos t,

u(0) = u0,

whose solution can be computed with the help of change of variables
✓

'(t)
 (t)

◆

=

✓

cos t � sin t
sin t cos t

◆✓

u1(t)
u3(t)

◆

and is given by

0

@

u1(t)
u2(t)
u3(t)

1

A =

0

@

u1
0 cos t+ u3

0 sin t
u2
0

�u1
0 sin t+ u3

0 cos t

1

A , consequently P�1(u0) =

0

@

u3
0

u2
0

�u1
0

1

A .

4



The parallel transport of a vector v0 2 T(1,0,0)S2 along �2 is defined by the value
v(1) of the solution to the problem

8

>

>

>

<

>

>

>

:

v̇1(t) = ↵
��v1(t) sin(↵t) + v2 cos(↵t)

�

cos(↵t),

v̇2(t) = ↵
��v1(t) sin(↵t) + v2 cos(↵t)

�

sin(↵t),

v̇3(t) = 0,

v(0) = v0,

whose solution similarly as before is computed to be

0

@

v1(t)
v2(t)
v3(t)

1

A =

0

@

v10 cos(↵t)� v20 sin(↵t)
v10 sin(↵t) + v20 cos(↵t)

v30

1

A , consequently P�2(v0) =

0

@

v10 cos(↵)� v20 sin↵
v10 sin(↵) + v20 cos↵

v30

1

A .

Finally, the parallel transport of a vector w0 2 T(cos↵,sin↵,0)S2 along �3 can be
computed similarly to be

P�3(w0) =

0

@

�w3
0

�w2
0 sin↵ + w2

0 cos↵
w1

0 cos↵ + w2
0 sin↵

1

A .

We conclude that, for u0 2 Tx
N

S2 there holds

P�(u0) = P�3 [P�2 [P�1 [u0]]] =

0

@

�u1
0

u2
0 cos↵� u3

0 sin↵
u2
0 sin↵ + u3

0 cos↵

1

A

which, being u1
0 = 0, is precisely a counter-clockwise rotation of angle ↵. We may

then choose � = ↵ and conclude that Holr, for S2, is in fact equal to SO(2).
Let us now come to the case of general n. From linear algebra, each A 2 SO(n)

can be written as composition of m (m  [n/2]) number of rotations over pairwise
orthogonal planes, i.e. A = R⇧1(�1) � · · · �R⇧m

(�m), where ⇧j’s are the planes and
�j’s are the respective angles. For each of these rotations, we may produce a loop
�j at xN , replacing the x-z plane with ⇧j in the construction above, and finally
setting � = �1 ⇤ · · · ⇤ �m. The endomorphism given by P� will coincide with the
transformation A, and consequently, Holr coindices with SO(n).

(ii). Recall from Problems N.3 and O.2 that:

• a vector field X 2 X(Sn) can be seen as a smooth function X : Sn ! Rn+1 so
that hX(x), xi = 0 for every x 2 Sn and its horizontal lift is the vector field
X 2 X(T (TSn))

X(x, v) = (X(x),�hX(x), vix);

• an element of X(T (TSn)) can be represented by a smooth function (u, w) :
TSn ! R2(n+1) so that, for any (x, v) 2 TSn,

hu(x, v), xi = 0 and hu(x, v), v)i+ hw(x, v), xi = 0.

5



For any such (u, v) 2 X(T (TSn), the di↵erential of u is

Du(x, v) : T(x,v)TS
n ! Tu(x,v)Rn+1 ' Rn+1,

(U,W ) 7! D(u, v)(x, v)[(U,W )] = Dxu(x, v)[U ] +Dvu(x, v)[W ],

where Dxu and Dvu denote partial di↵erentiation with respect to x and v respec-
tively, and an analogous expression holds for Dw(x, v). In the case of a horizontal
vector field, u = X and we can compute

D
�� hX(x), vix�[(U,W )] = Dx

�� hX(x), vix�[U ] +Dv

�� hX(x), vix�[W ]

= �hDX(x)[U ], vix� hX(x), viU � hX(x),W ix,

so if X i(x, v) = (Xi(x),�hXi(x), vix) (i = 1, 2) are two horizontal vector fields,
their Lie bracket will be:

[X1, X2](x, v)

=
⇣

DX1(x)[X2]�DX2(x)[X1](x),

� hDX1(x)[X2], vix+ hDX2(x)[X1], vix
� hX1(x), viX2(x) + hX2(x), viX1(x)

� ⌦X1(x),
�� hX2(x), vix

↵

| {z }

=0

+
⌦

X2(x),
�� hX1(x), vix

↵

| {z }

=0

�

⌘

=
⇣

[X1, X2](x),�
⌦

[X1, X2](x), v
↵

x� hX1(x), viX2(x) + hX2(x), viX1(x)
⌘

.

On the other hand, we have

[X1, X2](x, v) =
�

[X1, X2](x),�h[X1, X2](x), vix
�

.

so thanks to Lemma 28.9 we deduce that

[X1, X2]
V(x, v) = [X1, X2](x, v)� [X1, X2]

H(x, v)

= [X1, X2](x, v)� [X1, X2](x, v)

=
�

0,�hX1(x), viX2(x) + hX2(x), viX1(x)
�

,

and so we conclude that the curvature tensor is

Rr(X1, X2)(V )(x) = � pr2
�

[X1, X2]
V
�

(x)

= hX1(x), V (x)iX2(x)� hX2(x), V (x)iX1(x),

for every X1, X2, V 2 X(Sn).

Problem P.5. Let G be a Lie group with Lie algebra g.

1. Suppose � : g⇥g! g is a bilinear map. Prove there exists a unique connection
r� on TG! G which satisfies the following condition: if v, w 2 g and Xv, Xw

denote the corresponding left-invariant vector fields then

r�
X

v

(Xw) = X�(v,w).

6



2. Prove that this connection is left-invariant in the sense that

(la)?(r�
X(Y )) = r�

(l
s

)
?

X((la)?(Y )), 8X, Y 2 X(G), 8 a 2 G.

Deduce that the parallel transport determined by this connection is left-
invariant in the sense that if c is a parallel section along a curve � then
Dla(�) � c is a parallel section along la � �.

3. Prove moreover that any such left-invariant connection r determines such a
bilinear map � via

�(v, w) := rX
v

(Xw)(e),

and hence that there is a bijective correspondence between bilinear maps
g⇥ g! g and left-invariant connections on TG.

Solution.

1. Let n be the dimension of G and fix a basis {v1, . . . , vn} of g. Since la is a
di↵eomorphism, the linear map Dla(e) : TeG ! TaG is an isomorphism for
every a 2 G. Hence

{Xv1(a) = Dla(e)[v1], . . . , Xv
n

(a) = Dla(e)[vn]}
is a basis of TaG, which shows that {Xv1 , . . . , Xv

n

} is a global frame for
the tangent bundle TG ! G. By Remark 16.9, given vector fields X, Y 2
X(G), we can write X = aiXv

i

and Y = bjXv
j

(remember the implicit sum
convention). The covariant derivative operator r� must satisfy

r�
X(Y ) = air�

X
v

i

(bjXv
j

)

= aiXv
i

(bj)Xv
j

+ aibjr�
X

v

i

(Xv
j

)

= aiXv
i

(bj)Xv
j

+ aibjX�(v
i

,v
j

).

(P.2)

This shows that r� (hence also the corresponding connection) is uniquely
determined, provided it exists. To prove existence, we define r� using the
formula (P.2) just found. We have

r�
X(fY ) = aiXv

i

(fbj)Xv
j

+ aifbjX�(v
i

,v
j

)

= aiXv
i

(f)bjXv
j

+ f(aiXv
i

(bj)Xv
j

+ aibjX�(v
i

,v
j

))

= X(f)Y + fr�
X(Y ).

The other axioms for a covariant derivative operator are clearly satisfied, as
well as r�

X
v

i

(Xv
j

) = X�(v
i

,v
j

). By bilinearity, we also have r�
X

v

(Xw) = X�(v,w)

for all v, w 2 g.

2. Let a 2 G. Observe that, since la is a di↵eomorphism, (la)⇤Z defines a vector
field for all Z 2 X(G). Letting

r�,a
X (Y ) := (la�1)⇤r�

(l
a

)⇤X
((la)⇤Y ), (P.3)

we see that r�,a is a covariant derivative operator: this is a consequence of
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• �⇤(fZ) = (f � ��1)(la)⇤Z,

• (�⇤Z)(f � ��1) = (Z(f)) � ��1,

for any di↵eomorphism � : G! G, Z 2 X(G) and f 2 C1(G).2 Since

r�,a
X

v

(Xw) = (la�1)⇤r�
X

v

(Xw) = (la�1)⇤X�(v,w) = X�(v,w),

by uniqueness we must have r�,a = r�, and thus (applying (la)⇤ to both
sides of (P.3)) we conclude that the connection is left-invariant. Alternatively,
one can check left-invariance directly using (P.2). Now notice that, viewing
F := Dla as a map from TG to itself, we have (la)⇤s = F � s � l�1

a for all
s 2 X(G). So what we proved can be stated as

r�
Dl

a

(x)[v](F � s � l�1
a )(ax) = Dla(x)[r�

v (s)(x)]

for all x 2 G and v 2 TxG. Given p 2 TxG, using the fact that

JF (p)(Dla(x)[w]) = DF (p)[Jp(w)]

for all w 2 TxG, from the proof of Theorem 32.1 (where we replace x with
ax, p with F (p), v with Dla(x)[v] and s with the section F � s � l�1

a in the
definition of HF (p), where s is a section with s(x) = p) we conclude that

DF (p)[Hp] ✓ HF (p). (P.4)

Now c being parallel along � means that c0(t) 2 Hc(t), which by (P.4) implies
(F � c)0(t) = DF (c(t))[c0(t)] 2 HF�c(t), as desired.

3. Given any such left-invariant connection3 r, by the properties of a covariant
derivative operator we have that �(v, w) := rX

v

(Xw)(e) is bilinear. Also, r
satisfies

rX
v

(Xw)(a) = r(l
a

)⇤Xv

((la)⇤Xw)(la(e)) = Dla(e)[rX
v

(Xw)(e)],

giving rX
v

(Xw) = X�(v,w). Hence, by uniqueness, we get r = r� and thus
any left-invariant connection arises from some bilinear map �. Moreover,
the bilinear map associated to r� (as in the statement of P.5.3) is precisely
�, since r�

X
v

(Xw)(e) = X�(v,w)(e) = �(v, w). This shows that r� uniquely
determines � and that � 7! r� is a bijective correspondence between bilinear
maps � : g⇥ g! g and left-invariant connections, with inverse given by the
formula in the statement.

2These trivial facts have nothing to do with Lie groups and hold for manifolds in general.
3Or, more precisely, the corresponding covariant derivative operator.
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Problem Sheet Q

(|) Problem Q.1. Let ⇡ : E ! M be a vector bundle with connection r. Let
E0 ⇢ E be a vector subbundle such that r is reducible to E0. Prove that r
restricts to define a connection on E0.

Problem Q.2. Let ⇡ : E !M denote a vector bundle, and let r1 and r2 denote
two connections on E.

(i) Prove that r1 �r2 defines an element A 2 A1(M,E).

(ii) If H1 and H2 are the distributions on E corresponding to r1 and r2 respec-
tively, prove that for all p 2 E one has

H2|p =
�

⇣ + Jp

�

A(D⇡(p)[⇣])
� | ⇣ 2 H1|p

 

where A is in the previous part.

(iii) Prove that
Rr2 = Rr1 � dr1A+ [A,A],

where [A,A] 2 A2(M,E) is defined by

[A,A](X, Y ) = A(X)A(Y )� A(Y )A(X), X, Y 2 X(M).

(iv) Conversely, prove that if r is a connection on E and A 2 A1(M,E) then
r1 := r+A is another connection. Deduce that the space of connections on
E is (non-canonically) isomorphic to A1(M,E).

Problem Q.3. Let ⇡ : E ! M denote a vector bundle with connection r. Let
rHom denote the induced connection on Hom(E,E) defined in part (ii) of Problem
P.1, and let dr and dr

Hom
denote the corresponding exterior covariant di↵erentials.

Prove that for A 2 Ar
M,E and ⇠ 2 ⌦M,E we have

dr(A ^ ⇠) = dr
Hom

A ^ ⇠ + (�1)rA ^ dr⇠.

(|) Problem Q.4. Let ⇡ : E !M be a vector bundle of rank k over a connected
manifold M . Fix a Lie subgroup G ⇢ GL(k).

(i) Let us say that a connection r on G is a G-connection if Holr(x) ⇢ G,
up to conjugation (cf. Corollary 32.12). Prove that this is well-defined (i.e.
independent of the choice of x).

(ii) Fix a G-connection r1, and let r2 denote any other connection. Suppose
that the di↵erence r1�r2 actually lies in1 ⌦1(M, holr1) ⇢ A1(M,E). Prove
that r2 is also a G-connection.

Will J. Merry, Di↵. Geometry II, Spring 2019, ETH Zürich. Last modified: June 28, 2019.
1Recall that hol

r1 is in particular a submanifold of Hom(E,E), so this assumption makes
sense.
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Solutions to Problem Sheet Q

(|) Problem Q.1. Let ⇡ : E ! M be a vector bundle with connection r. Let
E0 ⇢ E be a vector subbundle such that r is reducible to E0. Prove that r
restricts to define a connection on E0.

Solution. Let us prove that the parallel transport system P on E induces, simply
by taking its restriction to E0, a parallel transport system on E0, which we denote
by P0, by checking that the four axioms in Definition 29.8 are satisfied.

First of all, thanks to property (iv) of Definition 29.8, in the definition of re-
ducibility of E0 we can take the domain of � in Definition 34.2 to be any interval.

As for property (i), since bP� : E�(a) ! E�(b) is an isomorphism, so it is its
restriction P0 to the subspace (E0)�(a) onto its image, which is by assumption con-
tained, and hence equal (being vector subspace of the same dimension) to (E0)�(b).
Moreover since for p 2 E0 the section P�(p) : [a, b] ! E has image contained in
E0, and since every embedding is a weak embedding (Definition 11.19) the map
P�(p) : [a, b] ! E0 is also smooth and hence P�(p) 2 ��(E0). Properties (ii)-(iii)-
(iv) for P0 are then inherited from P.

Consequently, the parallel transport system P0 uniquely determines a connection
H0 ⇢ TE0, given by (cfr. Theorem 30.1)

H0 =

⇢

⇣ 2 TE0 : ⇣ =
d

dt
P�(p)(t)

�

�

�

�

t=0

for some p 2 E0 and some � : [0, 1]!M

�

,

but this distribution is precisely (H)|E0 , and the induced connection map (cfr.
Definition 31.1) 0 : TE0 ! E0 is given by the restriction of the connection map
k : TE ! E of H to TE0. In particular, the induced covariant derivative r0 (cfr.
Theorem 31.10) is simply the restriction to E0 of the covariant derivative r defined
on E.

Problem Q.2. Let ⇡ : E !M denote a vector bundle, and let r1 and r2 denote
two connections on E.

(i) Prove that r1 �r2 defines an element A 2 A1(M,E).

(ii) If H1 and H2 are the distributions on E corresponding to r1 and r2 respec-
tively, prove that for all p 2 E one has

H2|p =
�

⇣ + Jp

�

A(D⇡(p)[⇣])
� | ⇣ 2 H1|p

 

where A is in the previous part.

(iii) Prove that
Rr2 = Rr1 � dr1A+ [A,A],

where [A,A] 2 A2(M,E) is defined by

[A,A](X, Y ) = A(X)A(Y )� A(Y )A(X), X, Y 2 X(M).

Solutions written by Giada Franz, Francesco Palmurella, Alessio Pellegrini, and Alessandro
Pigati. Last modified: June 28, 2019.

1
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(iv) Conversely, prove that if r is a connection on E and A 2 A1(M,E) then
r1 := r+A is another connection. Deduce that the space of connections on
E is (non-canonically) isomorphic to A1(M,E).

Solution. Proof of (i): Thanks to the Hom-� Theorem 16.30 and the Vector-
valued Di↵erential Form Criterion (Theorem 26.3) it is su�cient to show that r1�
r2 seen as a map

A := r1 �r2 : X(M)⇥ �(E)! �(E)

(X, s)! (r1)Xs� (r2)Xs

is C1(M)-linear in both the variables.
Since every connection r is C1(M)-linear in the first variable (and so it is the

di↵erence of two connections), it is su�cient to check the C1(M)-linearity on the
second variable, that is A(X, fs) = fA(X, s) for all f 2 C1(M), X 2 X(M) and
s 2 �(E). Therefore, let us compute

A(X, fs) = (r1)X(fs)� (r2)X(fs)

= X(f)s+ f(r1)Xs�X(f)s� f(r2)Xs

= f((r1)Xs� (r2)Xs) = fA(X, s),

which is exactly what we wanted to prove.
Proof of (ii): By the proof of Theorem 32.1, we now that

H2|p = {Ds(x)[X]� Jp((r2)X(s)(x)) | s 2 �(E), s(x) = p,X 2 TxM} .
Therefore, using the definition of A, we obtain that

H2|p = {Ds(x)[X]� Jp((r1)X(s)(x)) + Jp(A(X, s)(x)) | s 2 �(E),

s(x) = p,X 2 TxM}.
However, notice that Ds(x)[X]�Jp((r1)X(s)(x)) is a generic element of H1|x, thus
we can call it ⇣. In particular we have that X = D⇡(p)[⇣] and s(x) = p. Hence we
have that

H2|p = {⇣ + Jp(A(D⇡(p)[⇣], p)) | s 2 �(E), s(x) = p,X 2 TxM}.
Observe that the we can write A(X, s)(x) = A(D⇡(p)[⇣], p), because we have proven
in the previous point that A is a C1(M)-linear operator and thus it is pointwise,
namely A(X, s)(x) depends only on the values of X and s in the point x.

Proof of (iii): Let us compute Rr2(X, Y ). We have that

Rr2(X, Y )s = (r2)X((r2)Y s)� (r2)Y ((r2)Xs)� (r2)[X,Y ]s

= ((r1)X � A(X))((r1)Y s� A(Y )s)

� ((r1)Y � A(Y ))((r1)Xs� A(X)s)� ((r1)[X,Y ]s� A([X, Y ])s)

= Rr1(X, Y )s� A(X)((r1)Y s� A(Y )s)� (r1)X(A(Y )s)

+ A(Y )((r1)Xs� A(X)s) + (r1)Y (A(X)s) + A([X, Y ])s

= Rr1(X, Y )s� A(X)((r1)Y s)� (r1)XA(Y )s

� A(Y )((r1)Xs) + A(Y )((r1)Xs) + (r1)YA(X)s+ A(X)((r1)Y s)

+ A([X, Y ])s+ A(X)A(Y )s� A(Y )A(X)s

= Rr1(X, Y )s� dr1A(X, Y )s+ [A,A](X, Y )s,
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where we have used the definition of A([X, Y ]) and Theorem 35.5.
Notice that one should be careful of the di↵erence between (r1)XA(Y )s and

(r1)X(A(Y )s).
Proof of (iv): We need to check that r1 satisfies all the four conditions in

Definition 31.8:

(i) and (ii) (r1)Xs is obviously C1-linear in the variable X because both r and
A are so,

(iii) (r1)Xs is also linear in s because r and A are linear in s,

(iv) (r1)X(fs) = rX(fs) + A(X, fs) = X(f)s + frXs + fA(X, s) = X(f)s +
f(r1)Xs.

Together with (i) this implies that, fixing a connection r on E, the map A 7!
r + A is an isomorphism between A1(M,E) and the space of connections. The
isomorphism is non-canonical since we had to choose the “base connection” r.
Problem Q.3. Let ⇡ : E ! M denote a vector bundle with connection r. Let
rHom denote the induced connection on Hom(E,E) defined in part (ii) of Problem
P.1, and let dr and dr

Hom
denote the corresponding exterior covariant di↵erentials.

Prove that for A 2 Ar
M,E and ⇠ 2 ⌦M,E we have

dr(A ^ ⇠) = dr
Hom

A ^ ⇠ + (�1)rA ^ dr⇠.

Solution. Before we start the proof we recall some facts and relations that will
be used throughout the computation: For any (honest) r-form ! 2 ⌦r

M and any
bundle-valued k-form ⇠ 2 ⌦k

M,E one has

! ^ ⇠ = (�1)rk⇠ ^ ! 2 ⌦r+k
M,E.

For k = 0 one has s = ⇠ 2 ⌦0
M,E = �(E), thus

! ^ s = s ^ ! := ! ⌦ s.

Moreover, a decomposable element ⇠ 2 ⌦r
M,E (resp. A 2 Ak

M,E) is of the form

⇠ = !
|{z}

2⌦r(M)

⌦ s
|{z}

2�(E)

, (resp. A = #
|{z}

2⌦k(M)

⌦ T
|{z}

2�(Hom(E))

).

Also, the ^-operation between ⌦r
M,E and Ak

(M,E) gives back an element in ⌦k+r
M,E.

On decomposable elements we have

(! ⌦ s) ^ (#⌦ T ) = (! ^ #)⌦ T (s) = ! ^ # ^ T (s),

where here we view T as C1-linear map between sections on E (cf. the Hom-�
Theorem 16.30). Repeatedly invoking Theorem 35.4, we conclude the proof with
the following painful computations on decomposable elements:
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dr(A ^ ⇠) = dr(

(#^!)^T (s)
z }| {

(#⌦ T ) ^ (! ⌦ s))

= d(# ^ !) ^ T (s) + (�1)k+r(# ^ !) ^r(T (s))
= d# ^ ! ^ T (s) + (�1)r# ^ d! ^ T (s) + (�1)k+r(# ^ !) ^r(T (s))
(1)
= d# ^ ! ^ T (s) + (�1)r# ^ d! ^ T (s) + (�1)r+k# ^ ! ^ �rHomT (s) + T (r(s))� .

In (1) we used Problem (ii). At the same time we have

(�1)rA ^ dr⇠ = (�1)r(#⌦ T ) ^ (d! ^ s+ (�1)k! ^rs)
= (�1)r# ^ d! ^ T (s) + (�1)r+k(# ^ !) ^ T (r(s)),

and

dHomA ^ ⇠ = dHom(# ^ T ) ^ (! ^ s)

= (d# ^ T ) ^ (! ^ s) + (�1)r# ^rHomT ^ ! ^ s

= d# ^ ! ^ T (s) + (�1)r+k·1# ^ ! ^rHomT (s).

It can be checked readily that the sum of the last two formulas equals the first
expression which, by linearity, concludes the proof.

(|) Problem Q.4. Let ⇡ : E !M be a vector bundle of rank k over a connected
manifold M . Fix a Lie subgroup G ⇢ GL(k).

(i) Let us say that a connection r on G is a G-connection if Holr(x) ⇢ G,
up to conjugation (cf. Corollary 32.12). Prove that this is well-defined (i.e.
independent of the choice of x).

(ii) Fix a G-connection r1, and let r2 denote any other connection. Suppose
that the di↵erence r1�r2 actually lies in1 ⌦1(M, holr1) ⇢ A1(M,E). Prove
that r2 is also a G-connection.

Solution.

(i) Essentially this was already shown in Corollary 32.12. Explicitly, let x, y 2M
and pick a linear isomorphism B : Rk ! Ex. Assume that Holr(x;B) is a
subset of G, up to conjugation: this means that

Holr(x;B) = B�1 Holr(x)B ✓ CGC�1

for some C 2 GL(k). We want to show that the same holds for y. We can
assume that C = I (just replace B with BC). Since M is connected, there
exists a piecewise smooth curve � joining x to y. By Lemma 32.11 we get

Holr(y) = bP� Holr(x)bP�1
� ,

hence letting B0 := bP�B, which is a linear isomorphism from Rk to Ey, we get

Holr(y;B0) = B�1
bP�1
� Holr(y)bP�B = B�1 Holr(x)B ✓ G.

1Recall that hol

r1 is in particular a submanifold of Hom(E,E), so this assumption makes
sense.
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(ii) Write r2 = r1 � A with A 2 ⌦1(M, holr1). Given a piecewise smooth loop
� : [0, 1]!M based at x, as in the first part we can find a linear isomorphism
B : Rk ! Ex such that

Holr1(x;B) = B�1 Holr1(x)B ✓ G.

Let vi := B(ei), so that {v1, . . . , vk} is a basis of Ex, and let `1i be the r1-
parallel lift of � starting at vi. Notice that, calling bPr1

t the parallel transport
(with respect to r1) along the curve � |[0,t], we have `i(t) = bPr1

t (vi). Similarly
we define the r2-parallel lift `2i . We can write

`2j(t) = cij(t)`
1
i (t)

for all j = 1, . . . , k, for suitable piecewise smooth coe�cients cij(t).
2 We

define C(t) to be the matrix whose (i, j)-coe�cient is cij(t), identified with
an element of GL(k). Alternatively, C(t) represents the linear transformation
R(t) : `i(t) 7! `0i(t) on E�(t), with respect to the basis {`1i (t)}ki=1, hence

C(t) =
�

bPr1
t B

��1
R(t)

�

bPr1
t B

�

(Q.1)

by virtue of the fact that
�

bPr1
t B

�

(ei) = bPr1
t (vi) = `1i (t). Moreover, by (Q.1),

B�1
bPr2
� B = B�1R(1)bPr1

� B =
�

B�1
bPr1
� B

�

C(1).

Since B�1
bPr1
� B 2 Holr1(x;B) ✓ G, it su�ces to show that also C(1) 2 G.

Now we translate the fact that `2i is r2-parallel into an ordinary di↵erential
equation for C(t). Denoting the vector field @

@t on [0, 1] by T , we have

0 = (r2)T (t)(`
2
j)(t)

= (r1)T (t)(`
2
j)(t)� A(�0(t))(`2j(t))

= (r1)T (t)(c
i
j`

1
i )(t)� A(�0(t))(cij(t)`

1
i (t))

=
�

cij
�0
(t)`1i (t)� cij(t)A(�

0(t))(`1i (t)).

(Q.2)

Let A(t) :=
�

bPr1
t B

��1
A(�0(t))

�

bPr1
t B

�

be the matrix representing A(�0(t))
with respect to the basis {`1i (t)}ki=1. We claim that A(t) 2 g, the Lie algebra
of G:3 this holds because the isomorphism

GL(E�(t))! GL(k), S 7! �

bPr1
t B

��1
S
�

bPr1
t B

�

sends the Lie subgroup Holr1(�(t)) to Holr1(x;B) ✓ G (by Lemma 32.11,

since the conjugation S 7! �

bPr1
t

��1
S bPr1

t sends Holr1(�(t)) to Holr1(x)),
hence its di↵erential at the identity (given by the same formula) sends the
Lie algebra hol

r1(�(t)) into g.

2This holds as {`
i

}k
i=1 is a frame for the pullback bundle �⇤E. Strictly speaking, some care

is needed as � is a piecewise smooth curve; this is not harmful since one can get the smoothness
of the coe�cients ci

j

(t) on the finitely many intervals where � is genuinely smooth.
3The proof that we give is essentially the same as the one of Remark 34.5.
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Now, using again `1i (t) =
�

bPr1
t B

�

(ei) and applying
�

bPr1
t B

��1
to (Q.2), we

get
�

cij
�0
(t)ei � cij(t)A(t)(ei) = 0

for all j = 1, . . . , k, which can be rewritten as

�

ckj
�0
(t)ek = cij(t)a

k
i (t)ek,

or (using that ek is a basis and equating the coe�cients of ek)

C 0(t) = A(t)C(t).

We claim that, together with C(0) = I and A(t) 2 g, this implies C(t) 2 G
for all t 2 [0, 1]. Unlike the scalar case, the solution is not given by the explicit
formula exp

� R t

0
A(s) ds

�

in general, so we have to use a di↵erent argument.
On the manifold [0, 1]⇥G we define the (piecewise smooth) vector field

Y (t, g) :=
d

dt
+XA(t)(g),

whereXA(t) is the right-invariant vector field corresponding to A(t) 2 g on the

G factor. The integral curve starting from (0, I) has the form s 7! (s, eC(s)),
with eC 0(s) = A(s) eC(s) (once we implicitly compose eC with the inclusion
◆ : G ,! GL(k)).4 So by uniqueness C ⌘ eC (and eC(s) is defined for all times
s 2 [0, 1]). Since eC(s) 2 G, we get C(s) 2 G, as wanted.

4This is due to the trivial fact that, given a Lie group H and a Lie subgroup H 0, with
inclusion map ◆ : H 0 ,! H, the right-invariant vector fields corresponding to v 2 h

0 in H 0 and
H are ◆-related (a similar statement holds for left-invariant vector fields), and to the fact that
right-invariant vector fields in GL(k) are given by X

M

(T ) = MT , for all M 2 gl(k).
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Problem Sheet R

Problem R.1. Let ⇡ : E !M be a vector bundle with Riemannian metric m, and
suppose r is a connection on E that is Riemannian with respect to m. Fix x 2M .
Prove that the holonomy group Holr(x) is a subgroup of the orthogonal group

O(Ex,mx) := {T 2 L(Ex, Ex) | mx(T (p), T (q)) = mx(p, q), 8 p, q 2 Ex} .
Problem R.2. Let ⇡ : E ! M be a vector bundle with Riemannian metric m.
Given p 2 E define p[ 2 E⇤ by

p[(q) := m⇡(p)(p, q)

(i) Prove that [ : E ! E⇤ is a vector bundle isomorphism.

(ii) Let ] : E⇤ ! E denote the inverse of E (written ⌘ 7! ⌘]). Prove that

m⇤(⌘, µ) := mx(⌘
], µ]), ⌘, µ 2 E⇤

x

defines a Riemannian metric on E⇤.

(iii) Prove that (E,m) and (E⇤,m⇤) are isometric vector bundles in the sense
of Definition 36.10. Remark: The vector bundle isomorphisms [ and ] are
usually1 called the musical isomorphisms.

(|) Problem R.3. Let � 2 PGL(k)(gl(k)) be an invariant homogeneous polynomial
of odd degree 2r + 1. Prove that CWE(�) = 0 for any vector bundle of rank k.

(|) Problem R.4. Let ⇡ : E ! M be a vector bundle of rank k. Prove that the
Chern-Weil map

CWE : PGL(k)(gl(k))! H⇤
dR(M)

is an algebra homomorphism (where the algebra structure on the left-hand side is
just the pointwise product of functions, and on the right-hand side it is the wedge
product, cf. Definition 37.20).

(|) Problem R.5. Suppose that E1 and E2 are two vector bundles over a smooth
manifold M . Prove the Whitney product formula for the Pontryagin classes2

pr(E1 � E2) =
r
X

i=0

pi(E1) ^ pr�i(E2).

(|) Problem R.6. Prove directly that pr(TSn) = 0 for all r > 0. (Don’t just
quote Proposition 37.22!) Remark: This shows that Pontryagin classes alone cannot
determine a vector bundle up to isomorphism (since TSn ! Sn is not a trivial
bundle).

Will J. Merry, Di↵. Geometry II, Spring 2019, ETH Zürich. Last modified: June 28, 2019.
1 There is no relation between between the musical isomorphisms and the ]-[ correspondence

in Theorem 26.17—this is purely a notational conincidence.
2For those of you who are familiar with Algebraic Topology: the statement would be more

complicated if one worked with (singular) cohomology with coe�cients in Z, since then one would
need to worry about 2-torsion elements.
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Solutions to Problem Sheet R

Problem R.1. Let ⇡ : E !M be a vector bundle with Riemannian metric m, and
suppose r is a connection on E that is Riemannian with respect to m. Fix x 2M .
Prove that the holonomy group Holr(x) is a subgroup of the orthogonal group

O(Ex,mx) := {T 2 L(Ex, Ex) | mx(T (p), T (q)) = mx(p, q), 8 p, q 2 Ex} .
Solution. The thesis is equivalent to prove that for every piecewise smooth loop
� : [a, b]!M at x it holds that

mx(bP�(p), bP�(q)) = mx(p, q)

for all p, q 2 Ex.
Actually we will prove something more, that is P�(·)(t) is an isometry for all

t 2 [a, b], which means that

m�(t)(P�(p)(t),P�(q)(t)) = mx(p, q)

for all p, q 2 Ex. Indeed, thanks to the solution of Problem P.2 we have that

d

dt
[m�(t)(P�(p)(t),P�(q)(t))] = (r�0(t)m�(t))(P�(p)(t),P�(q)(t))

+m�(t)(r�0(t)P�(p)(t),P�(q)(t))
+m�(t)(P�(p)(t),r�0(t)P�(q)(t)).

However notice thatr�0(t)m�(t) = 0 since the connection is Riemannian with respect
to m and that r�0(t)P�(p)(t) = r�0(t)P�(q)(t) = 0 thanks to Proposition 32.3.
Consequently d

dt [m�(t)(P�(p)(t),P�(q)(t))] = 0, which proves what we wanted.

Problem R.2. Let ⇡ : E ! M be a vector bundle with Riemannian metric m.
Given p 2 E define p[ 2 E⇤ by

p[(q) := m⇡(p)(p, q)

(i) Prove that [ : E ! E⇤ is a vector bundle isomorphism.

(ii) Let ] : E⇤ ! E denote the inverse of E (written ⌘ 7! ⌘]). Prove that

m⇤(⌘, µ) := mx(⌘
], µ]), ⌘, µ 2 E⇤

x

defines a Riemannian metric on E⇤.

(iii) Prove that (E,m) and (E⇤,m⇤) are isometric vector bundles in the sense of
Definition 36.10. Remark: The vector bundle isomorphisms [ and ] are usu-
allyfootnote There is no relation between between the musical isomorphisms
and the ]-[ correspondence in Theorem 26.17—this is purely a notational
conincidence. called the musical isomorphisms. called the musical iso-
morphisms.

Solutions written by Giada Franz, Francesco Palmurella, Alessio Pellegrini, and Alessandro
Pigati. Last modified: June 28, 2019.
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Solution.

(i) First notice that, by definition, we have that ⇡E(p) = ⇡E⇤(p[). Therefore the
map [ is a vector bundle morphism, since it is also obviously linear. However
[ is also patently injective since mx is non-degenerate and consequently it is
a vector bundle isomorphism.

(ii) First notice thatm⇤ is an element of �(E,E). Moreoverm⇤
x is an inner product,

since ] is an isomorphism between E⇤
x and Ex.

(iii) We have that ] : E⇤ ! E is a vector bundle isomorphism and the metric
m⇤ has been defined exactly in order to satisfy the extra relation needed in
Definition 36.10 to be a isometric vector bundle morphism.

(|) Problem R.3. Let � 2 PGL(k)(gl(k)) be an invariant homogeneous polynomial
of odd degree 2r + 1. Prove that CWE(�) = 0 for any vector bundle of rank k.

Solution. Using Proposition 36.11 we endow E with a Riemannian metric m.
Proposition 36.17 provides us with a Riemannian connection r with respect to m.
Given an endomorphism T 2 Hom(Ex, Ex), we define its adjoint T ⇤ 2 Hom(Ex, Ex)
to be the unique endomorphism satisfying

mx(T (v), w) = mx(v, T (w)) for v, w 2 Ex.

Alternatively, identifying Hom(Ex, Ex) with E⇤
x ⌦ Ex as in Corollary 15.13, this

operation (which is an endomorphism of Hom(Ex, Ex)) is defined on generators by
(⌘ ⌦ v)⇤ := v[ ⌦ ⌘].

If {e1, . . . , ek} is a local orthonormal frame (whose existence is guaranteed by
Lemma 36.12), we can write a section T 2 �(Hom(E,E)) locally as

T =
k
X

i,j=1

tije[j ⌦ ei

for suitable smooth functions tij,1 obtaining

T ⇤ =
k
X

i,j=1

tjie[j ⌦ ei.

This shows that also T ⇤ is a smooth section of Hom(E,E), and that (tij(x)), (tji(x))
are the matrices representing T (x) and T ⇤(x) with respect to the basis {ei(x)}. In
other words, T 7! T ⇤ corresponds to matrix transposition (with respect to an
orthonormal basis). Observe that this operation extends canonically to sections in
A`(M,E): for a decomposable element ⌘ ⌦ T we let

(! ⌦ T )⇤ := ! ⌦ T ⇤.

Moreover, according to Corollary 36.19, we have (Rr)⇤ = �Rr. Hence, calling �
the parallel section of (Homr(E,E))⇤ induced by �,

�((Rr)⇤ ⌦ · · ·⌦ (Rr)⇤) = �((�Rr)⌦ · · ·⌦ (�Rr))

= (�1)2r+1�(Rr ⌦ · · ·⌦Rr)
(R.1)

1Notice that {e[
j

(x)} is a basis of E⇤
x

, and in fact is the dual basis to {e
i

(x)}.
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(being � fiberwise a linear functional). Now the key observation is that

�(A) = �(A⇤) (R.2)

for every element A 2 gl(k), where A⇤ denotes the transpose: this holds because,
as we know from linear algebra, every matrix is conjugate to its transpose. An
alternative argument is the following: viewing � as a polynomial function in the
entries of the matrix, we have �(CAC�1) = �(A) also when A and C have complex
entries (and C is invertible).2 If A 2 gl(k,C) is diagonalizable, then we can write
A = CDC�1 with D diagonal, hence

�(A) = �(D) = �(D⇤) = �((C⇤)�1D⇤(C⇤)) = �(A⇤)

(here A⇤ still denotes the transpose of A). Since diagonalizable matrices are dense
in gl(k,C), we deduce that our claim (R.2) holds for any A 2 gl(k,C) (and in
particular for real matrices). Letting S := polar(�), we also have

S(A⇤
1 ⌦ · · ·⌦ A⇤

2r+1) = S(A1 ⌦ · · ·⌦ A2r+1) for A1, . . . , A2r+1 2 gl(k),

as the left-hand side defines a symmetric tensor S 0 with polar�1(S 0) = polar�1(S)
(whence S 0 = S). We infer that the same holds replacing the Ai’s with elements of
A`(M,E),3 so that

�((Rr)⇤ ⌦ · · ·⌦ (Rr)⇤) = �(Rr ⌦ · · ·⌦Rr). (R.3)

From (R.1) and (R.3) we get

�(Rr ⌦ · · ·⌦Rr) = 0

and so CWE(�) = [�(r)] = [�(Rr ⌦ · · ·⌦Rr)] = 0.

(|) Problem R.4. Let ⇡ : E ! M be a vector bundle of rank k. Prove that the
Chern-Weil map

CWE : PGL(k)(gl(k))! H⇤
dR(M)

is an algebra homomorphism (where the algebra structure on the left-hand side is
just the pointwise product of functions, and on the right-hand side it is the wedge
product, cf. Definition 37.20).

Solution. We are going to show that for any two homogeneous polynomials, say
� of degree r and  of degree s, one has

CWE(� ·  ) = CWE(�) ^ CWE( ). (R.4)

2We have �(AB) = �(A(BA)A�1) = �(BA) when A is invertible, hence (being invertible
matrices a dense subset of gl(k)) �(AB) = �(BA) for all real A,B 2 gl(k). Both sides of this
identity are polynomial functions in the entries of A and B, so it must hold also for A,B 2 gl(k,C).
In particular, �((CA)C�1) = �(C�1(CA)) = �(A) also for A,C 2 gl(k,C).

3This holds because, as already observed, for T 2 Hom(E
x

, E
x

) the endomorphism T ⇤ 2
Hom(E

x

, E
x

) is given by transposition (with respect to an orthonormal basis): namely, if F : Rk !
E

x

is a linear isometry, then F�1 � T ⇤ � F 2 gl(k) is the transpose of F�1 � T � F 2 gl(k).
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Recall that ✓ = �· is a homogeneous polynomial of degree r+s defined by point-
wise multiplication and that there is a section on the dual bundle (Homr+s(E,E))⇤

induced by the polarisation of ✓, namely

⇥x(T1 ⌦ · · ·⌦ Tr+s) := polar(✓)(F�1 � T1(x) � F, . . . , F�1 � Tr+s(x) � F ),

where the Ti’s are sections on Hom(E,E) and F : Rk ! Ex is an element in Fr(E)x.
For decomposable elements

Ui = !i ⌦ Ti 2 ⌦(M,Hom(E,E))

one extends ⇥ as follows:

⇥(U1 ⌦ · · ·⌦ Ur+s)
(1)
= ⇥ ((!1 ^ · · · ^ !r+s)⌦ T1 ⌦ · · ·⌦ Tr+s)

= ⇥(T1 ⌦ · · ·⌦ Tr+s)
| {z }

2C1(M)

· (!1 ^ · · · ^ !r+s)
| {z }

2⌦r+s(M)

2 ⌦r+s(M).

In (1) here we used Definition 37.12. Now that we understand how the induced
sections ⇥, � and  operate on decomposable elements ⌦(M,Hom(E,E)) we will
prove the identity

⇥(

(r+s)�times
z }| {

U ⌦ · · ·⌦ U) = �(

r�times
z }| {

U ⌦ · · ·⌦ U) ^ (
s�times

z }| {

U ⌦ · · ·⌦ U) 2 ⌦(M). (R.5)

By linearity it su�ces to show (R.5) for a decomposable element U = ! ⌦ T with
! 2 ⌦(M) and T 2 �(Hom(E,E)). We compute

⇥(U ⌦ · · ·⌦ U) = ⇥(T ⌦ · · ·⌦ T ) ·
(r+s)�times
z }| {

! ^ · · · ^ !
= polar(✓)(F�1 � T � F, . . . , F�1 � T � F ) · ! ^ · · · ^ !

= polar(� ·  )(F�1 � T � F, . . . , F�1 � T � F ) · (
r�times

z }| {

! ^ · · · ^ !) ^ (

s�times
z }| {

! ^ · · · ^ !),
(R.6)

but using that polar is an algebra (iso)morphism with the corresponding multipli-
cation4 on the symmetric tensor (cf. Definition 37.4) we get

(R.6) = �(

r�times
z }| {

T ⌦ · · ·⌦ T ) · (
s�times

z }| {

T ⌦ · · ·⌦ T ) · (
r�times

z }| {

! ^ · · · ^ !) ^ (

s�times
z }| {

! ^ · · · ^ !)
= (�(T ⌦ · · ·⌦ T ) · (! ^ · · · ^ !)) ^ ( (T ⌦ · · ·⌦ T ) · (! ^ · · · ^ !))
= �(U ⌦ · · ·⌦ U) ^ (U ⌦ · · ·⌦ U).

This proves (R.5) for decomposable elements, whence for the general case. The
claim, i.e. the identity (R.4), now follows from (R.5) by setting U = Rr.

(|) Problem R.5. Suppose that E1 and E2 are two vector bundles over a smooth
manifold M . Prove the Whitney product formula for the Pontryagin classes5

pr(E1 � E2) =
r
X

i=0

pi(E1) ^ pr�i(E2).

4Note how the product becomes very simply in our case as there are no permutations.
5For those of you who are familiar with Algebraic Topology: the statement would be more

complicated if one worked with (singular) cohomology with coe�cients in Z, since then one would
need to worry about 2-torsion elements.
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Solution. In order to compute pr(E1 � E2) one needs to choose a connection r
on the bundle E1 � E2. Fixing ri any connection on Ei for i = 1, 2, we define

r : X(M)⇥ �(E1 � E2)! �(E1 � E2)

as follows: For two sections si 2 �(Ei) i = 1, 2, and a vector field X 2 X(M) we
define

rX(s1 � s2) := r1
Xs1 �r2

Xs2

and extend linearly. This defines a covariant derivative on E1 � E2. Indeed, the
linearity in both entries and the C1-homogeneous bit in the first entry are clear,
thus we will only check the Leibniz rule: Pick a smooth function f 2 C1(M) and
observe

rX(f · (s1 � s2)) = rX((f s1 � f s2))

= r1
X(f s1)�r2

X(f s2)

=
�

X(f) · s1 + f ·r1
Xs1
�� �X(f) · s2 + f ·r2

Xs2
�

= X(f) · (s1 � s2) + f · �r1
Xs1 �r2

Xs2
�

= X(f) · (s1 � s2) + f ·rX(s1 � s2).

This choice of connection has the advantage that the corresponding curvature tensor
Rr is of the form

Rr = Rr1 �Rr2

,

or in matrix notation

Rr =

✓

Rr1
0

0 Rr2

◆

.

This is easy to see by invoking the formula Rr(X, Y ) = rXrY �rXrY �r[X,Y ]
6.

There is a crucial relation between the coe�cients of the characteristic polyno-
mial �k

r(A) of a block diagonal matrix

A = A1 � A2 : Rk1 � Rk2 ! �A2 : Rk1 � Rk2

and the corresponding coe�cients for A1 and A2: Denoting these coe�cients by
�k1
i (A1) and �

k2
j (A2), we claim that

�k
r(A) =

X

i+j=r

�k1
i (A1) · �k2

j (A2) (R.7)

holds. Indeed, the matrix tIk⇥k + A is again block diagonal of the form

(tIk1⇥k1 + A1)� (tIk2⇥k2 + A2),

thus
det(tIk⇥k + A) = det(tIk1⇥k1 + A1) · det(tIk2⇥k2 + A2).

Expanding the characteristic polynomials of A,A1 and A2, using the relation above
and comparing the coe�cients then gives us (R.7).

6I’m not lying! Try writing out r
X

r
Y

(s1 � s2) and you will see how it goes.
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Similarly to the solutions of the previous problem, we will first show the equality

�k(

r�times
z }| {

V ⌦ · · ·⌦ V ) =
X

i+j=r

�k1
i (

i�times
z }| {

V1 ⌦ · · ·⌦ V1) ^ �k
j(

j�times
z }| {

V2 ⌦ · · ·⌦ V2), (R.8)

for V = V1 � V2 2 ⌦(M,Hom(E,E)) with Vi 2 ⌦(M,Hom(Ei, Ei)) for i = 1, 2.
Once we have shown (R.8) the desired result follows by taking r even and setting
Vi = Rri

for i = 1, 2.
Let us prove (R.8) on decomposable elements of the form

V = ! ⌦
=T

z }| {

(T1 � T2) = (! ⌦ T1)� (! ⌦ T2).

The result for a general V = V1⌦ V2 then follows by linearity. We start computing

�k(V ⌦ · · ·⌦ V ) = �k(T ⌦ · · ·⌦ T ) · (! ^ · · · ^ !)
= polar(�k

r)(F
�1 � T � F, . . . , F�1 � T � F ) · (! ^ · · · ^ !). (R.9)

By the invariance of polar we are free to choose any F : Rk ! Ex in the fibre
Fr(E)x, so we may choose an F that is block diagonal F = F1 � F2 such that

F�1 � T � F = (F�1
1 � T1 � F1)� (F�1

2 � T2 � F2).

Therefore

(R.9) =
X

i+j=r

polar(�k
r)(F

�1 � T � F, . . . , F�1 � T � F ) · (! ^ · · · ^ !)

=



X

i+j=r

polar(�k1
i )(F�1

1 � T1 � F1, . . . , F
�1
1 � T1 � F1)

· polar(�k2
j )(F�1

2 � T2 � F2, . . . , F
�1
2 � T2 � F2)

�

· (! ^ · · · ^ !)

=
X

i+j=r

�k1
i (V ⌦ · · ·⌦ V ) ^ �k2

j (V ⌦ · · ·⌦ V ).

where the last two steps used a similar argument as in the solution to the previous
problem, but one needs to be careful: Since �k1

i : gl(k1) ! R and �k2
j : gl(k2) ! R

are defined on di↵erent vector spaces, they live in di↵erent spaces and one cannot
invoke the algebra property of polar directly. However, one can view both as
homogeneous polynomials on gl(k) = gl(k1 + k2) in the obvious way. In particular,
polar(�k1

i ) satisfies

polar(�k1
i )(F�1�T �F, . . . , F�1�T �F ) = polar(�k1

i )(F�1
1 �T1�F1, . . . , F

�1
1 �T1�F1).

A similar formula hods for �k2
j . Then using (R.7) one obtains

�k
r =

X

i+j=r

�k1
i · �k2

j in PGL(k)(gl(k)),

whence justifying the equality above.
As already anticipated, taking 2r instead of r, setting V = Rr1 � Rr2

and
taking the cohomology class on both sides shows the desired equality.
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(|) Problem R.6. Prove that pr(TSn) = 0 for all r > 0. Remark: This shows
that Pontryagin classes alone cannot determine a vector bundle up to isomorphism
(since TSn ! Sn is not a trivial bundle). Note that Proposition 37.22 is not
contradicted, as Sn does embed in Rn+1!

Solution. In Problem P.4 we computed that the curvature tensor of Sn is

R(X1, X2)(V ) = hX1, V iX2 � hX2, V iX1, for every X1, X2, V 2 TSn.

If v1, . . . , vn is any local orthonormal frame on TSn (i.e. v1(p), . . . vn(p) are lin-
early independent elements of TpSn and hvj(p), vk(p)i = �jk) and v1, . . . , vn is the
corresponding dual frame, we see that

R(X1, X2)(vj) = hXk
1 vk, vjiX l

2vl � hXk
2 vk, vjiX l

1vl

= (Xj
1X

l
2 �Xj

2X
l
1)vl

= (vj ^ vl)(X1, X2)vl,

that is, the expression of the endomorphism R(X1, X2) : TpSn ! TpSn in the basis
v1, . . . vn is R(X1, X2)lj = (vj ^vl)(X1, X2). The r-th Pontryagin class of Sn (r > 0)
is then represented by the 4r-form

pr =
1

(2⇡)k

X

1j1<···<j2rn
�2S

j1,...,j2r

(sgn �)R�(j1)
j1 ^ · · · ^R�(j2r)

j2r

=
1

(2⇡)k

X

1j1<···<j2rn
�2S

j1,...,j2r

(sgn �)vj1 ^ v�(j1) ^ · · · ^ vj2r ^ v�(j2r),

where Sj1,...j2r denotes the set of permutations of {j1, . . . , j2r}. Now, for every term,
every vjk appears two times in the wedge product and since since ! ^ ! ⌘ 0 for
every 1-form, this implies that every term is zero. Thus pr ⌘ 0.
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Problem Sheet S

Problem S.1. Let P be a manifold and g a Lie algebra. Let # 2 ⌦1(P, g). Prove
that the 3-form [[#,#],#] 2 ⌦3(P, g) (defined as in Example 26.7) is identically zero.

Problem S.2. Let ⇡ : P ! M denote a principal G-bundle, and let $ denote a
connection on P with curvature form ⌦. Fix X, Y 2 X(M), and let X and Y
denote their horizontal lifts. Prove that

[X, Y ](p)� ⇥X, Y
⇤

(p) = D⌘p(e)
⇥

⌦p(X(p), Y (p))
⇤

,

where ⌘p : G! P is the map a 7! p · a.
Problem S.3. Let ⇡ : P !M denote a principal G-bundle, and let ⇢ : G! GL(V )
denote a smooth e↵ective representation of G. Let � := D⇢(e), and suppose f : P !
V is an equivariant smooth function. Prove that for any v 2 g, one has

⇠v(f) + �(v)[f ] = 0.

Problem S.4. Let ⇡ : P !M be a principal G-bundle. Let ⇢ : G! GL(V ) denote
an e↵ective representation. Let $ denote a connection on P and let r denote
the associated connection on ⇢(P ). Fix x 2 M . Then we can regard Hol$(x)
and Holr(x) as subgroups of G and GL(V ) respectively, which are defined up to
conjugation. Prove that (up to conjugation)

⇢
�

Hol$(x)
�

= Holr(x).

(|) Problem S.5. Let ⇡ : E !M be a vector bundle of rank k, and let Fr(E)!
M denote the principal GL(k)-bundle. Then by Proposition 39.1 there is a bijective
correspondence between connections on E and connections on Fr(E). Fix a Lie
subgroup G ⇢ GL(k). Prove that a connection r on E is a G-connection in the
sense of Problem Q.4 if and only if the corresponding connection $ on Fr(E) is
reducible to G in the sense of Definition 41.5.

(|) Problem S.6. Use the principal bundle version of the Bianchi Identity (i.e.
(39.6)) to prove the vector bundle version (Theorem 36.1).

(|) Problem S.7. Use the principal bundle version of the Ambrose-Singer Holon-
omy Theorem (Theorem 41.7) to prove the vector bundle version (Theorem 34.8).

(|) Problem S.8. Develop the theory of characteristic classes for principal bun-
dles1.

Will J. Merry, Di↵. Geometry II, Spring 2019, ETH Zürich. Last modified: June 28, 2019.
1Solutions will not be provided for this problem!
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Solutions to Problem Sheet S

Problem S.1. Let P be a manifold and g a Lie algebra. Let # 2 ⌦1(P, g). Prove
that the 3-form [[#,#],#] 2 ⌦3(P, g) (defined as in Example 26.7) is identically zero.

Solution. For a fixed basis e1, . . . , en of g, we may represent # as # = !i ⌦ ei for
suitable 1-forms !1, . . . ,!n 2 ⌦1(P ), hence

[#,#] = [!i ⌦ ei,!
j ⌦ ej] = !i ^ !j ⌦ [ei, ej],

[[#,#],#] = [!i ^ !j ⌦ [ei, ej],!
k ⌦ ek] = !i ^ !j ^ !k ⌦ [[ei, ej], ek].

From the Jacobi identity and the alternating property of the wedge product, we
see that

[[#,#],#] = !i ^ !j ^ !k ⌦ [[ei, ej], ek]

= �!i ^ !j ^ !k ⌦ [[ej, ek], ei]� !i ^ !j ^ !k ⌦ [[ek, ei], ej]

= �!j ^ !k ^ !i ⌦ [[ej, ek], ei]� !k ^ !i ^ !j ⌦ [[ek, ei], ej]

= �2!i ^ !j ^ !k ⌦ [[ei, ej], ek]

= �2[[#,#],#],
where we relabelled the sums over repeated indexes in the last step. Necessarily
then [[#,#],#] = 0.

Problem S.2. Let ⇡ : P ! M denote a principal G-bundle, and let $ denote a
connection on P with curvature form ⌦. Fix X, Y 2 X(M), and let X and Y
denote their horizontal lifts. Prove that

[X, Y ](p)� ⇥X, Y
⇤

(p) = D⌘p(e)
⇥

⌦p(X(p), Y (p))
⇤

,

where ⌘p : G! P is the map a 7! p · a.
Solution. First of all we observe that as a general fact for preconnections one has

[X, Y ]H = [X, Y ],

see Lemma 28.9. Thus the left-hand side of the desired equality is just minus the
vertical part, i.e.

�[X, Y ]V .

Using
$p(⇣) = D⌘p(e)

�1[⇣V ]

as the definition of the connection form we observe that

D⌘p(e)
⇥

⌦p(X(p), Y (p))
⇤

= �D⌘p(e)
⇥

$p

�

[X, Y ](p)
� ⇤

= �[X, Y ]V (p),

which proves the desired equality.
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Problem S.3. Let ⇡ : P !M denote a principal G-bundle, and let ⇢ : G! GL(V )
denote a smooth e↵ective representation of G. Let � := D⇢(e), and suppose f : P !
V is an equivariant smooth function. Prove that for any v 2 g, one has

⇠v(f) + �(v)[f ] = 0.

Solution. First notice that

⇠v(f)(p) = Df(p)[⇠v(p)] = Df(p)[D⌘p(e)[v]] = D(f � ⌘p)(e)[v],
for every p 2 P and g 2 g. Moreover, using the equivariance of f , we have that

f � ⌘p(a) = f(p · a) = ⇢(a�1)(f(p)),

for every p 2 P and a 2 G. If i : G! G denotes the inversion map then Di(e)[v] =
�v by the chain rule. Thus from the previous equation we have

⇠v(f)(p) = D(f � ⌘p)(e)[v]
= D⇢ �Di(e)[f(p)]

= �D⇢(e)[v][f(p)]
= ��(v)[f(p)],

which is what we wanted.

Problem S.4. Let ⇡ : P !M be a principal G-bundle. Let ⇢ : G! GL(V ) denote
an e↵ective representation. Let $ denote a connection on P and let r denote
the associated connection on ⇢(P ). Fix x 2 M . Then we can regard Hol$(x)
and Holr(x) as subgroups of G and GL(V ) respectively, which are defined up to
conjugation. Prove that (up to conjugation)

⇢
�

Hol$(x)
�

= Holr(x),

Solution. Let x 2M and fix a p 2 Px and denote E = ⇢(P ) the associated vector
bundle. We will use superscripts $ and r in order to distinguish the two parallel
transport systems

bP$� : Px ! Px and bPr
� : Ex ! EX

associated to the piecewise smooth loop � : [0, 1]! M based at x. Using the map
�p : Hol

$(x) ! H$(p) from Proposition 41.2 we can identify bP$� with the unique
element

b = �p(bP$� ) 2 G

such that
p · b = bP$� (p).

The fibre Ex = (P ⇥G V )x can be viewed as the set of equivalence classes [q, v],
where q = p is fixed and v runs over V . Recall the isomorphism

Lp : V ! Ex, v 7! [p, v].

The task at hand is to show

⇢
⇣

�p(bP$� )
⌘

= L�1
p � bPr

� � Lp. (S.1)
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We prove (S.1) by feeding a vector v 2 V to both sides. Observe that

⇢
⇣

�p(bP$� )
⌘

(v) = ⇢b(v)

and

L�1
p � bPr

� � Lp(v) = L�1
p � bPr

� [p, v]
(1)
= L�1

p

⇣

⇥

bP$
� (p), v

⇤

⌘

= L�1
p

⇥

p · b, v⇤
(2)
= L�1

p [p, ⇢b(v)]

= ⇢b(v).

In (1) we used the induced parallel transport system on E coming from P (cf. proof
of Theorem 38.5) and in (2) we simply used the very definition of ⇢(P ) = P ⇥G V.
This proves (S.1) and thus completes the proof.

(|) Problem S.5. Let ⇡ : E !M be a vector bundle of rank k, and let Fr(E)!
M denote the principal GL(k)-bundle. Then by Proposition 39.1 there is a bijective
correspondence between connections on E and connections on Fr(E). Fix a Lie
subgroup G ⇢ GL(k). Prove that a connection r on E is a G-connection in the
sense of Problem Q.4 if and only if the corresponding connection $ on Fr(E) is
reducible to G in the sense of Definition 41.5.

Solution. We show the following statement: a connectionr on E is aG-connection
if and only if, for any q 2 Fr(E), there exists a principal G0-subbundle Q 3 q
such that the corresponding connection $ is reducible to Q, for some subgroup
G0 ✓ GL(k) conjugated to G.1

Assume r is a G-connection. We fix q 2 Fr(E) and observe that, by Problem
S.4 (taking V := Rk, ⇢ := ◆ and identifying ⇢(P ) with E),

Hol$(q) = Holr(x; q),

where x := ⇡(q). By hypothesis, we have Holr(x; q) ✓ G0 for some subgroup
G0 ✓ GL(k) conjugated to G. Now the strategy is essentially the same as the one
used to prove Theorem 41.6. We call Q the set of points which can be joined, by
means of a piecewise smooth horizontal path, to a point of the form q · g, with
g 2 G0. In the sequel, we will often use the notation

q ·G0 := {q · g | g 2 G0}.

The same argument used in the proof of Theorem 41.6 shows that ⇡|Q is surjective
and that local sections exist. We now show that the action of G0 preserves Q: given
q0 2 Q, we have q0 = bP�(q · g) for some g 2 G0 and some curve � joining x to ⇡(q0).
Then, by equivariance of parallel transport, we have

q0 · g0 = bP�(q · g) · g0 = bP�((q · g) · g0) = bP�(q · (gg0)) 2 Q,

1G0 can depend on q.
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for all g0 2 G0. Finally, we show that the action of G0 is transitive on each fibre:
given q1, q2 2 Q\Py we can write qj = bP�

j

(q ·gj) for suitable gj 2 G0 and �j : [0, 1]!
M with �j(0) = x, �j(1) = y (for j = 1, 2). The curve �2 ⇤ ��1 is a loop based at x,
so

bP�2⇤��1 (q) = q · b
for some b 2 Hol$(q) ✓ G0. Thus,

q2 = bP�2⇤��1 ⇤�1(q · g2)
= bP�2⇤��1 ⇤�1(q) · g2
= bP�1(q · b) · g2
= bP�1(q · g1) · (g�1

1 bg2)

= q1 · (g�1
1 bg2)

by equivariance. This shows that q2 2 q1 · G0, as desired. So Proposition 24.20
applies, telling us that Q 3 q is a principal G0-subbundle of Fr(E). The fact that
$ is reducible to Q follows exactly as in the proof of Theorem 41.6.

Conversely, given x 2 M , we pick a frame q 2 Fr(Ex) and a principal G0-
subbundle containing q. Given a piecewise smooth loop � : [0, 1] ! M based at
x, there exists a horizontal lift c : [0, 1] ! Q with c(0) = q. The endpoint c(1)
lies in Qx = q · G0. Also, observe that saying that c is horizontal with respect to
the reduced connection on Q is equivalent to saying that c is $-horizontal, so that
bP�(q) = c(1) 2 q ·G0. Hence,

Holr(x; q) = Hol$(q) ✓ G0.

(|) Problem S.6. Use the principal bundle version of the Bianchi Identity (i.e.
(39.6)) to prove the vector bundle version (Theorem 36.1).

Solution. Recall that any vector bundle ⇡ : E ! M can be identified with the
associated bundle ⇢(Fr(E)), where b⇡ : Fr(E) ! M is the frame bundle of E and
⇢ = id is the canonical representation. Specifically, the identification is given by
the isomorphism

⇢(Fr(E))! E, [A, v] 7! A(v)

where we view the frame A as a linear map Rk ! TpM for p := b⇡(A). With the
above identification in mind, fixing A 2 Fr(E), Theorem 40.9 tells us that

Rr(Db⇡(A)[⇣].Db⇡(A)[⇠])(A(v)) = [A,⌦A(⇣, ⇠)(v)] = (⌦A(⇣, ⇠))
i
jv

j[A, ei]. (S.2)

Using Theorem 35.5 we get

dr
Hom

(Rr)(X, Y, Z) = rHom
X (Rr(Y, Z))�rHom

Y (Rr(x, Z)) +rHom
Z (Rr(X, Y ))

�Rr([X, Y ], Z) +Rr([X,Z], Y )�Rr([Y, Z], X).

Observe that, by (S.2), for a fixed v 2 Rk we have

Rr([X, Y ], Z)(A(v)) = [A,⌦A([X, Y ], Z)(v)], (S.3)
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with X denoting the horizontal lift of X, and similarly for the last two terms. We
claim that2

rHom
X (Rr(Y, Z))(A(v)) = A(X(⌦(Y , Z)(v))). (S.4)

Indeed, let p := b⇡(A) and let � : (�✏, ✏) ! M be a curve with �0(0) = X(p). Let
A(t) be the parallel transport of A along � (so that A(0) = A). Then

rHom
X (Rr(Y, Z))(A(v)) = rT (R

r(Y, Z)(A(t)(v))) = rT [A(t),⌦A(t)(Y , Z)v]

=
d

dt
(⌦A(t)(Y , Z))ijv

j
�

�

t=0
[A, ei]

(where T is the vector d
dt at 0), since A(t)(v) = [A(t), v] and [A(t), ei] are parallel

(see the first proof of Theorem 38.5). As d
dtA(t)

�

�

t=0
= X(A), (S.4) follows. Now

(S.3) and (S.4) give

dr
Hom

(Rr)(X, Y, Z)(A(v)) = A(d⌦(X, Y , Z)(v)),

as d⌦(X, Y , Z) expands with an analogous formula with six terms.3 The last term
vanishes by the principal bundle version of the Bianchi identity, i.e. d⌦ = [⌦,$],
as $ vanishes on horizontal lifts. Being v and A arbitrary, the statement follows.

(|) Problem S.7. Use the principal bundle version of the Ambrose-Singer Holon-
omy Theorem (Theorem 41.7) to prove the vector bundle version (Theorem 34.8).

Solution. Consider a vector bundle ⇡ : E ! M and fix a point x 2 M , we want
to prove that the holonomy algebra hol

r(x) is the subalgebra of gl(Ex) spanned by
all the elements of the form

P̂r
� �Rr(v1, v2) � (P̂r

� )
�1

with y 2M , v1, v2 2 TyM and � a piecewise smooth curve from y to x.
Consider the principal GL(k)-bundle ⇡ : Fr(E)!M associated to E and denote

P = Fr(E). Notice that the correspondence between E and Fr(E) is given by the
trivial representation ⇢ = id: GL(k) ! GL(k). In particular the vector space
considered is V = Rk. The key idea of the translation from the principal bundle
setting to the vector bundle setting is that, for every x 2 M and p 2 Px, the
conjugation with Lp : Rk ! Ex gives an isomorphism from Hom(Ex, Ex) and gl(k).
Moreover this isomorphism well-behaves with respect to the parallel transport.

With this idea in mind we can prove our problem. Fix p 2 Px; then, by Problem
S.4 (look in particular at the solution), we have that

Holr(x) = Lp �H$(p) � L�1
p .

Thanks to the principal bundle version of the Ambrose-Singer Holonomy The-
orem (Theorem 41.7), we know that the holonomy algebra h of H$(p) is the sub-
algebra of gl(k) spanned by all the elements of the form ⌦q(⇠1, ⇠2), for q 2 P that

2The right-hand side is A applied to the Rk-valued function X(⌦(Y , Z)(v)) evaluated at A.
3Note that, according to our identification, [A,⌦

A

([X,Y ], Z)(v)] = A(⌦([X,Y ], Z)(v)).
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can be reached from p via a piecewise smooth horizontal path and for ⇠1, ⇠2 2 TqP
horizontal.

Thus, holr(x) is spanned by all the elements of the form Lp � ⌦q(⇠1, ⇠2) � L�1
p

for q, ⇠1, x2 as above.
Now, given q as above, consider a curve � in M connecting y = ⇡(q) and x such

that P̂$� (q) = p (which exists by definition of q). Then notice that, for all v 2 Rk,
it holds

L�1
p � P̂r

� � Lq(v) = L�1
p (P̂r

� ([q, v])) = L�1
p ([P̂$� (q), v]) = L�1

p ([p, v]) = v.

Consequently we have that

Lp � ⌦q(⇠1, ⇠2) � L�1
p = P̂r

� � Lq � ⌦q(⇠1, ⇠2) � L�1
q � (P̂r

� )
�1.

Observe that, when we consider the correspondence between ⇡ : E ! M and
⇡ : P !M , Theorem 40.9 can be written more simply as

Rr(v1, v2) = Lq � ⌦q(⇠1, ⇠2) � L�1
q

for all q 2 P , ⇠1, ⇠2 2 TqFr(E) horizontal and v1 = D⇡(q)[⇠1], v2 = D⇡(q)[⇠2].
Therefore we obtain that

Lp � ⌦q(⇠1, ⇠2) � L�1
p = P̂r

� �Rr(v1, v2) � (P̂r
� )

�1, (S.5)

where vi = D⇡(q)[⇠i] for i = 1, 2. Moreover notice that for every choice of y 2 M ,
v1, v2 2 TyM and � piecewise smooth curve from y to x, we can find q 2 P and
⇠1, ⇠2 2 TqP horizontal such that (S.5) holds (just choosing q = P̂$(p) and x1, x2

the horizontal liftings of v1, v2).
Thus holr(x) is spanned by all the elements of the form P̂r

� �Rr(v1, v2)�(P̂r
� )

�1

for y 2M , v1, v2 2 TyM and � piecewise smooth curve from y to x, as we wanted.

(|) Problem S.8. Develop the theory of characteristic classes for principal bun-
dles4.

Solution. Enjoy!

4Solutions will not be provided for this problem!
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Problem Sheet T

(|) Problem T.1. Let r be a connection on M . Let � : U ! O and ⌧ : V ! ⌦
denote two charts on M with local coordinates (xi) and (yi) respectively. Assume
that U \ V 6= ;. Let �k

ij denote the Christo↵el symbols of � and �̃k
ij denote the

Christo↵el symbols of ⌧ , so that

r @

@x

i

✓

@

@xj

◆

= �k
ij

@

@xk
, r @

@y

i

✓

@

@yj

◆

= �̃k
ij

@

@yk
.

Investigate the relationship between

�k
ij

�

�

U\V and �̃k
ij

�

�

U\V .

Problem T.2. Let r denote a connection on M , and let dr denote the associated
exterior covariant di↵erential. Prove that

Tr = dr(id).

Problem T.3. Let r be a torsion-free connection on M with curvature tensor Rr.
Prove that for all X, Y, Z 2 X(M), one has

�rXR
r�(Y, Z) +

�rYR
r�(Z,X) +

�rZR
r�(X, Y ) = 0.

Problem T.4. Let G denote a Lie group, and let g denote the Lie algebra of G.
A Riemannian metric m on G is left-invariant if

l?a(m) = m, 8 a 2 G

and right-invariant if
r?a(m) = m, 8 a 2 G.

A Riemannian metric is bi-invariant if it is both left and right-invariant.

(i) Suppose h·, ·i
g

is an inner product on g. Prove that h·, ·i
g

induces a left-
invariant Riemannian metric m on G by

ma(Xv(a), Xw(a)) := hv, wi
g

, 8 v, w 2 g, a 2 G,

where Xv is the left-invariant vector field on G with Xv(e) = v. Prove more-
over that every left-invariant Riemannian metric on G is of this form.

(ii) Prove that the Riemannian metric m associated to h·, ·i
g

is right-invariant
(and hence bi-invariant) if and only if

hAda(v),Ada(w)i
g

= hv, wi
g

, 8 v, w 2 g, a 2 G.

Will J. Merry, Di↵. Geometry II, Spring 2019, ETH Zürich. Last modified: June 28, 2019.
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(iii) Assume now that G is connected. Prove that the Riemannian metric m
associated to h·, ·i

g

is bi-invariant if and only if adv is skew-symmetric with
respect to h·, ·i

g

for all v 2 g.

(|) Problem T.5. Let G denote a Lie group, and let g denote the Lie algebra of
G. Let rc denote the connection1 on G defined by

rc
X

e

(Xw) = c[Xv, Xw], 8 v, w 2 g.

Let m denote a bi-invariant Riemannian metric on G.

(i) Prove that rc is complete for any c 2 R.

(ii) Prove that rc is Riemannian with respect to m for all c 2 R.

(iii) Prove that r 1
2 is torsion-free. Remark: This shows that r 1

2 is the Levi-Civita
connection of (G,m).

(iv) Prove that r 1
2 is right-invariant2 in the sense that

(ra)?(r
1
2
X(Y )) = r

1
2

(r
a

)
?

X((ra)?(Y )), 8X, Y 2 X(G), 8 a 2 G.

(v) Compute the curvature tensor Rr 1
2 of r 1

2 .

1This is the connection on G given by taking � = c[·, ·] in Problem P.5.
2We already know from Problem P.5 that r 1

2 is left-invariant.
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Solutions to Problem Sheet T

(|) Problem T.1. Let r be a connection on M . Let � : U ! O and ⌧ : V ! ⌦
denote two charts on M with local coordinates (xi) and (yi) respectively. Assume
that U \ V 6= ;. Let �k

ij denote the Christo↵el symbols of � and �̃k
ij denote the

Christo↵el symbols of ⌧ , so that

r @

@x

i

✓

@

@xj

◆

= �k
ij

@

@xk
, r @

@y

i

✓

@

@yj

◆

= �̃k
ij

@

@yk
.

Investigate the relationship between

�k
ij

�

�

U\V and �̃k
ij

�

�

U\V .

Solution. For greater clarity, we will denote with Greek letters the indices pertain-
ing to the x-coordinates and with Latin letter those pertaining to the y-coordinates.

Let A : �(U \ V ) ! GL(n,R), A(x) = D(⌧ � ��1)(x) be the Jacobian matrix
of the coordinate change, and let B be its inverse. Recall that, when changing
coordinates, for x 2 �(U \ V ), the local representation of a vector field

X(x) = Xµ(x)
@

@xµ

�

�

�

�

x

transforms as Y ((⌧ � ��1)(x)) = Ai
µ(x)X

µ(x)
@

@yi

�

�

�

�

(��⌧�1)(x)

.

Consequently, using the properties of the covariant derivative we can compute:

�⇠µ⌫
@

@x⇠
= r @

@x

µ

✓

@

@x⌫

◆

= r @

@x

µ

✓

Ai
⌫

@

@yi

◆

=
@Ai

⌫

@xµ

@

@yi
+ Ai

⌫rAj

µ

@

@y

j

✓

@

@yi

◆

=
@Ai

⌫

@xµ

@

@yi
+ Ai

⌫A
j
µ
e�k
ji

@

@yk
,

hence, using again the transformation law, that

�⇠µ⌫A
k
⇠

@

@yk
=

✓

@Ak
⌫

@xµ
+ Ai

⌫A
j
µ
e�k
ji

◆

@

@yk
.

Inverting the matrix A (an operation that reads as: Ak
⇠B

⌘
k = �⌘⇠ ) we deduce that

the transformation law for the Christo↵el symbols is

�⌘µ⌫ =
@Ak

⌫

@xµ
B⌘

k + Ai
⌫A

j
µB

⌘
k
e�k
ji for ⌘, µ, ⌫ = 1, . . . ,m = dim(M).
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Using the classical notation for the matrices

Ai
µ =

@yi

@xµ
and B⌫

j =
@x⌫

@yj
,

the above identity can be rewritten as

�⌘µ⌫ =
@2yk

@x⌫@xµ

@xµ

@yk
+
@yi

@x⌫
@yj

@xµ

@x⌘

@yk
e�k
ji for ⌘, µ, ⌫ = 1, . . . ,m = dim(M).

Problem T.2. Let r denote a connection on M , and let dr denote the associated
exterior covariant di↵erential. Prove that

Tr = dr(id).

Solution. We view id 2 ⌦1
M,TM , with id(v) = v for all v 2 TpM and all p 2 M .

Let X, Y 2 X(M). Theorem 35.5 gives

dr(id)(X, Y ) = rX(id(Y ))�rY (id(X))� id([X, Y ])

= rX(Y )�rY (X)� [X, Y ],

which is precisely the torsion Tr(X, Y ).

Problem T.3. Let r be a torsion-free connection on M with curvature tensor Rr.
Prove that for all X, Y, Z 2 X(M), one has

�rXR
r�(Y, Z) +

�rYR
r�(Z,X) +

�rZR
r�(X, Y ) = 0.

Solution. We show that, for all X, Y, Z,W 2 X(M),

(rXR)(Y, Z)(W ) + (rYR)(Z,X)(W ) + (rZR)(X, Y )(W ) = 0.

Fix x 2M . Since the left-hand side involves point operators, in order to show that
it vanishes at x we can replace X, Y, Z,W with other vector fields, as long as the
vectors X(x), Y (x), Z(x),W (x) do not change. Working on a suitable neighbour-
hood of x, we can thus assume that

rv(X) = rv(Y ) = rv(Z) = rv(W ) = 0

for all v 2 TxM , and that [A,B] = 0 for all possible choices A,B 2 {X, Y, Z,W}:
this can be achieved using Proposition 44.11 (replacing X with X i(x)@i, and sim-
ilarly for Y, Z,W ).1 In particular, the vector field rA(B) vanishes at p for all
possible choices A,B 2 {X, Y, Z,W}. Now

(rXR)(Y, Z)(W ) = rX(R(Y, Z)(W ))�R(rXY, Z)(W )

�R(Y,rXZ)(W )�R(Y, Z)(rXW ),

1These simplifying assumptions are not really necessary, but they will shorten the computa-
tions considerably.
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so (rXR)(Y, Z)(W ) = rX(R(Y, Z)(W ))� R(Y, Z)(rXW ) at p.2 Thus, it su�ces
to show

rX(R(Y, Z)(W ))�R(Y, Z)(rXW ) + · · · = 0, (T.1)

where the dots account for the similar terms obtained by cyclically permuting
X, Y, Z (namely, replacing (X, Y, Z) with (Y, Z,X) and (Z,X, Y )). Expanding the
curvature tensor and recalling that all Lie brackets vanish identically, we see that

rX(R(Y, Z)(W ))�R(Y, Z)(rXW ) = rXrYrZW �rXrZrYW

�rYrZrXW +rZrYrXW,

where we omitted the parentheses in order to lighten the notation. In order to
conclude, note that the first term cancels out the third one when we sum over
cyclic permutations, and similarly the second one cancels out the fourth one.

Alternatively, observe that rX , rY , rZ are linear operators on the vector space
X(M). The space of linear operators on a vector space always forms a Lie algebra,
with [S, T ] := S � T � T � S. In particular, the Jacobi identity holds and so we get

[rX , [rY ,rZ ]](W ) + [rY , [rZ ,rX ]](W ) + [rZ , [rX ,rY ]](W ) = 0,

which is just a restatement of (T.1).

Problem T.4. Let G denote a Lie group, and let g denote the Lie algebra of G.
A Riemannian metric m on G is left-invariant if

l?a(m) = m, 8 a 2 G

and right-invariant if
r?a(m) = m, 8 a 2 G.

A Riemannian metric is bi-invariant if it is both left and right-invariant.

(i) Suppose h·, ·i
g

is an inner product on g. Prove that h·, ·i
g

induces a left-
invariant Riemannian metric m on G by

ma(Xv(a), Xw(a)) := hv, wi
g

, 8 v, w 2 g, a 2 G, (T.2)

where Xv is the left-invariant vector field on G with Xv(e) = v. Prove more-
over that every left-invariant Riemannian metric on G is of this form.

(ii) Prove that the Riemannian metric m associated to h·, ·i
g

is right-invariant
(and hence bi-invariant) if and only if

hAda(v),Ada(w)i
g

= hv, wi
g

, 8 v, w 2 g, a 2 G. (T.3)

(iii) Assume now that G is connected. Prove that the Riemannian metric m
associated to h·, ·i

g

is bi-invariant if and only if adv is skew-symmetric with
respect to h·, ·i

g

for all v 2 g.

2One could also drop the term R(Y, Z)(r
X

W ). However, it is not convenient to do so.
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Solution. Before starting the proof notice that a Riemannian metric m is left-
invariant if and only if

ma = l⇤a�1(me) = (l⇤a)
�1(me) (T.4)

for every a 2 G, that is it is su�cient to check the left-invariance at the identity.
Indeed, if we take an other b 2 G, we then have that

l⇤a(mb) = l⇤a(l
⇤
b�1me) = l⇤ab�1(me) = mba�1 ,

which proves the left-invariance. Obviously the same statement holds also substi-
tuting “left-invariance” with “right-invariance”.

We can now start with the proof of the three points:

(i) Recall that Xv(a) := Dla(e)[v], thus for every Y, Z 2 TaG we have that

ma(Y, Z) = h(Dla(e))
�1[Y ], (Dla(e))

�1[Z]i
g

=) ma = (l⇤a)
�1h·, ·i

g

.

Therefore it is obvious that m is a Riemannian metric on G and now we need
only to prove that m is left-invariant if and only if (T.2) holds.

However notice that (T.2) is equivalent to

me(v, w) = hv, wi
g

= ma(Xv(a), Xw(a)) = ma(Dla(e)[v], Dla(e)[w])

= (l⇤a)
�1(ma)(v, w),

which is exactly (T.4), that we have already proved to be equivalent to the
left-invariance.

(ii) Recall that Ada(v) = Dµa(e)[v] = D(ra�1 � la)(e)[v]. Therefore (T.3) is equiv-
alent to

h·, ·i
g

= r⇤a�1 � l⇤a h·, ·i
g

= r⇤a�1(ma),

using the definition of m. However, for what we said at the beginning of the
solution, being right-invariant is equivalent to me = r⇤a�1(ma) for all a 2 G,
which concludes the proof.

(iii) Let us first prove that, if m is bi-invariant, then adv is skew-symmetric for all
v 2 g. Let � : (�", ")! G be a curve with �(0) = e and �0(0) = u 2 g, then
we have that

0 =
d

dt

�

�

�

�

t=0

⌦

Ad�(t)(v),Ad�(t)(w)
↵

g

= hDAd(e)[u](v), wi
g

+ hv,DAd(e)[u](w)i
g

= hadu(v), wi
g

+ hv, adu(w)i
g

,

which proves that adv is skew-symmetric for all v 2 g.

On the other hand, let us now assume that adv is skew-symmetric for all
v 2 g. First of all notice that

Adab = Dµab(e) = D(µa � µb)(e) = Dµa(e) �Dµb(e) = Ada �Adb

for all a, b 2 G.
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Now consider a 2 G and take a curve � : [0, 1] ! G with �(0) = e and
�(1) = a. To prove that m is bi-invariant it is su�cient to prove that
d
dt

⌦

Ad�(t)(v),Ad�(t)(w)
↵

g

= 03. Hence let us compute it using the skew-
symmetry of adv, obtaining

d

dt

�

�

�

�

t=s

⌦

Ad�(t)(v),Ad�(t)(w)
↵

g

=
d

dt

�

�

�

�

t=s

⌦

Ad�(t)�(s)�1�(s)(v),Ad�(t)�(s)�1�(s)(w)
↵

g

=
d

dt

�

�

�

�

t=s

⌦

Ad�(t)�(s)�1(Ad�(s)(v)),Ad�(t)�(s)�1(Ad�(s)(w))
↵

g

=
⌦

ad�0(t)�(s)�1(Ad�(s)(v)),Ad�(s)(w)
↵

g

+
⌦

Ad�(s)(v), ad�0(t)�(s)�1(Ad�(s)(w))
↵

g

= 0,

which is what we wanted.

(|) Problem T.5. Let G denote a Lie group, and let g denote the Lie algebra of
G. Let rc denote the connection4 on G defined by

rc
X

e

(Xw) = c[Xv, Xw], 8 v, w 2 g.

Let m denote a bi-invariant Riemannian metric on M .

(i) Prove that rc is complete for any c 2 R.

(ii) Prove that rc is Riemannian with respect to m for all c 2 R.

(iii) Prove that r 1
2 is torsion-free. Remark: This shows that r 1

2 is the Levi-Civita
connection of (G,m).

(iv) Prove that r 1
2 is right-invariant5 in the sense that

(ra)?(r
1
2
X(Y )) = r

1
2

(r
a

)
?

X((ra)?(Y )), 8X, Y 2 X(G), 8 a 2 G.

(v) Compute the curvature tensor Rr 1
2 of r 1

2 .

Solution. For (i) we first need to find the geodesics. We make an educated guess
and try do show that the exponential map

exp: g! G

gives us the geodesics with respect to the chosen connectionrc. Indeed, if we define

�(t) = exp(t · v),

then by definition of the exponential map we know that � is an integral curve of
the left-invariant vector field Xv on G. With this we compute

3Notice that a priori ad
v

is skew-symmetric if and only if the derivative is 0 only for t = 0
4This is the connection on G given by taking � = c[·, ·] in Problem P.5.
5We already know from Problem P.5 that r 1

2 is left-invariant.
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rc
@

@t

(�0)(t) = rc
@

@t

(Xv � �)(t)
(1)
= rc

@

@t

�
(Xv)(�(t))

= rc
�0(t)(Xv)(�(t))

= rc
X

v

(�(t))(Xv)(�(t))

(2)
= rc

X
v

(Xv)(�(t))

= c[Xv, Xv]�(t)
= 0,

where in (1) we used the chain rule for covariant derivatives and in (2) we used the
fact that any covariant derivative is a point operator in the first entry. This shows
that �0 is a parallel curve along �, i.e. � is a geodesic. But �(t) = exp(t · v) is
defined for all t 2 R. Now observe that for any given a 2 G and w 2 TaG we can
define v := Dla�1(a)[w] and that then

�(t) = a exp(t · v)
is still a geodesic satisfying

�(0) = a, �0(0) = w.

By uniqueness of geodesics we thus have found all the geodesic and they are all
defined on the whole R which proves completeness of the connection rc.

For part (ii) we first show that for left-invariant vector fields, say Xu, Xv and
Xw with u, v, w 2 g the Ricci equation is satisfied, i.e.

Xu (hXv, Xwi) = hrc
X

u

Xv, Xwi+ hXv,rc
X

u

Xwi,
cf. Proposition 36.15. Indeed, an quick computation grants

hrc
X

u

Xv, Xwi = c · h[Xu, Xv], Xwi
= c · hX[u,v], Xwi
(1)
= c · h[u, v], wi

g

(2)
= c · hadu(v), wig
(3)
= �c · hv, adu(w)ig.

Step (1) and (3) are consequences of the previous problem, more precisely (i) and
(iii). Step (2) is just the general fact that adu(v) = [u, v] which we have seen last
semester. Similarly we see

hXv,rc
X

u

Xwi = c · hv, adu(w)ig.
Moreover, by the bi-invariance and the previous problem again we obtain that

hXv, Xwi = hv, wig
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is a constant smooth function, thus

Xu(hXv, Xwi) = 0.

In particular this proves the Ricci identity for Xu, Xv, Xw.
The general Ricci equation now follows easily6: Any vector field on a Lie group

can be written as linear combination of left-invariant vector fields, thus is su�ces
to consider Xu, ai Xv

i

and bj Xw
j

as rc is linear in the first component. Using the
Leibniz-rule of rc and the first part of the proof we obtain

hrc
X

u

(ai Xv
i

), bj Xw
j

i = bj · hXu(a
i)Xv

i

+ airc
X

u

(Xv
i

), Xw
j

i (T.5)

= (bj Xu(a
i)) · hXv

i

, Xw
j

i+ (bj ai) · hrc
X

u

Xv
i

, Xw
j

i (T.6)

= (bj Xu(a
i)) · hXv

i

, Xw
j

i+ (bj ai) · hrc
X

u

Xv
i

, Xw
j

i (T.7)

= (bj Xu(a
i)) · hXv

i

, Xw
j

i+ (bj ai) · hadu(vi), wjig (T.8)

and analogously

hXv
i

,rc
x
u

(bj Xw
j

)i = (aiXu(b
j))hXv

i

, Xw
j

i+ (bj ai) · hvi, adu(wj))ig. (T.9)

Now adding (T.8) and (T.9) (plus part (iii) in the previous problems) gives

(bj Xu(a
i) + ai Xu(b

j)) · hXv
i

, Xw
j

i. (T.10)

Applying the derivation property and invoking the first part of the proof grants

Xu

�hai Xv
i

, bj Xw
j

i� = Xu(a
i bj) · hXv

i

, Xw
j

i+ (ai bj) ·XuhXv
i

, Xw
j

i
| {z }

=0

= (T.10),

which proves the Ricci identity in the general case.
Torsion-freeness (i.e. part (iii)) for c = 1

2
is trivial as it directly follows from the

definition of the connection r 1
2 .

In part (iv) we will mimic the idea from P.5, i.e. we define a new covariant
derivative

ra, 1
2

X (Y ) := (ra)
�1
?

⇣

r
1
2

(r
a

)
?

X((ra)?(Y )
⌘

and show that it is the Levi-Civita connection on G with respect to h·, ·i which
then tells us that

r 1
2 = ra, 1

2

by the Fundamental Theorem of Riemannian Geometry (cf. Theorem 45.1). We
first recall two general facts about push-forwards: For any di↵eomorphism ', vector
field X and smooth function f we have

• '?Z(f) = Z(f � ') � '�1 and equivalently '?Z(f) � ' = Z(f � '),
• ('?)�1Z = ('�1)?Z.

6The amount of TeX-symbols is inversely proportional to the di�culty.
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We start by torsion-freeness, i.e.

Tra,

1
2 = 0. (T.11)

Indeed, we have

Tra,

1
2 (X, Y ) = ra, 1

2
X (Y )�ra, 1

2
Y (X)� [X, Y ]

= (ra�1)?
⇣

r
1
2

(r
a

)
?

X((ra)?(Y ))�r
1
2

(r
a

)
?

Y ((ra)?(x))
⌘

� [X, Y ]

= (ra�1)?

✓

[(ra)?X, (ra)?Y ]
| {z }

=(r
a

)
?

[X,Y ]

◆

� [X, Y ]

= 0.

Turning our attention to the Ricci identity we first compute

hra, 1
2

Z (X), Y i =
⌧

(ra)
�1
?

⇣

r
1
2

(r
a

)
?

Z((ra)?X)
⌘

, (ra)
�1
? ((ra)?Y )

�

(T.12)

(1)
=

⌧

r
1
2

(r
a

)
?

Z((ra)?X) � ra, (ra)?Y � ra
�

(T.13)

where in (1) we used the left-invariance of the Riemannian metric. Similarly

hX,ra, 1
2

Z (Y )i =
⌧

(ra)?X � ra,r
1
2

(r
a

)
?

Z((ra)?Y ) � ra
�

. (T.14)

Adding (T.13) and (T.14) and using the Ricci identity for r 1
2 gives

(ra)?Z
⇣D

(ra)?X, (ra)?Y
E⌘

� ra =
⌧

r
1
2

(r
a

)
?

Z((ra)?X), (ra)?Y )

�

� ra

+

⌧

(ra)?X,r
1
2

(r
a

)
?

Z((ra)?Y )

�

� ra,

but using the first general formula for push-forwards above plus the bi-invariance
of the metric:

(ra)?Z
⇣D

(ra)?X, (ra)?Y
E⌘

� ra = Z
⇣D

(ra)?X, (ra)?Y
E

� ra
⌘

= Z
⇣D

X, Y
E

� ra�1 � ra
| {z }

=id

⌘

= Z (hX, Y i) .

All in all we have shown that

Z (hX, Y i) = hra, 1
2

Z (X), Y i+ hX,ra, 1
2

Z (Y )i,

which as discussed above implies ra, 1
2 = r 1

2 and thus concludes the proof of the
right-invariance.

8



For the last part of the exercise (i.e.(v)) we note that it su�ces to compute Rr 1
2

for left-invariant vector fields as they span the whole tangent bundle and because

Rr 1
2 is a point operator in all entries (see Lecture 33). We have

Rr 1
2 (Xv, Xw)Xu = r

1
2
X

v

r
1
2
X

w

(Xu)�r
1
2
X

w

r
1
2
X

v

(Xu)�r
1
2

[X
v

,X
w

](Xu)

=
1

4
[Xv, [Xw, Xu]]� 1

4
[Xw, [Xv, Xu]]� 1

2
[[Xv, Xw], Xu]

=
1

4
([Xv, [Xw, Xu]] + [Xw, [Xu, Xv]] + 2 · [Xu, [Xv, Xw]])

(1)
=

1

4
(�[Xu, [Xv, Xw]] + 2 · [Xu, [Xv, Xw]])

=
1

4
[Xu, [Xv, Xw]],

where in (1) we used the Jacobi identity for Lie brackets. Now invoking the C1-
linearity of the curvature tensor we can deduce that for general vector fields X, Y
and Z on G one has

Rr 1
2 (X, Y )Z =

1

4
[Z, [X, Y ]].
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Problem Sheet U

Problem U.1. Consider Sn equipped with the metricm = ı?(mEucl), where ı : Sn !
Rn+1 is the inclusion. Prove that the Levi-Civita connection of m is the connection
introduced in Problem N.3.

Problem U.2. Let m be a Riemannian metric on M , and let r denote the Levi-
Civita connection of m.

(i) Prove that for all X, Y, Z 2 X(M),

LX(m)(Y, Z) = LX(m)(Y, Z) = hrY (X), Zi+ hY,rZ(X)i .

(ii) We say that a vector field X is a Killing field if LX(m) = 0. Prove that a
vector field is a killing field if and only if its maximal flow consists of local
isometries.

Problem U.3. Let ' : M ! N be an isometric map between Riemannian man-
ifolds. Prove that for x 2 M the restriction of (·)> to T'(x)N is the orthogonal
projection onto D'(x)[TxM ].

(|) Problem U.4. Let ' : M ! N be a smooth normal covering map and m is a
Riemannian metric on M which is invariant under all deck transformations. Prove
there is a unique Riemannian metric on N such that ' is a Riemannian covering.

Problem U.5. Let M be a smooth manifold and suppose µ : G ⇥M ! M is a
smooth transitive left action of a Lie group G on M . Fix x 2M and let H denote
the isotropy group at x, so that M ⇠= G/H is a homogeneous space (cf. Theorem
12.11). Let also ⇢ : H ! GL(TxM) denote the linear isotropy representation of H
(cf. Definition 12.10), so that

⇢a(v) = Dµa(e)[v], a 2 H, v 2 TxM.

Let us say that a Riemannian metric m on M is invariant if µa : M ! M is an
isometry for every a 2 G. Prove that there is a bijective correspondence between
invariant Riemannian metrics on M and inner products on TxM that are invariant
under ⇢a for each a 2 H.

(|) Problem U.6. Let Mn be a connected manifold and suppose r is a torsion-
free connection on M . Prove that r is the Levi-Civita connection of some Rieman-
nian metric m on M if and only if Holr is conjugate in GL(n) to a subgroup of
O(n).

Will J. Merry, Di↵. Geometry II, Spring 2019, ETH Zürich. Last modified: June 28, 2019.
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Solutions to Problem Sheet U

Problem U.1. Consider Sn equipped with the metricm = ı?(mEucl), where ı : Sn !
Rn+1 is the inclusion. Prove that the Levi-Civita connection of m is the connection
introduced in Problem N.3.

Solution. Let us denote here by mEucl = h·, ·i the standard scalar product on
Rn+1 and by rRn+1

the associated Levi-Civita connection (which is just the plain
derivative). If r denotes the Levi-Civita connection induced on Sn by m = ◆?mEucl,
if X, Y are two vector fields on Sn then by proposition 46.18, there holds

rXY (p) = (rRn+1

X Y (p))>,

where rRn+1
denotes the flat connection on Rn+1 and “>” denotes the orthogonal

projection from TpRn+1 onto TpSn.
Recall first of all that for any (non-necessarily tangential) vector field along Sn,

Z 2 �◆(TRn+1), and every tangent vector X 2 TpSn, the expression rRn+1

X Y (p) is
well-defined at p 2 Sn and can be computed by taking any extension of X and Z
to elements of X(Rn+1).

Next, recall from Problem N.3 and Problem O.2 we have

TpS
n = {v 2 Rn+1, hv, pi = 0},

hence for w 2 TpRn+1 and hence we have w> = w � hv, xix.
Since the inclusion ◆ : Sn ! Rn+1 can be interpreted as a vector field along Sn,

and the identity idRn+1 is one extension of it to Rn+1, we can compute

rXY (p) = (rRn+1

X Y (p))>

= rRn+1

X Y (p)� hrRn+1

X Y (p), pip
= rRn+1

X Y (p)� hrRn+1

X Y (p), idRn+1(p)ip
= rRn+1

X Y (p) + hY (p),rRn+1

X (idRn+1)(p)ip (U.1)

= rRn+1

X Y (p) + hY (p), X(p)ip,

where in (U.1) we used the fact that since Y is always orthogonal to idRn+1 along
Sn we have, for every X 2 TpSn,

0 ⌘ DhY, idRn+1i(p)[X] = hrRn+1

X Y (p), pi+ hY (p),rRn+1

X (idRn+1)(p)i.

But, as we proved in Problem O.2 the above expression for rY is exactly the one
for the covariant derivative associated to the connection H defined in Problem N.3.

Problem U.2. Let m be a Riemannian metric on M , and let r denote the Levi-
Civita connection of m.

Solutions written by Giada Franz, Francesco Palmurella, Alessio Pellegrini, and Alessandro
Pigati. Last modified: June 28, 2019.
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(i) Prove that for all X, Y, Z 2 X(M),

LX(m)(Y, Z) = LX(m)(Y, Z) = hrY (X), Zi+ hY,rZ(X)i .

(ii) We say that a vector field X is a Killing field if LX(m) = 0. Prove that a
vector field is a killing field if and only if its maximal flow consists of local
isometries.

Solution. First of all we observe that the Lie derivative of a Riemannian metric
is again a 0, 2-tensor and by relations derived in Lecture 18 we have

• LX(m)(Y, Z) = X(m(Y, Z))�m(LX(Y ), Z)�m(Y,LXZ),

• LX(Y ) = [X, Y ]

• LX(m)(Y, Z) = limt!0
'⇤
t

(m)(Y,Z)�m(Y,Z)

t ,

where ' : D ✓ R⇥M ! M is the maximal flow of X. The first identity together
with the Ricci identity gives

LX(m)(Y, Z) = hrXY, Zi+ hY,rXZi � h[X, Y ], Zi � hY, [X,Z]i.
Thanks to the torsion-freeness of the Levi-Civita connection we also have

rXY = [X, Y ] +rYX,

rXZ = [X,Z] +rZX.

Now we plug in these two equations into the equation above to obtain

LX(m)(Y, Z) = h[X, Y ] +rYX,Zi+ hY, [X,Z] +rZXi � h[X, Y ], Zi � hY, [X,Z]i
= hrYX,Zi+ hY,rZXi.

This proves the desired equality.
For the second part we observe that

LX(m) = 0 () 8Y, Z 2 X(M) : lim
t!0

'⇤
t (m)(Y, Z)�m(Y, Z)

t
= 0,

by the third identity stated above. For each x 2 M there exists a maximal time
interval (t�x , t

+
x ) on which the integral curve �x of X through x is defined, i.e.

�x : (t
�
x , t

+
x )!M, �x(t) = 't(x),

is defined. For tx 2 (t�x , t
+
x ) near 0 we have

8Y, Z 2 X(M) : ('⇤
tm)x(Y, Z) = mx(Y, Z)

by the formula above and '0 = idM . But then due to the group property we actually
obtain that

('⇤
tm)x = mx

for all t 2 (t�x , t
+
x ). It is another general fact that 't is a local di↵eomorphism

around x for t 2 (t�x , t
+
x ) (exercise: why?). This proves that the maximal flow of X

consist of local isometries.
The converse also holds. Indeed, the proof above can be read backwards.
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Problem U.3. Let ' : M ! N be an isometric map between Riemannian man-
ifolds. Prove that for x 2 M the restriction of (·)> to T'(x)N is the orthogonal
projection onto D'(x)[TxM ].

Solution. ConsiderW 2 T'(x)N , then we want to prove thatW> is the orthogonal
projection of W on D'(x)[TxM ]. Recall that W> is defined as

W> := D'[('⇤(W [))]].

It obviously holds that W> 2 D'(x)[TxM ] and therefore, to our purpose, it is
su�cient to show that hW>, V i = hW,V i for all V 2 D'(x)[TxM ].

However this follows easily from the definition. Indeed, given V 2 D'(x)[TxM ],
let X 2 TxM be such that V = D'[X]; then we have that

hW>, V i = hD'[('⇤(W [))]], D'[X]i = h('⇤(W [))], Xi = '⇤(W [)(X)

= W [(D'[X]) = hW,D'[X]i = hW,V i,
which concludes the proof.

(|) Problem U.4. Let ' : M ! N be a smooth normal covering map and m is a
Riemannian metric on M which is invariant under all deck transformations. Prove
there is a unique Riemannian metric on N such that ' is a Riemannian covering.

Solution. Let us denote by h·, ·iM the Riemannian metric on M , i.e. m. For any
two vector fields X, Y 2 X(N) we pick the unique '-related vector fields eX, eY 2
X(M), i.e.

D' � eX = X � ' and D' � eY = Y � '.
The fact that eX, eY are unique is an immediate consequence of ' being a covering
map and the Inverse Function Theorem. If we assume that there exists some
Riemannian metric h·, ·iN on N that pulls back to m on M under ', then we must
have

hX(p), Y (p)iN = h eX(p̃), eY (p̃)iM ,

for any p̃ in the fibre '�1(p). This already proves uniqueness. Now let us take the
above equation as a definition of h·, ·iN and prove its well-definedness.

We need to check that this definition is independent of the choice of p̃, i.e. we
need to verify that for another element q̃ 2 '�1(p) we have

h eX(p̃), eY (p̃)iM = h eX(q̃), eY (q̃)iM .

For this we observe that there exists a deck transformation A 2 Deck(fM,') such
that

A q̃ = p̃1.

By deck-transformation invariance of the metric m we have

h eX(q̃), eY (q̃)iM =
D

DA(q̃)
h

eX(q̃)
i

, DA(q̃)
h

eY (q̃)
iE

M
.

1This holds because the covering is normal.
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At the same time we can use the deck-transformation property, i.e. ' � A = ' to
see that

D'(p̃) �DA(q̃)
h

eX(q̃)
i

= D(' � A)(q̃)
h

eX(q̃)
i

= D'(q̃)
h

eX(q̃)
i

= X(p),

which then proves
eX(p̃) = DA(q̃)

h

eX(q̃)
i

by uniqueness of eX. The same argument works for eY and thus we obtain

D

DA(q̃)
h

eX(q̃)
i

, DA(q̃)
h

eY (q̃)
iE

M
=
D

eX(p̃), eY (p̃)
E

M
.

This shows that h·, ·iN is well defined. Smoothness of h·, ·iN is clear. Since D' is an
isomorphism at every point (remember, a covering map is a local di↵eomorphism
around every point!) it is also clear that h·, ·iN defines an inner product at every
point in N . This concludes the proof.

Problem U.5. Let M be a smooth manifold and suppose µ : G ⇥M ! M is a
smooth transitive left action of a Lie group G on M . Fix x 2M and let H denote
the isotropy group at x, so that M ⇠= G/H is a homogeneous space (cf. Theorem
12.11). Let also ⇢ : H ! GL(TxM) denote the linear isotropy representation of H
(cf. Definition 12.10), so that

⇢a(v) = Dµa(e)[v], a 2 H, v 2 TxM.

Let us say that a Riemannian metric m on M is invariant if µa : M ! M is an
isometry for every a 2 G. Prove that there is a bijective correspondence between
invariant Riemannian metrics on M and inner products on TxM that are invariant
under ⇢a for each a 2 H.

Solution. Given an invariant Riemannian metric m on M , its restriction to TxM
is an inner product invariant under ⇢a for each a 2 H. Indeed, for all a 2 H and
v, w 2 TxM , it holds

mx(⇢a(v), ⇢a(w)) = mx(Dµa(e)[v], Dµa(e)[w]) = mx(v, w),

where we have used that µa is an isometry with respect to the metric m.
We want to prove that this map F : m 7! mx from the invariant Riemannian

metrics on M to the inner products on TxM invariant under ⇢a for all a 2 H is a
bijective correspondence.

Let h·, ·i be an inner product on TxM invariant under ⇢a for all a 2 H. Given
y 2M , consider b 2 G such that µb(y) = x and define my as

my = µ⇤
bh·, ·i. (U.2)

Notice that the definition does not depend on the choice of b. Indeed, if we consider
another c 2 G with µc(y) = x we have that

µ⇤
ch·, ·i = µ⇤

bb�1ch·, ·i = µ⇤
b � µ⇤

b�1ch·, ·i = µ⇤
bh·, ·i,
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where we used that h·, ·i is invariant under ⇢b�1c, since b�1c 2 H.
Moreover observe that m is easily a Riemannian metric on M and mx = h·, ·i.

Thus we have only to prove that m is invariant (i.e. F is surjective) and it is the
only invariant metric that coincides with h·, ·i in x (i.e. F is injective).

The second assertion is obvious since every invariant metric must satisfy (U.2),
thus let us prove the first one. Consider c 2 G, y 2 M and b 2 G such that
µb(y) = x, then we have that

µ⇤
cmy = µ⇤

c � µ⇤
bh·, ·i = µ⇤

cbh·, ·i = mµ
c

(y),

which proves µc is an isometry, as we wanted.

(|) Problem U.6. Let Mn be a connected manifold and suppose r is a torsion-
free connection on M . Prove that r is the Levi-Civita connection of some Rieman-
nian metric m on M if and only if Holr is conjugate in GL(n) to a subgroup of
O(n).

Solution. Fix x 2M . If r is the Levi-Civita connection of a Riemannian metric
m, then we claim that the parallel transport along any loop � based at x gives a lin-
ear isometry of TxM . Indeed, the pullback connection on �⇤TM is still Riemannian
and thus satisfies the Ricci identity, which gives

d

dt
hP�(v),P�(w)i = 0

whenever v, w 2 TxM , implying that hv, wi = hbP�(v), bP�(w)i, as claimed. Letting

A : Rn ! TxM be an orthonormal frame at x, this means that A�1 � bP� �A belongs
to O(n). It follows that Holr(x;A) ✓ O(n). Since M is connected, the claim
follows from Corollary 32.12.

Conversely, we can find (and fix in the sequel) a frame A at x such that
Holr(x;A) ✓ O(n). Given y 2M and a piecewise smooth curve � from x to y, we
define a (positive definite) inner product my on TyM by declaring that {bP� �A(ei)}
is an orthonormal basis at y. The definition of my does not depend on �: if � is
another such curve, then

bP� � A = bP� � A � (A�1 � bP�⇤�� � A)

and � ⇤ �� is a loop based at x; thus,

bP� � A(ej) = Oi
j
bP� � A(ei),

with O := A�1 � bP�⇤�� � A 2 Holr(x;A) ✓ O(n). Since O is an orthogonal trans-
formation, this shows that my is well defined.

The smoothness of y 7! my follows as in Problem O.1. Indeed, given y 2 M ,
we can find a di↵eomorphism  : V ! U with V ✓ Rn open and starshaped about
0 and U an open neighbourhood of y. Given v 2 V , we let �v(t) :=  (tv) (for
t 2 [0, 1], so that �v joins y to  (v)). For p 2 U we set

ei(p) := bP↵⇤�
 

�1(p)
� A(ei),

5



where ↵ is a curve from x to y chosen in advance. By definition ofmp, {ei(·)} defines
a local orthonormal frame on U , which is smooth by Problem O.1. It follows that
also the metric m is smooth on U , hence everywhere (as y was arbitrary).

We claim that the parallel transport along any curve � : [0, 1] ! M , joining
y = �(0) to z = �(1), gives a linear isometry from TyM to TzM : indeed, let �

be a curve from x to y and note that bP� and bP�⇤� are both linear isometries by

construction of m (from TxM to TyM and TzM , respectively). Since bP�⇤� = bP� �bP�,
we deduce that bP� : TyM ! TzM is a linear isometry, as well.

Since r is torsion-free, in order to conclude it su�ces to show that r is Rie-
mannian. Given vector fields X, Y, Z 2 X(M) and a point p 2 M , take a curve �
with �0(0) = X(p) and fix an orthonormal frame {ei(t)} parallel along �. Writing
Y (�(t)) = Y i(t)ei(t) (and similarly for Z), we have

X(hY, Zi)(p) = d

dt
hY (�(t)), Z(�(t))i

�

�

�

t=0

=
d

dt
(Y i(t)Zi(t))

�

�

�

t=0

= (Y i)0(0)Zi(0) + Y i(0)(Zi)0(0).

On the other hand, calling T the vector @
@t at 0, the chain rule (31.7) gives

hrXY, Zi(p) = hrT (Y
iei), Z

j(0)ej(0)i
= (Y i)0(0)Zi(0) + hY i(0)rT ei, Z

j(0)ej(0)i
= (Y i)0(0)Zi(0),

being ei(t) parallel along �. Similarly, hrXY, Zi(p) = Y i(0)(Zi)0(0). We deduce
that the Ricci identity holds, which concludes the proof in view of Proposition
36.15.
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Problem Sheet V

Problem V.1. Let (M,m) be an oriented Riemannian manifold with Rieman-
nian volume form µ. Prove that any orientation-preserving isometry ' : (M,m)!
(M,m) is volume-preserving in the sense of Definition 48.5, i.e. that '?(µm) = µm.
Give an example to show that the converse is false.

Problem V.2. Let (M,m) be a compact oriented Riemannian manifold with
boundary. Let µm denote the Riemannian volume form. Let N 2 �(TM |@M)
denote an outward pointing vector field1 such that |N(x)| = 1 for all x 2 @M . The
metric m restricts to a metric on @M , and iN(µm) is the Riemannian volume form
of (@M,m) when @M is given the induced orientation (Definition 21.21). Prove
that

Z

M,m

divm(X) =

Z

@M,m

hX,Ni , 8X 2 X(M).

Remark: This is the generalisation of the Divergence Theorem 48.10 to Riemannian
manifolds with boundary.

Problem V.3. Let (M3,m) be an oriented Riemannian manifold of dimension
three with Riemannian volume form µm. Define

� : X(M)! ⌦2(M), �(X) := iX(µm).

We define the curl operator as

curlm : X(M)! X(M), curlm(X) := ��1 � dX[,

where X[ 2 ⌦1(M) is the one-form obtained from X via the musical isomorphism.

(i) Let ⌧ : C1(M)! ⌦3(M) denote the map f 7! f µm. Prove that the following
diagram commutes:

C1(M) X(M) X(M) C1(M)

C1(M) ⌦1(M) ⌦2(M) ⌦3(M)

grad
m

id

curl
m

[

div
m

� ⌧

d d d

(ii) Deduce that
divm(curlm(X)) = 0, 8X 2 X(M),

a formula you no doubt remember from Analysis II.

Problem V.4. Let M be a manifold of dimension two or three.

Will J. Merry, Di↵. Geometry II, Spring 2019, ETH Zürich. Last modified: June 28, 2019.
1Such a vector field N exists by normalising the vector field found in Lemma 21.20.
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(i) Prove that the curvature tensor Rr
m is completely determined by the Ricci

tensor Ricm.

(ii) Prove that a Riemannian metric m on M is Einstein if and only if m has
constant curvature.

(|) Problem V.5. Let (M,m) be a Riemannian manifold. Let  : TTM ! TM
denote the connection map of the Levi-Civita connection ofm, and let ⇥t denote the
geodesic flow of m (i.e. the flow of the geodesic spray of the Levi-Civita connection
of M). Using Lemma 31.3 we can regard D⇥t as a vector bundle isomorphism

gD⇥t := (D⇡,) �D⇥t � (D⇡,)�1 : TM � TM ! TM � TM

along ⇡ : TM ! M . Fix x 2 M and u, v, w 2 TxM . Let � denote the unique
geodesic with �(0) = x and �0(0) = u, and let c 2 Jac(�) denote the unique Jacobi
field along � with

c(0) = v, rT (c)(0) = w.

Prove that
gD⇥t(x, u)(v, w) = (c(t), c0(t)).

(|) Problem V.6. Let ⇡ : E ! M be a vector bundle, and assume we are given
a connections rE on E and a connection rM on M . Let rE,M denote the induced
connection on the bundle E⌦T ⇤M overM . If s 2 �(E) then rE(s) 2 �(E⌦T ⇤M),
and hence rE,M(r(s)) 2 �(E ⌦ T ⇤M ⌦ T ⇤M). We abbreviate

r(2)(s) := rE,M(rE(s))

and call the operator r(2) : �(E) ! �(E ⌦ T ⇤M ⌦ T ⇤M) a higher covariant
derivative.

(i) Prove that

rE,M(rE(s))(X, Y ) = rE
X(rE

Y (s))�rE
rM

X

(Y )(s),

(ii) Suppose that rM is torsion-free. Prove that

r(2)(s)(X, Y )�r(2)(s)(Y,X) = RrE

(X, Y )(s).

(iii) We can repeat this process inductively to define covariant derivatives

r(k) : �(E)! �(E ⌦ T ⇤M⌦k)

Find an explicit formula for r(k) in terms of rE and rM .

(iv) Now suppose (M,m1) and (N,m2) are two Riemannian manifolds. Let rM

and rN denote the Levi-Civita connections. Suppose ' : M ! N is a smooth
map. ThenD' can be thought of as a section of the pullback bundle '?TN !
TM . By taking E = '?TN and applying the construction above, we can
define higher order covariant derivatives of D'. Give an explicit formula in
terms of local coordinates on M and N (and the Christo↵el symbols of rM

and rN) for these higher order covariant derivatives.

(v) Now take (N,m2) = (R,mEucl), so that ' is a simply a smooth function on
M . How does the second order covariant derivative compare to the Hessian?
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Solutions to Problem Sheet V

Problem V.1. Let (M,m) be an oriented Riemannian manifold with Rieman-
nian volume form µ. Prove that any orientation-preserving isometry ' : (M,m)!
(M,m) is volume-preserving in the sense of Definition 48.5, i.e. that '?(µm) = µm.
Give an example to show that the converse is false.

Solution. Let us assume that M is connected. Then we know that the pull-
back '⇤(µm) is a non-zero multiple of the volume form µm at every point. But for
any x 2 M and any positive orthonormal basis (v1, . . . , vn) of (TxM,mx) we have,
by assumption, that (D'(x)[v1], . . . , D'(x)[vn]) is a positive orthonormal basis of
(T'(x)M,m'(x)), thus

'⇤(µm)(x)(v1, . . . , vn) = µm('(x))(D'(x)[v1], . . . , D'(x)[vn]) = 1,

which proves '⇤(µm) = µm.
To show that the converse does not hold we pick M = R2 with its flat metric

m, i.e. m = mEucl is just the Euclidean scalar product at each point. We observe
that a linear transformation

T : R2 ! R2

is volume-preserving if and only if

det(T ) = 1.

Indeed, we have µmEucl
(·, ·) = e1 ^ e21 by the normalisation condition and therefore

T ⇤(µEucl)(e1, e2) = det(T ).

Similarly, it is easy to see that T preserves the metric mEucl if and only if T is
orthogonal with respect to the Euclidean inner product. Hence, the linear trans-
formation

T =

✓

2 0
0 1

2

◆

defines a volume-preserving di↵eomorphism on (R2,mEucl) which is not isometric.

Problem V.2. Let (M,m) be a compact oriented Riemannian manifold with
boundary. Let µm denote the Riemannian volume form. Let N 2 �(TM |@M)
denote an outward pointing vector field2 such that |N(x)| = 1 for all x 2 @M . The
metric m restricts to a metric on @M , and iN(µm) is the Riemannian volume form
of (@M,m) when @M is given the induced orientation (Definition 21.21). Prove
that

Z

M,m

divm(X) =

Z

@M,m

hX,Ni , 8X 2 X(M).

Remark: This is the generalisation of the Divergence Theorem 48.10 to Riemannian
manifolds with boundary.

Solutions written by Giada Franz, Francesco Palmurella, Alessio Pellegrini, and Alessandro
Pigati. Last modified: June 28, 2019.

1Here we are suppressing the J -maps.
2Such a vector field N exists by normalising the vector field found in Lemma 21.20.
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Solution. As in the proof of Theorem 48.10, we apply Stokes’ Theorem:
Z

M,m

divm(X) =

Z

M

d(iX(µm)) =

Z

@M

iX(µm).

Since the right-hand side of the desired identity equals
R

@MhX,Ni iN(µm), it su�ces
to show that

iX(µm) = hX,Ni iN(µm)

pointwise on @M . To see this, write X = hX,NiN + Y , so that Y is orthogonal
to N and thus Y (p) 2 Tp@M , for all p 2 @M . In particular Y , which is a section
of ◆⇤(TM) (◆ : @M ,!M being the inclusion), can be seen as a vector field on @M .
We have

iX(µm) = hX,Ni iN(µm) + iY (µm).

Finally, iY (µm) vanishes as a di↵erential form on @M : indeed,

◆⇤(iY (µm)) = iY (◆
⇤(µm)) = iY (0) = 0,

since an n-form necessarily vanishes on an (n� 1)-dimensional manifold.

Problem V.3. Let (M3,m) be an oriented Riemannian manifold of dimension
three with Riemannian volume form µm. Define

� : X(M)! ⌦2(M), �(X) := iX(µm).

We define the curl operator as

curlm : X(M)! X(M), curlm(X) := ��1 � dX[,

where X[ 2 ⌦1(M) is the one-form obtained from X via the musical isomorphism.

(i) Let ⌧ : C1(M)! ⌦3(M) denote the map f 7! f µm. Prove that the following
diagram commutes:

C1(M) X(M) X(M) C1(M)

C1(M) ⌦1(M) ⌦2(M) ⌦3(M)

grad
m

id

curl
m

[

div
m

� ⌧

d d d

(ii) Deduce that
divm(curlm(X)) = 0, 8X 2 X(M),

a formula you no doubt remember from Analysis II.

Solution.

(i) It is su�cient to prove that the three square diagrams commute. The first one
commutes if and only if df = (gradm f)[ for all f 2 C1(M), which follows
directly from the definition of gradient (Definition 48.12).
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The commutation of the second square is equivalent to d(X[) = �(curlm(X))
for all X 2 X(M), which is exactly the definition of curlm given in the text
of the problem.

Finally the third square commutes if and only if for all X 2 X(M) it holds

divm(X)µm = ⌧(divm(X)) = d(�(X)) = d(iXµm),

which is implied by Cartan’s Magic Formula (Theorem 20.6) as in the proof
of Theorem 48.10.

Therefore we have proven the commutation of the diagram.

(ii) Given X 2 X(M), by the commutation of the diagram in the first part of the
problem, we know that

divm(curlm(X))µm = ⌧(divm(curlm(X))) = dd(X[) = 0,

which implies that divm(curlm(X)) = 0 as we wanted.

Problem V.4. Let M be a manifold of dimension two or three.

(i) Prove that the curvature tensor Rr
m is completely determined by the Ricci

tensor Ricm.

(ii) Prove that a Riemannian metric m on M is Einstein if and only if m has
constant curvature.

Solution.

(i) We wish to invoke Corollary 47.10; hence, we have to show that the Ricci
tensor determines all the sectional curvatures (in dimension two or three). In
general, pick x 2 M and an orthonormal basis {e1, . . . , en} of TxM . For the
Levi-Civita connection r, the formula derived below Definition 49.8 gives

Ricm(ej, ej) =
n
X

i=1

Rr
m(ei, ej, ei, ej) =

X

i|i 6=j

sectm(x; span{ei, ej}) (V.1)

for all j = 1, . . . , n (as Rr
m(ej, ej, ej, ej) = 0 by the symmetries of the Riemann

tensor). In particular, if the dimension is two we get

sectm(x;TxM) = sectm(x; span{e1, e2}) = Ricm(e2, e2).

In dimension three, summing (V.1) over j, we get

3
X

j=1

Ricm(ej, ej) =
X

(i,j)|i 6=j

sectm(x; span{ei, ej})

= 2 sectm(x; span{e1, e2}) + 2 sectm(x; span{e1, e3})
+ 2 sectm(x; span{e2, e3}).
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But then

3
X

j=1

Ricm(ej, ej)� 2Ricm(e3, e3) = 2 sectm(x; span{e1, e2}),

so the sectional curvature of span{e1, e2} is determined by the Ricci tensor.
As the orthonormal basis was arbitrary, it follows that all sectional curvatures
are determined by the Ricci tensor.

(ii) Assume that Ricm = �m. The argument used for the first part shows actually
the following:3 given a (real) vector space V of dimension n 2 {2, 3} with
an inner product, fix an orthonormal basis {e1, . . . , en} and consider two
quadrilinear maps R1, R2 as in Lemma 47.9; if

n
X

i=1

R1(ei, v, ei, v) =
n
X

i=1

R2(ei, v, ei, v) (V.2)

for all v 2 V , then R1 = R2. Given x 2 M , we now apply this fact with
V := TxM and R1 := Rr

m|x, R2 := �
n�1

Sm|x (as in the proof of Corollary
47.12). Observe that

n
X

i=1

Sm|x(ei, v, ei, v) = nhv, vi �
n
X

i=1

hv, eii2 = (n� 1)hv, vi,

while
n
X

i=1

R1(ei, v, ei, v) = Ricm(v, v) = �hv, vi

by hypothesis. Thus (V.2) holds and we get R1 = R2, which evidently implies
that m has constant curvature �

n�1
.

(|) Problem V.5. Let (M,m) be a Riemannian manifold. Let  : TTM ! TM
denote the connection map of the Levi-Civita connection ofm, and let ⇥t denote the
geodesic flow of m (i.e. the flow of the geodesic spray of the Levi-Civita connection
of M). Using Lemma 31.3 we can regard D⇥t as a vector bundle isomorphism

gD⇥t := (D⇡,) �D⇥t � (D⇡,)�1 : TM � TM ! TM � TM

along ⇡ : TM ! M . Fix x 2 M and u, v, w 2 TxM . Let � denote the unique
geodesic with �(0) = x and �0(0) = u, and let c 2 Jac(�) denote the unique Jacobi
field along � with

c(0) = v, rT (c)(0) = w.

Prove that
gD⇥t(x, u)(v, w) = (c(t),rT (c)(t)).

3The proof in this situation uses Lemma 47.9 in place of Corollary 47.10.
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Solution. Set
⇠ = (D⇡,)�1(v, w) 2 TuTM

and define the vector field

c̃(t) = D⇡ �D⇥t[⇠] 2 T⇡(⇥
t

(x,u))M.

Recall that as a function of t, the projection ⇡(⇥t(x, u)) 2M is the unique geodesic
with starting point x and derivative u. By uniqueness of geodesics this means that
⇡(⇥t(x, u)) is precisely � and c̃ is therefore a vector field along �.

We will shortly show that c̃ is a Jacobi field along � with initial data

c̃(0) = v and rT (c̃)(0) = w.

This will then imply by Proposition 50.8 that c̃ = c and consequently prove half of
the statement.

In order to see why c̃ is a Jacobi field we will write it as a geodesic variation of
� (cf. Proposition 50.13). For this we pick a smooth curve ⌘ : (�✏, ✏) ! TM such
that

⌘(0) = u, ⌘0(0) = ⇠.

By the chain rule we thus have

c̃(t) =
@

@s

�

�

�

�

s=0

exp⇡(⌘(s))(t · ⌘(s))
| {z }

=:�(s,t)

.

It is clear that �(0, t) = �(t), hence c̃ is a Jacobi field along �. For the initial data
we compute

• c̃(0) = @
@s

�

�

s=0
(⇡(⌘(s)) = D⇡(⇠) = v,

• @
@t

�

�

t=0
c̃(t) = @

@s

�

�

s=0
⌘(s) = ⇠

where in the second bullet point we first of all used the fact that we can swap T
and S = @

@s just as in the proof of Proposition 50.13, and

D(expy)(0y)[J0
Y

(⌘(s))]) = idT
y

M ,

where y = ⇡(⌘(s)) (cf. Theorem 43.3). This proves

D⇡ (D✓t(x, u)[⇠]) = c(t).

We are only left to show that

(D⇥t(x, u)[⇠]) = rT (c)(t).

Using again the fact that r is torsion-free, [S, T ] = 0 and ⇥t(⌘(s)) =
@
@t exp⇡(⌘(s))(t ·

⌘(s)) (see end of Lecture 42) one gets

D⇥t(x, u)[⇠] =
@

@s

�

�

�

�

s=0

(✓t(⌘(s)))

=
@

@t

✓

@

@s

�

�

�

�

s=0

exp⇡(⌘(s))(t · ⌘(s))
◆

=
@

@t
c̃(t)

= Dc̃(t)[T ].
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And finally we obtain

 (D⇥t(x, u)[⇠]) = (Dc̃(t)[T ]) = rT (c̃)(t).

Here we used the very first definition of a covariant derivative via the connection
map  (see Theorem 31.10). This finishes the proof.

(|) Problem V.6. Let ⇡ : E ! M be a vector bundle, and assume we are given
a connections rE on E and a connection rM on M . Let rE,M denote the induced
connection on the bundle E⌦T ⇤M overM . If s 2 �(E) then rE(s) 2 �(E⌦T ⇤M),
and hence rE,M(r(s)) 2 �(E ⌦ T ⇤M ⌦ T ⇤M). We abbreviate

r(2)(s) := rE,M(rE(s))

and call the operator r(2) : �(E) ! �(E ⌦ T ⇤M ⌦ T ⇤M) a higher covariant
derivative.

(i) Prove that

rE,M(rE(s))(X, Y ) = rE
X(rE

Y (s))�rE
rM

X

(Y )(s),

(ii) Suppose that rM is torsion-free. Prove that

r(2)(s)(X, Y )�r(2)(s)(Y,X) = RrE

(X, Y )(s).

(iii) We can repeat this process inductively to define covariant derivatives

r(k) : �(E)! �(E ⌦ T ⇤M⌦k)

Find an explicit formula for r(k) in terms of rE and rM .

(iv) Now suppose (M,m1) and (N,m2) are two Riemannian manifolds. Let rM

and rN denote the Levi-Civita connections. Suppose ' : M ! N is a smooth
map. Then D' can be thought of as a section of the bundle '?TN ⌦ T ⇤M .
By taking E = '?TN and applying the construction above, we can define
higher order covariant derivatives of D' via:

r(2)(') := rE,M(D'),

and inductively r(k)(') is a section of '?(TN) ⌦ T ⇤M⌦k. Give an explicit
formula for r(k)('). Find a local expression for r(2)(') in terms of local
coordinates on M and N (and the Christo↵el symbols of rM and rN) for
r(2)(').

(v) Now take (N,m2) = (R,mEucl), so that ' is a simply a smooth function on
M . How does the second order covariant derivative compare to the Hessian?

Solution.
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(i) First, recall that rE,M acts on a section e⌦ ! 2 �(E ⌦ T ⇤M) as

rE,M
X (e⌦ !) = rE

Xe⌦ ! + e⌦rM
X !,

where the covariant di↵erentiation on forms is, as we know,

rM
X !(Y ) = X(!(Y ))� !(rM

X Y ).

Hence, if e1, . . . ek is a fixed local frame for E defined on some open subset
U ⇢M and s is a section of the bundle E, there exist k uniquely determined
1-forms !1, . . . ,!k so that

rEs = ei ⌦ !i

on U (if we write s = siei, the explicit expression for such forms is !i(X) =
X(si)+sj!i

j(X) where !i
j are the connection 1-forms). We may then compute:

rE,M(rEs)(X1, X2) = rE,M
X1

(rEs)(X2)

= rE,M
X1

(ei ⌦ !i)(X2)

= rE
X1
ei !

i(X2) + ei (rM
X1
!i)X2

= rE
X1
ei !

i(X2) + ei
�

X1(!
i(X2))� !i(rM

X1
X2)

�

= rE
X1
(rE

X1
s)�rE

rM

X1
X2
s,

where we used, for the last inequality, the fact that covariant derivatives
satisfy the Leibniz rule.

(ii) Using (i) and adding and subtracting the term rE
[X1,X2]

s, we see that

r(2)s(X1, X2)�r(2)s(X2, X1) = rE
X1
(rE

X2
s)�rE

X2
(rE

X1
s)�

⇣

rE
rM

X1
X2
s�rE

rM

X2
X1
s
⌘

= rE
X1
(rE

X2
s)�rE

X2
(rE

X1
s)�rE

[X1,X2]
s�rE

T (X1,X2)
s

= RrE

(X1, X2)s,

where T is the torsion tensor of rM which is identically zero by assumption.

(iii) As in (i), recall first that, for k 2 N, the induced connection on E ⌦ T ⇤M⌦k

is

rE,M
X (e⌦ ⌘) = rE

Xe⌦ ⌘ + e⌦rM
X ⌘,

where the covariant di↵erentiation on k-forms is

rM
X ⌘(Y1, . . . , Yk) = X(⌘(Y1, . . . , Yk))�

k
X

j=1

⌘(X1, . . . ,rM
X Yj, . . . , Yk).

If e1, . . . ek is a fixed local frame for E and s is a section of E, we may locally
write

r(k)s = ei ⌦ ⌘i,

7



where ⌘1, . . . ⌘k are k-forms uniquely determined by the frame. We then com-
pute, for k � 1:

r(k+1)s(X1, . . . , Xk+1) =rE,M
X1

(rks)(X2, . . . , Xk+1)

=rE,M
X1

(ei ⌦ ⌘i)(X2, . . . Xk+1)

=rE
X1
ei ⌘

i(X2, . . . , Xk+1) + ei (rM
X1
⌘i)(X2, . . . , Xk+1)

=rE
X1
ei ⌘

i(X2, . . . , Xk+1)

+ ei

✓

X1(⌘
i(X2, . . . , Xk+1))�

k+1
X

j=2

⌘i(X1, . . . ,rM
X Yj, . . . , Yk)

◆

,

So we conclude that a (recursive) formula for higher-order covariant di↵eren-
tiation is given by

r(k+1)s(X1, . . . , Xk+1) =rE
X1

�r(k)s(X2, . . . , Xk+1)
�

�
k+1
X

j=2

r(k)s(X2, . . . ,rM
X1
Xj, . . . , Xk+1).

(iv) Here, the bundle is E = '?(TN) with covariant derivative rE
X = rN

D'[X] and
we regard D' as a section of the bundle '?(TN)⌦ T ⇤M , and we put

r(2)'(X1, X2) := rE,M(D')(X1, X2) = rE,M
X1

(D')(X2).

Similarly as in (i) we deduce that

r(2)'(X1, X2) = rE
X1
(D'[X2])�D'[rM

X1
X2]

= rN
D'[X1]

(D'[X2])�D'[rM
X1
X2]

The higher-order derivatives r(k)' are defined inductively as in (iii), and as
in that case we have the formula, for k � 1,

r(k)'(X1, . . . , Xk) =rE
X1
(r(k�1)'(X2, . . . , Xk))

�
k
X

j=2

r(k�1)'(X2, . . . ,rM
X1
Xj, . . . , Xk)

We find the local expression for r(2)'. If x1, . . . , xm are local coordinates of
M and y1, . . . , yn are local coordinates on N , and we denote with ��µ⌫ and
�kij the correspondent Christo↵el symbols on M and N respectively, by the
formula we have

r(2)'(@µ, @⌫) = rN
@
µ

'(@⌫')�D'[rM
@
µ

@⌫ ]

= rN
@
µ

'(@⌫'
i@i)�D'[��µ⌫@�]

= @2µ⌫'
i@i|' + @µ'

j@⌫'
i�kji(')@k|' � ��µ⌫@�'i@i|'.

This means that the local components of r(2)' are

(r(2)')kµ⌫(x) = @2µ⌫'
k + �kij('(x))@µ'

i(x)@⌫'
j(x)� ��µ⌫(x)@�'k(x).

(v) In the particular case where N = R with its standard metric, we see from
the expressions in (iv) that we recover precisely the notion of Hessian for a
real-valued map given in Definition 48.20.
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Problem Sheet W

(|) Problem W.1. Prove that the converse to Proposition 53.10 does not hold:
Find a Riemannian manifold (M,m) with a geodesic � that does not have conjugate
points yet is not minimal.

(|) Problem W.2. Let ' : (M,m1) ! (N,m2) be an isometric map between
Riemannian manifolds of the same dimension. Suppose (M,m1) is complete. Prove
that ' is a Riemannian covering.

Problem W.3. Let (M,m) be a Riemannian manifold. Let � : [0, b] ! M be a
regular geodesic. A point t0 2 (0, b] is a conjugate point of � if and only if exp�(0)
does not have maximal rank at t0�0(0). In fact,

dim kerD exp�(0)(t0�
0(0)) = dimnull(�|[0,t0]).

Problem W.4. Let (M,m) be a Riemannian manifold. Let � 2 Cxy([a, b]) be a
geodesic and let c1, c2 2 T�Cxy([a, b]). Prove that

Hess(Em)(�)(c1, c2) = �
Z b

a

⌦rT (rT (c1)) +Rr(c1, �0)(�0), c2
↵

dt.

If instead we only require c1, c2 2 T�Pxy([a, b]), prove that

Hess(Em)(�)(c1, c2) = �
Z b

a

⌦rT (rT (c1)) +Rr(c1, �0)(�0), c2
↵

dt

+
k�1
X

i=1

⌦rT (c1)|[a
i�1,ai](ai)�rT (c1)|[a

i

,a
i+1](ai), c2(ai)

↵

,

where a = a0 < a1 < · · · < ak = b is any subdivision of [a, b] such that c1|[a
i�1,ai] is

smooth for each i = 1, . . . , k.

(|) Problem W.5. Let (M,m) and (M̃, m̃) be two Riemannian manifolds of the
same dimension n with associated exponential maps exp and gexp. Fix x 2 M
and x̃ 2 M̃ , and let v 2 TxM and ṽ 2 Tx̃M̃ be two vectors of unit norm. Let
�(t) := expx(tv) and �̃(t) := gexpx̃(tṽ). Let b > 0 be such that both � and �̃ are
defined on [0, b], and let y = �(b), ỹ = �̃(b). Suppose that for all t 2 [0, b] and for
all 2-planes ⇧ ⇢ T�(t)M one has

sectm(�(t);⇧)  sectm̃
�

�̃(t);Tt[⇧]
�

.

Then for all c 2 T�Pxy([0, b]) one has

Hess(Em)(�)(c, c) � Hess(Em̃)(�̃)(⌧(c), ⌧(c)),

where ⌧ : T�Pxy([0, b])! T�̃Px̃ỹ([0, b]) was defined in (53.8).

Will J. Merry, Di↵. Geometry II, Spring 2019, ETH Zürich. Last modified: June 28, 2019.
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Solutions to Problem Sheet W

(|) Problem W.1. Prove that the converse to Proposition 53.10 does not hold:
Find a Riemannian manifold (M,m) with a geodesic � that does not have conjugate
points yet is not minimal.

Solution. Consider the flat torus (T 2,mflat), i.e. the torus equipped with its
unique Riemannian metric such that the universal covering

⇡ : (R2,mEucl)! (T 2,mflat)

defines a Riemannian covering (see Example 46.10). We know that R2 equipped
with its Levi-Civita connection is flat, in particular its sectional curvature is 0. It
immediately follows from ⇡ : R2 ! T 2 being a Riemannian covering that (T 2,mflat)
with its Levi-Civita connection is also flat. Thus there are no conjugate points since
(T 2,mflat) has zero constant curvature (see Remark 50.10). Also, the projection is
an isometric map and therefore sends geodesics to geodesics. In particular, the
projection of straight lines on the flat torus are geodesics.

We consider the (closed) geodesic

� : [0, 3]! T 2, �(t) =

✓

t,
1

3
t

◆

.

The distance between the two points

x = �

✓

1

2

◆

=

✓

1

2
,
1

6

◆

, y = �

✓

5

2

◆

=

✓

1

2
,
5

6

◆

,

is given by

d(x, y) =

s

02 +

✓

2

3

◆2

=
2

3
.

The length of � restricted to
⇥

1
2
, 5
2

⇤

however is

Z

5
2

1
2

|�̇(t)|dt =
Z

5
2

1
2

r

1 +
1

9
dt

=
2
p
10

3
,

which is strictly greater than the distance d(x, y), hence � is not minimal. This
concludes the proof 1.

Solutions written by Giada Franz, Francesco Palmurella, Alessio Pellegrini, and Alessandro
Pigati. Last modified: June 28, 2019.

1Note that this does not contradict Corollary 53.9 and Corollary 53.6: The geodesic we have
chosen just happens not to be a minimal geodesic between x and y.
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(|) Problem W.2. Let ' : (M,m1) ! (N,m2) be an isometric map between
Riemannian manifolds of the same dimension. Suppose (M,m1) is complete. Prove
that ' is a Riemannian covering.

Solution. Let us proceed by steps.
(i). Preliminary: existence and uniqueness of the “geodesic lift”. We show that,

for every q 2 '(M), every p 2 '�1(q) and every geodesic � in N starting at q, there
exists a unique geodesic �̃ in M starting at p so that � = ' � �̃. Indeed, since '
is a local isometry, it maps geodesics to geodesics, hence if we consider the unique
geodesic �̃ in M starting at p and with initial velocity w = D'(p)�1[�0(0)], this
must coincide, by the existence and uniqueness theorem for geodesics,s with �.

(ii). N is complete. Indeed, pick a point q 2 '(M) and any tangent vector
w 2 TqN and consider the unique geodesic � starting at q with initial velocity w.
By (i), there exists a geodesic �̃ in M so that � = ' � �̃. Since M is complete, �̃ is
defined on the whole R, and consequently so is �. Since v was arbitrary, then N is
complete by the Hopf-Rinow Theorem 53.7.

(iii). ' is surjective. Indeed, let q be any point in N , and let q0 = '(p0) be a
point in '(M). Since N is complete, there exists a length-minimising geodesic �
with �(0) = q0 and �(1) = q. Then by (i) we have � = ' � �̃ for some geodesic �̃
in M , and since both are complete, necessarily than q = '(�̃(1)) and so q 2 '(M).

(iv). ' is a covering map. We further divide this step in three sub-steps.
(iv.a). Let q0 2 N be fixed, and let U = BN

" (q0) be the geodesic ball in N of radius
" centred at q0. Set '�1(q0) = {q↵}↵2A and let us verify that, for every ↵ 6= �,
there holds BM

" (p↵) \ BM
" (p�) = ?. Indeed, if �̃ is a length-minimising geodesic

from p↵ to p�, then we consider, by (i), the geodesic (in N) � = ' � �̃ which is a
loop at q0. Since all geodesics in BN

" (q0) are radial by Corollary 52.8, � must leave,
and then return, the ball BN

" (p0), and so it must have length bigger than 2". Now
since ' is a local isometry it preserves the length of curves, and thus the length of
�̃ in M must be bigger than 2". By the triangle inequality applied to dM is then
follows that U↵ \ U� = ?.
(iv.b). Let us prove that '�1(U) =

S

↵ U↵. For the inclusion “✓”, if p 2 '�1(U)
then '(p) 2 U = BN

" (p0), hence a length-minimising geodesic � from '(p) to q0
lies in U and has length � < ". The corresponding geodesic �̃ in M given by (i)
joins p with p↵ for some ↵ and has length � < ", hence p 2 U↵. hence p 2 U↵. For
the inclusion “◆”, again since ' is an isometry, it preserves the length of curves,
and so (since the Riemannian distance is an infimum over all curves joining the two
points) it contracts the distances: dN('(p1),'(p2))  dM(p1, p2), and in particular,
since '(p↵) = q0 and each U↵ is a ball of radius ", its image via ' will be contained
in U .

(v). '|U
↵

: U↵ ! U is a di↵eomorphism for every ↵. Since ' sends the radial
geodesic from p↵ tangent to v 2 Tp

↵

M into the radial geodesic from q0 with initial
velocity D'(p↵)[v] 2 Tq0N , it follows that '|U

↵

= expq0 �D'p
↵

� (expp
↵

|B
"

(0))�1,
and that such map is invertible with ('|U

↵

)�1 = expp
↵

�(D'p
↵

)�1 � (expp
↵

|B
"

(0))�1.

Problem W.3. Let (M,m) be a Riemannian manifold. Let � : [0, b] ! M be a
regular geodesic. A point t0 2 (0, b] is a conjugate point of � if and only if exp�(0)
does not have maximal rank at t0�0(0). In fact,

dim kerD exp�(0)(t0�
0(0)) = dimnull(�|[0,t0]).
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Solution. Let x := �(0). Given a vector v 2 TxM , the vector Jt0�0(0)(v) 2
Tt0�0(0)(TxM) belongs to the kernel of D expx(t0�

0(0)) if and only if the same holds
for t0Jt0�0(0)(v), as t0 > 0.

Call cv the Jacobi field along � with initial conditions cv(0) = 0x, rT (cv)(0) = v.
By Corollary 50.15 we have

cv(t0) = D expx(t0�
0(0))[t0Jt0�0(0)(v)],

so t0Jt0�0(0)(v) belongs to the kernel of D expx(t0�
0(0)) if and only if cv(t0) = 0.

Since the assignment v 7! cv is a linear bijection between TxM and Jacobi fields
(along �) vanishing at the initial time 0, the claim follows.

Problem W.4. Let (M,m) be a Riemannian manifold. Let � 2 Cxy([a, b]) be a
geodesic and let c1, c2 2 T�Cxy([a, b]). Prove that

Hess(Em)(�)(c1, c2) = �
Z b

a

⌦rT (rT (c1)) +Rr(c1, �0)(�0), c2
↵

dt.

If instead we only require c1, c2 2 T�Pxy([a, b]), prove that

Hess(Em)(�)(c1, c2) = �
Z b

a

⌦rT (rT (c1)) +Rr(c1, �0)(�0), c2
↵

dt

+
k�1
X

i=1

⌦rT (c1)|[a
i�1,ai](ai)�rT (c1)|[a

i

,a
i+1](ai), c2(ai)

↵

,

where a = a0 < a1 < · · · < ak = b is any subdivision of [a, b] such that c1|[a
i�1,ai] is

smooth for each i = 1, . . . , k.

Solution. Consider the variation

�(r, s, t) = exp�(t)(r · c1(t) + s · c2(t)).
For the first identity we first of all observe that by definition of the Hessian (cf.
Definition 51.15) and the first bit of the proof of Proposition 51.13 one has

Hess(Em)(�)(c1, c2) = �
Z b

a

R h@s�,rT (@t�)i dt,

where here R, S and T denote the obvious vector fields on R. Now we start mas-
saging the integrand above:

R h@s�,rT (@t�))i = hrR(@s�),rT (@t�)i
| {z }

(A)

+ h@s�,rRrT (@t�)i
| {z }

(B)

.

By choice of our variation we have

@r�(0, 0, t) = c1(t), @s�(0, 0, t) = c2(t), @t�(0, 0, t) = �0(t).

Therefore (A) vanishes as � is a geodesic by assumption, thus rT (@t�) = 0. For
(B) on the other hand we have

(B) = h@s�, Rr(R, T )(@t�) +rTrR(@t�) +r[T,R](@t�)i.
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The last term is 0 since [T,R] = 02. Also note that above we have been implicitly
using the pullback connection �⇤r which we still calledr by abuse of notation. Fol-
lowing this abuse of notation, the chain rule for covariant derivatives and plugging
in s = r = 0 finally grants

(B) = hc2, Rr(c1, �0)(�0) +rT (rR(@t�))i
= hc2, Rr(c1, �0)(�0) +rT (rT (c1))i.

In the last line we used torsion-freeness of the Levi-Civita connection and [R, T ] = 0.
This proves the first identity.

Now for the second identity we observe again by referring to the proof of the
first variation formula (cf. proof of Proposition 51.13) that the Hessian has an
additonal error term

(C) :=

Z b

a

R (T h@s�, @t�i) dt.
We can swap R and T , apply the Ricci identity and obtain

(C) =

Z b

a

T hrR(@s�), �
0idt

| {z }

(C0)

+

Z b

a

T hc2,rR(�
0)idt

| {z }

(C00)

.

For (C 00) we observe that

rR(�
0(t))(0) = rT (@r�(0, 0, ·))(t) = rT (c1)(t),

which is by assumption a discontinuous expression at the points a = a0 < a1 <
· · · < ak = b, and therefore we end up with

(C 00) =
Z k�1

i=1

⌦rT (c1)
�

�

[a
i�1,ai]

(ai)�rT (c1)
�

�

[a
i

,a
i+1]

(ai), c2(ai)
↵

.

For (C 0) on the other hand we observe that

rR(@s�(·, 0, t))(0) and @s�(r, 0, t) = D exp�(t)(r · c1(t))[c2(t)].
The second term is a smooth function in r, and so is the first then. Therefore (C 00)
is given by the di↵erence of hrR(@s�), �0i evaluated at t = a, b3, but by properness
of c2 this is just 0. This proves the second identity.

(|) Problem W.5. Let (M,m) and (M̃, m̃) be two Riemannian manifolds of the
same dimension n with associated exponential maps exp and gexp. Fix x 2 M
and x̃ 2 M̃ , and let v 2 TxM and ṽ 2 Tx̃M̃ be two vectors of unit norm. Let
�(t) := expx(tv) and �̃(t) := gexpx̃(tṽ). Let b > 0 be such that both � and �̃ are
defined on [0, b], and let y = �(b), ỹ = �̃(b). Suppose that for all t 2 [0, b] and for
all 2-planes ⇧ ⇢ T�(t)M one has

sectm(�(t);⇧)  sectm̃
�

�̃(t);Tt[⇧]
�

.

Then for all c 2 T�Pxy([0, b]) one has

Hess(Em)(�)(c, c) � Hess(Em̃)(�̃)(⌧(c), ⌧(c)),

where ⌧ : T�Pxy([0, b])! T�̃Px̃ỹ([0, b]) was defined in (53.8).
2Here we cannot use the fact that � is a geodesic. Exercise: Why?
3Note that �0 is smooth as we are assuming � 2 C

xy

([a, b]) even though c1, c2 2 T
�

P
xy

([a, b]).
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Solution. Given c 2 T�Pxy([0, b]), we can write it as c = f iei where {�0 =
e1, e2, . . . , en} is a parallel orthonormal frame along � and f i := hc, eii : [0, b] ! R
are piecewise smooth functions. Calling 0 = a0 < a1 < · · · < ak = b a subdivision
of [0, b] such that c|[a

j�1,aj ] (and thus f i|[a
j�1,aj ] for i = 1, . . . , n) is smooth for each

j = 1, . . . , k, by Proposition 51.16 (proven in Problem W.4) we have that

Hess(Em)(�)(c, c) = �
Z b

0

⌦rT (rT (c)) +Rr(c, �0)(�0), c
↵

dt

+
k�1
X

j=1

⌦rT (c)|[a
j�1,aj ](aj)�rT (c)|[a

j

,a
j+1](aj), c(aj)

↵

.

Now observe that rT (c) = rT (f iei) = (f i)0ei and analogously rT (rT (c)) =
(f i)00ei, since ei are parallel. In a point aj of discontinuity of c, let us denote
(f i)0�(aj) the left derivative (computed taking t % ai) and (f i)0+ right derivative
(computed taking t& ai). Then we obtain that

Hess(Em)(�)(c, c) = �
Z b

0

⌦

(f i)00ei + f iRr(ei, �0)(�0), f iei
↵

dt

+
k�1
X

i=1

⌦

(f i)0�(ai)ei � (f i)0+(ai)ei, f
i(ai)ei

↵

= �
Z b

0

n
X

i=1

⇥

(f i)00 + (f i)2 secm(�(t); span(�
0, ei))

⇤

dt (W.1)

+
k�1
X

j=1

"

n
X

i=1

(f i)0�(aj)f
i(aj)� (f i)0+(aj)f

i(aj)

#

.

However, defining ẽi(t) := Tt(ei(t)), {�̃0 = ẽ1, . . . , ẽn} is a parallel orthonormal
frame along �̃ and ⌧(c) = f iẽi. Therefore, with the same computations, we have
that

Hess(Em̃)(�̃)(⌧(c), ⌧(c)) = �
Z b

0

n
X

i=1

⇥

(f i)00 + (f i)2 secm̃(�̃(t); span(�̃
0, ẽi))

⇤

dt

+
k�1
X

j=1

"

n
X

i=1

(f i)0�(aj)f
i(aj)� (f i)0+(aj)f

i(aj)

#

. (W.2)

Observe that, by hypothesis, it holds

secm(�(t); span(�
0, ei))  secm̃(�̃(t); span(�̃

0, ẽi)),

thus comparing (W.1) and (W.2) gives exactly the sought inequality

Hess(Em)(�)(c, c) � Hess(Em̃)(�̃)(⌧(c), ⌧(c)).
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Problem Sheet XYZ

Problem XYZ.1. Something easy to get started:

(i) Let M be a simply connected compact topological manifold of dimension
three. Prove that M is homeomorphic to S3. Hint: If you get stuck, try here.

(ii) Now let M be a simply connected compact smooth manifold of dimension
four. Is M necessarily di↵eomorphic to S4?

Problem XYZ.2. Infinite-dimensional manifolds are fun. For each result proved
in Lectures 1–53, decide whether the statement holds for infinite-dimensional mani-
folds. If so, prove it (adding additional hypotheses where needed). If not, construct
a counterexample.

Problem XYZ.3. Prove that there does not exist a manifold M with dimM = ⇡.

Problem XYZ.4. Go surfing.

Problem XYZ.5. Study hard for your Di↵erential Geometry II exam, and enjoy
your summer. (In that order.)

Will J. Merry, Di↵. Geometry II, Spring 2019, ETH Zürich. Last modified: June 28, 2019.
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